MATH 1A MIDTERM 1 (8 AM VERSION) SOLUTION. (Last edited October 18, 2013 at 5:06pm.) lim

Size: px
Start display at page:

Download "MATH 1A MIDTERM 1 (8 AM VERSION) SOLUTION. (Last edited October 18, 2013 at 5:06pm.) lim"

Transcription

1 MATH A MIDTERM (8 AM VERSION) SOLUTION (Last edited October 8, 03 at 5:06pm.) Problem. (i) State the Squeeze Theorem. (ii) Prove the Squeeze Theorem. (iii) Using a carefully justified application of the Squeeze Theorem, find ( ) 7 sin. (i) If f, g, h are real-valued functions such that f() g() h() () when is near a (ecept possibly at a) and if a f() a h() = L, then a g() = L. The precise meaning of near a (ecept possibly at a) is: there eists some δ > 0 such that () holds for all satisfying 0 < a < δ. (Remark: f, g, h do not need to be continuous.) (ii) Suppose f, g, h satisfy () when 0 < a < δ for some fied δ > 0. Also suppose that a f() a h() = L. Let ε > 0. Since a f() = L, there eists δ > 0 such that if 0 < a < δ, then f() L < ε. Also, since a h() = L, there eists δ 3 > 0 such that if 0 < a < δ 3, then h() L < ε. Put δ = min{δ, δ, δ 3 }. Suppose 0 < a < δ. Then (), L ε < f() < L + ε and L ε < h() < L + ε hold. Hence g() h() < L + ε. Also L ε < f() g(). Thus L ε < g() < L + ε, so g() L < ε. Hence a g() = L. (iii) Set f() = 7, g() = 7 sin, and h() = 7. (Note that g is only defined for 0.) Note that sin () for all 0. Multiplying both sides of () by 7, we have 7 sin = 7 sin 7 which implies 7 7 sin 7 which is just (). (Here we can take δ to be any positive real number.) Note that f() = h() = 0. Hence, by the Squeeze Theorem, g() = 0. (Remark: it was commonly claimed that 7 7 sin 7

2 MATH A MIDTERM (8 AM VERSION) SOLUTION for all 0, but it isn t true if < 0; we have instead 7 7 sin 7 so the Squeeze Theorem does not apply.) Problem. Evaluate +. You should show your reasoning carefully, however you may use any of the it laws without eplanation or proof. We have + ( )( + ) ( + ) ( + ) ( ) ( + + ) ( + + ) + + = = + =. Problem 3. (i) Let f be a real valued function, and let a and L be real numbers. What does it mean to say that a f() = L? (ii) Prove carefully, using the definition you gave in part (i), that ( ) =. (i) The statement a f() = L means for every ɛ > 0, there eists δ > 0 such that if 0 < a < δ then f() L < ɛ. (ii) Let ɛ > 0. Put δ = min{ ɛ 000, ɛ 000 }. Suppose 0 < < δ. Then 0 < < 0 < < 000. Thus we have = ( ) + 4( ) + 6 = (by the triangle inequality) = ( 000 ) + 4( 000 ) + 6 (since < 000 ) < and

3 MATH A MIDTERM (8 AM VERSION) SOLUTION 3 So ( ) ( ) = = < ɛ < ɛ. Thus ( ) =. Problem 4. (i) State carefully the Intermediate Value Theorem. (ii) Prove that there is a root of the equation in the interval (, ). 3 = 3 (i) Let f be a continuous function on the interval [a, b]. Suppose f(a) f(b) and let N be a value strictly between f(a) and f(b). Then there eists some c (a, b) such that f(c) = N. (Remark: f needs to be continuous on the closed interval [a, b], not just on the open interval (a, b), and we can guarantee that such c eists in the open interval (a, b), not just the closed interval [a, b].) (ii) Let f() = 3 3. Since f is the sum of a polynomial and an eponential function, it is continuous on the interval [, ] (it is even continuous on the entire real line, but we only need it to be continuous on [, ]). Observe that f() = () 3 3 = f() = () 3 3 = 7. Set N = 0; it is strictly between f() and f(). By the Intermediate Value Theorem, there eists c (, ) such that f(c) = 0. This implies that c is a solution to 3 = 3. Problem 5. The figure below shows the graph of y = f() when 5 + if < π tan if π < 0 but π 0 if = π if 0 < f() = 3 if < 4 if = 4 + if 4 < < 7 but 5 if = 5 ln if 7 For each of the following statements, indicate if it is true or false. (i) 4 f() = 3

4 4 MATH A MIDTERM (8 AM VERSION) SOLUTION (ii) 5 + f() = (iii) 5 f() = (iv) 3 f() eists (v) π + f() = (vi) f() = (vii) The graph y = f() has a horizontal asymptote at y = 0. (viii) The graph y = f() has two horizontal asymptotes. (i) The graph y = f() has two vertical asymptotes. () f() is continuous at = 0. (i) f() is continuous at =. (ii) f() is continuous on the interval [, ]. Proof. (i) True. We have 4 f() 4 3 = 3 and 4 + f() 4 +( + ) = (4 5) + = 3. This implies 4 f() = 3. (Notice that the it is still 3 even if f(4) 3.) (ii) True. We prove that for every N > 0 there eists δ > 0 such that if 0 < 5 < δ then f() > N, which is what the statement = means. Let N > 0. Set δ = min{ N, } if N > and δ = otherwise. (Having δ is nice because it ensures that f() = + for all satisfying 0 < 5 < δ). Suppose 0 < 5 < δ. If N >, then 0 < 5 < N, so N <, thus N < + = f(). If N, then 0 < 5 <, so ; thus N < 3 + = f(). (iii) True. We prove that for every N > 0 there eists δ > 0 such that if 0 < 5 < δ then f() > N, which is what the statement 5 + = means. Let N > 0. Set δ = min{ N, } if N > and δ = otherwise. Suppose 0 < 5 < δ. If N >, then 0 < 5 < N, so N <, thus N < + = f(). If N, then 0 < 5 <, so ; thus N < 3 + = f(). (iv) True. Since f() = tan on the interval ( π, π ), which contains 3, f is continuous at = 3 and f( 3) 3 f() (by the definition of continuity). (v) False. We actually have π + f() = and π f() =. (vi) True. Note that f() = ln on [7, ); for any positive N > 0, we have ln > N for all > e N. (vii) True. We interpret the statement the graph y = f() has a horizontal asymptote at y = 0 to mean at least one of f() = 0 and f() = 0 holds. In this case we have f() = 0. (viii) False. The graph y = f() has eactly one horizontal asymptote, namely at y = 0. Although it might seem like there is a horizontal asymptote at y 3.4, it is not the case since f() =. The graph shows only a finite section of ln, which grows increasingly slowly with respect to. (i) True. The two vertical asymptotes are at = π and = 5. () True. We have f() tan = 0 and + f() + = 0, so f() is continuous at = 0. (i) False. We have f() = and + f() + 3 = 3, and these two one-sided its do not agree, so f() is not continuous at =. (ii) True. Professor Coward has addressed this issue; his definition of continuity of f on an interval [a, b] is: f is continuous in the usual sense for each point (a, b), and f(a) a + f() and f(b) b f(). This is a weaker condition than the alternative definition, which requires additionally that a f() eists and is equal to f(a) and b f() eists and is equal to

5 MATH A MIDTERM (8 AM VERSION) SOLUTION 5 f(b). Importantly, the Intermediate Value Theorem is still true for functions which satisfy the weaker condition. Problem 6. Using the it definition of derivative, show that if f() =, then f () =. Set f() =. We have f( + h) f() ( + h) h 0 h h 0 h h 0 + h + h h h 0 + h =. Thus f () =. Problem 7. What is log 4 8? Let = log 4 8. Recall that the epression log 4 8 is defined to be the unique number such that 4 log 4 8 = 8. Thus 4 = 8. Write 4 = and 8 = 3 so that = 3. Thus = 3, so = 3.

Calculus I (part 1): Limits and Continuity (by Evan Dummit, 2016, v. 2.01)

Calculus I (part 1): Limits and Continuity (by Evan Dummit, 2016, v. 2.01) Calculus I (part ): Limits and Continuity (by Evan Dummit, 206, v. 2.0) Contents Limits and Continuity. Limits (Informally)...............................................2 Limits and the Limit Laws..........................................

More information

Limits. f(x) and lim. g(x) g(x)

Limits. f(x) and lim. g(x) g(x) Limits Limit Laws Suppose c is constant, n is a positive integer, and f() and g() both eist. Then,. [f() + g()] = f() + g() 2. [f() g()] = f() g() [ ] 3. [c f()] = c f() [ ] [ ] 4. [f() g()] = f() g()

More information

Sections 1.3 Computation of Limits

Sections 1.3 Computation of Limits 1 Sections 1.3 Computation of Limits We will shortly introduce the it laws. Limit laws allows us to evaluate the it of more complicated functions using the it of simpler ones. Theorem Suppose that c is

More information

7. If. (b) Does lim f(x) exist? Explain. 8. If. Is f(x) continuous at x = 1? Explain. 11. Let 3x 2 2x +4 if x< 1 9x if 1 x<2 3x 4 if x 2

7. If. (b) Does lim f(x) exist? Explain. 8. If. Is f(x) continuous at x = 1? Explain. 11. Let 3x 2 2x +4 if x< 1 9x if 1 x<2 3x 4 if x 2 1 Continuity 1. Use the definition of continuity to show that the function { 2 for 2 3 for >2 is not continuous at =2. 2. The function f() is defined by { 2 for 1 3 for >1 (b) Find f() and f(). + (c) Is

More information

Section 2.5: Continuity

Section 2.5: Continuity Section 2.5: Continuity 1. The Definition of Continuity We start with a naive definition of continuity. Definition 1.1. We say a function f() is continuous if we can draw its graph without lifting out

More information

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26 TABLE OF CONTENTS CHAPTER LIMIT AND CONTINUITY... LECTURE 0- BASIC ALGEBRAIC EXPRESSIONS AND SOLVING EQUATIONS... LECTURE 0- INTRODUCTION TO FUNCTIONS... 9 LECTURE 0- EXPONENTIAL AND LOGARITHMIC FUNCTIONS...

More information

Limits and Derivatives (Review of Math 249 or 251)

Limits and Derivatives (Review of Math 249 or 251) Chapter 3 Limits and Derivatives (Review of Math 249 or 251) 3.1 Overview This is the first of two chapters reviewing material from calculus; its and derivatives are discussed in this chapter, and integrals

More information

MATH 137 : Calculus 1 for Honours Mathematics. Online Assignment #5. Limits and Continuity of Functions

MATH 137 : Calculus 1 for Honours Mathematics. Online Assignment #5. Limits and Continuity of Functions 1 Instructions: MATH 137 : Calculus 1 for Honours Mathematics Online Assignment #5 Limits and Continuity of Functions Due by 9:00 pm on WEDNESDAY, June 13, 2018 Weight: 2% This assignment includes the

More information

Chapter 1. Limits and Continuity. 1.1 Limits

Chapter 1. Limits and Continuity. 1.1 Limits Chapter Limits and Continuit. Limits The its is the fundamental notion of calculus. This underling concept is the thread that binds together virtuall all of the calculus ou are about to stud. In this section,

More information

In this chapter, we define limits of functions and describe some of their properties.

In this chapter, we define limits of functions and describe some of their properties. Chapter 2 Limits of Functions In this chapter, we define its of functions and describe some of their properties. 2.. Limits We begin with the ϵ-δ definition of the it of a function. Definition 2.. Let

More information

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework.

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework. For Test #3 study these problems, the eamples in your notes, and the homework. I. Absolute Etrema A function, continuous on a closed interval, always has an absolute maimum and absolute minimum. They occur

More information

f(x) lim does not exist.

f(x) lim does not exist. Indeterminate Forms and L Hopital s Rule When we computed its of quotients, i.e. its of the form f() a g(), we came across several different things that could happen: f(). a g() = f(a) g(a) when g(). a

More information

Part 2.2 Continuous functions and their properties v1 2018

Part 2.2 Continuous functions and their properties v1 2018 Part 2.2 Continuous functions and their properties v 208 Intermediate Values Recall R is complete. This means that ever non-empt subset of R which is bounded above has a least upper bound. That is: (A

More information

Sections 4.3, 4.5 & 4.6: Graphing

Sections 4.3, 4.5 & 4.6: Graphing Sections 4.3, 4.5 & 4.6: Graphing In this section, we shall see how facts about f () and f () can be used to supply useful information about the graph of f(). Since there are three sections devoted to

More information

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows)

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows) The Bisection Method versus (Classic Version for Windows) Author: Barbara Forrest Contact: baforres@uwaterloo.ca Copyrighted/NOT FOR RESALE version 1.1 Contents 1 Objectives for this Lab i 2 Approximate

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Eam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the intervals on which the function is continuous. 2 1) y = ( + 5)2 + 10 A) (-, ) B)

More information

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas a t e a t i c a s PROBLEMS, CALCULUS I, st COURSE. FUNCTIONS OF A REAL VARIABLE BACHELOR IN: Audiovisual System

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

MATH 54 - LECTURE 10

MATH 54 - LECTURE 10 MATH 54 - LECTURE 10 DAN CRYTSER The Universal Mapping Property First we note that each of the projection mappings π i : j X j X i is continuous when i X i is given the product topology (also if the product

More information

Updated: January 16, 2016 Calculus II 6.8. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University.

Updated: January 16, 2016 Calculus II 6.8. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University. Updated: January 6, 206 Calculus II 6.8 Math 230 Calculus II Brian Veitch Fall 205 Northern Illinois University Indeterminate Forms and L Hospital s Rule From calculus I, we used a geometric approach to

More information

5-2 Verifying Trigonometric Identities

5-2 Verifying Trigonometric Identities 5- Verifying Trigonometric Identities Verify each identity. 1. (sec 1) cos = sin 3. sin sin 3 = sin cos 4 5. = cot 7. = cot 9. + tan = sec Page 1 5- Verifying Trigonometric Identities 7. = cot 9. + tan

More information

Section 2.3: Calculating Limits using the Limit Laws

Section 2.3: Calculating Limits using the Limit Laws Section 2.3: Calculating Limits using te Limit Laws In previous sections, we used graps and numerics to approimate te value of a it if it eists. Te problem wit tis owever is tat it does not always give

More information

Math 0420 Homework 3. Scratch Work:For c > 0, according to the definition of limit, we want to find δ to bound the term x c by ɛ.we have: x c.

Math 0420 Homework 3. Scratch Work:For c > 0, according to the definition of limit, we want to find δ to bound the term x c by ɛ.we have: x c. Math 0420 Homework 3 Eercise 311 Find the it or prove the it does not eit (a) for c 0 Solution: First, we might guess that the it is c Scratch Work:For c > 0, according to the definition of it, we want

More information

Date: 16 July 2016, Saturday Time: 14:00-16:00 STUDENT NO:... Math 102 Calculus II Midterm Exam II Solutions TOTAL. Please Read Carefully:

Date: 16 July 2016, Saturday Time: 14:00-16:00 STUDENT NO:... Math 102 Calculus II Midterm Exam II Solutions TOTAL. Please Read Carefully: Date: 16 July 2016, Saturday Time: 14:00-16:00 NAME:... STUDENT NO:... YOUR DEPARTMENT:... Math 102 Calculus II Midterm Exam II Solutions 1 2 3 4 TOTAL 25 25 25 25 100 Please do not write anything inside

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

Limits at Infinity

Limits at Infinity Limits at Infinity 9-6-08 In this section, I ll discuss the it of a function f() as goes to and. We ll see that this is related to horizontal asyptotes of a graph. It s natural to discuss vertical asymptotes

More information

Lecture-12: Closed Sets

Lecture-12: Closed Sets and Its Examples Properties of Lecture-12: Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Introduction and Its Examples Properties of 1 Introduction

More information

Worksheet A GRAPHS OF FUNCTIONS

Worksheet A GRAPHS OF FUNCTIONS C GRAPHS F FUNCTINS Worksheet A Sketch and label each pair of graphs on the same set of aes showing the coordinates of any points where the graphs intersect. Write down the equations of any asymptotes.

More information

Cardinality Lectures

Cardinality Lectures Cardinality Lectures Enrique Treviño March 8, 014 1 Definition of cardinality The cardinality of a set is a measure of the size of a set. When a set A is finite, its cardinality is the number of elements

More information

Lecture : Topological Space

Lecture : Topological Space Example of Lecture : Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Example of 1 2 3 Example of 4 5 6 Example of I Topological spaces and continuous

More information

MATH 54 - LECTURE 4 DAN CRYTSER

MATH 54 - LECTURE 4 DAN CRYTSER MATH 54 - LECTURE 4 DAN CRYTSER Introduction In this lecture we review properties and examples of bases and subbases. Then we consider ordered sets and the natural order topology that one can lay on an

More information

The method of rationalizing

The method of rationalizing Roberto s Notes on Differential Calculus Chapter : Resolving indeterminate forms Section The method of rationalizing What you need to know already: The concept of it and the factor-and-cancel method of

More information

2.5 Continuity. f(x) + g(x) > (M c) + (c - 1) == M. Thus,

2.5 Continuity. f(x) + g(x) > (M c) + (c - 1) == M. Thus, 96 D CHAPTER LIMITS AND DERIVATIVES If() - LI < c. Let 6 be the smaller of 61 and 6. Then 0 < I - al < 6 =} a - 61 < X < a or a < < a + 6 so If() - LI < c. Hence, lim f() == L. So we have proved that lim

More information

Calculus Chapter 1 Limits. Section 1.2 Limits

Calculus Chapter 1 Limits. Section 1.2 Limits Calculus Chapter 1 Limits Section 1.2 Limits Limit Facts part 1 1. The answer to a limit is a y-value. 2. The limit tells you to look at a certain x value. 3. If the x value is defined (in the domain),

More information

Lecture 17: Continuous Functions

Lecture 17: Continuous Functions Lecture 17: Continuous Functions 1 Continuous Functions Let (X, T X ) and (Y, T Y ) be topological spaces. Definition 1.1 (Continuous Function). A function f : X Y is said to be continuous if the inverse

More information

Coloring 3-Colorable Graphs

Coloring 3-Colorable Graphs Coloring -Colorable Graphs Charles Jin April, 015 1 Introduction Graph coloring in general is an etremely easy-to-understand yet powerful tool. It has wide-ranging applications from register allocation

More information

Cumulative Review Problems Packet # 1

Cumulative Review Problems Packet # 1 April 15, 009 Cumulative Review Problems Packet #1 page 1 Cumulative Review Problems Packet # 1 This set of review problems will help you prepare for the cumulative test on Friday, April 17. The test will

More information

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is APPLICATIN F DERIVATIVE INTRDUCTIN In this section we eamine some applications in which derivatives are used to represent and interpret the rates at which things change in the world around us. Let S be

More information

EXERCISE I JEE MAIN. x continuous at x = 0 if a equals (A) 0 (B) 4 (C) 5 (D) 6 Sol. x 1 CONTINUITY & DIFFERENTIABILITY. Page # 20

EXERCISE I JEE MAIN. x continuous at x = 0 if a equals (A) 0 (B) 4 (C) 5 (D) 6 Sol. x 1 CONTINUITY & DIFFERENTIABILITY. Page # 20 Page # 0 EXERCISE I 1. A function f() is defined as below cos(sin) cos f() =, 0 and f(0) = a, f() is continuous at = 0 if a equals (A) 0 (B) 4 (C) 5 (D) 6 JEE MAIN CONTINUITY & DIFFERENTIABILITY 4. Let

More information

8 Matroid Intersection

8 Matroid Intersection 8 Matroid Intersection 8.1 Definition and examples 8.2 Matroid Intersection Algorithm 8.1 Definitions Given two matroids M 1 = (X, I 1 ) and M 2 = (X, I 2 ) on the same set X, their intersection is M 1

More information

Domain: The domain of f is all real numbers except those values for which Q(x) =0.

Domain: The domain of f is all real numbers except those values for which Q(x) =0. Math 1330 Section.3.3: Rational Functions Definition: A rational function is a function that can be written in the form P() f(), where f and g are polynomials. Q() The domain of the rational function such

More information

5-2 Verifying Trigonometric Identities

5-2 Verifying Trigonometric Identities Verify each identity 1 (sec 1) cos = sin sec (1 cos ) = tan 3 sin sin cos 3 = sin 4 csc cos cot = sin 4 5 = cot Page 1 4 5 = cot 6 tan θ csc tan = cot 7 = cot 8 + = csc Page 8 = csc + 9 + tan = sec 10

More information

WebAssign hw2.3 (Homework)

WebAssign hw2.3 (Homework) WebAssign hw2.3 (Homework) Current Score : / 98 Due : Wednesday, May 31 2017 07:25 AM PDT Michael Lee Math261(Calculus I), section 1049, Spring 2017 Instructor: Michael Lee 1. /6 pointsscalc8 1.6.001.

More information

Section 4.1: Maximum and Minimum Values

Section 4.1: Maximum and Minimum Values Section 4.: Maimum and Minimum Values In this chapter, we shall consider further applications of the derivative. The main application we shall consider is using derivatives to sketch accurate graphs of

More information

1 extrema notebook. November 25, 2012

1 extrema notebook. November 25, 2012 Do now as a warm up: Suppose this graph is a function f, defined on [a,b]. What would you say about the value of f at each of these x values: a, x 1, x 2, x 3, x 4, x 5, x 6, and b? What would you say

More information

AP Calculus BC Summer Assignment

AP Calculus BC Summer Assignment AP Calculus BC Summer Assignment Name Due Date: First Day of School Welcome to AP Calculus BC! This is an exciting, challenging, fast paced course that is taught at the college level. We have a lot of

More information

The method of rationalizing

The method of rationalizing Roberto s Notes on Differential Calculus Chapter : Resolving indeterminate forms Section The method of rationalizing What you need to know already: The concept of it and the factor-and-cancel method of

More information

x 16 d( x) 16 n( x) 36 d( x) zeros: x 2 36 = 0 x 2 = 36 x = ±6 Section Yes. Since 1 is a polynomial (of degree 0), P(x) =

x 16 d( x) 16 n( x) 36 d( x) zeros: x 2 36 = 0 x 2 = 36 x = ±6 Section Yes. Since 1 is a polynomial (of degree 0), P(x) = 9 CHAPTER POLYNOMIAL AND RATIONAL FUNCTIONS Section -. Yes. Since is a polynomial (of degree 0), P() P( ) is a rational function if P() is a polynomial.. A vertical asymptote is a vertical line a that

More information

2.1. Definition: If a < b, then f(a) < f(b) for every a and b in that interval. If a < b, then f(a) > f(b) for every a and b in that interval.

2.1. Definition: If a < b, then f(a) < f(b) for every a and b in that interval. If a < b, then f(a) > f(b) for every a and b in that interval. 1.1 Concepts: 1. f() is INCREASING on an interval: Definition: If a < b, then f(a) < f(b) for every a and b in that interval. A positive slope for the secant line. A positive slope for the tangent line.

More information

Section 4.1 Max and Min Values

Section 4.1 Max and Min Values Page 1 of 5 Section 4.1 Ma and Min Values Horizontal Tangents: We have looked at graphs and identified horizontal tangents, or places where the slope of the tangent line is zero. Q: For which values does

More information

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia Notes on metric spaces and topology Math 309: Topics in geometry Dale Rolfsen University of British Columbia Let X be a set; we ll generally refer to its elements as points. A distance function, or metric

More information

MCS 118 Quiz 1. Fall (5pts) Solve the following equations for x. 7x 2 = 4x x 2 5x = 2

MCS 118 Quiz 1. Fall (5pts) Solve the following equations for x. 7x 2 = 4x x 2 5x = 2 MCS 8 Quiz Fall 6. (5pts) Solve the following equations for. 7 = 4 + 3. (5pts) Solve the following equations for. 3 5 = 3. (5pts) Factor 3 + 35 as much as possible. 4. (5pts) Simplify +. 5. (5pts) Solve

More information

25-Lance Burger https://litemprodpearsoncmgcom/api/v1/print/math 1 of 10 1/26/2017 9:34 AM Student: Date: Instructor: Lance Burger Course: Spring 2017 Math 75 - Burger Assignment: 25 1 Evaluate the following

More information

Math 295: Exam 3 Name: Caleb M c Whorter Solutions Fall /16/ Minutes

Math 295: Exam 3 Name: Caleb M c Whorter Solutions Fall /16/ Minutes Math 295: Eam 3 Name: Caleb M c Whorter Solutions Fall 2018 11/16/2018 50 Minutes Write your name on the appropriate line on the eam cover sheet. This eam contains 10 pages (including this cover page)

More information

6. Write the polynomial function of least degree & with integer coefficients if the zeros occur at 6 and i.

6. Write the polynomial function of least degree & with integer coefficients if the zeros occur at 6 and i. MIDTERM REVIEW PACKET IM3H For questions 1-, perform the given operation. Leave your answers as factored as possible. 6x 5x 4 x 4x 3 1.. 3 4 1 x 17x 8 1x 5x x x 4 x x For questions 3-5, find all the zeros

More information

Derivatives 3: The Derivative as a Function

Derivatives 3: The Derivative as a Function Derivatives : The Derivative as a Function 77 Derivatives : The Derivative as a Function Model : Graph of a Function 9 8 7 6 5 g() - - - 5 6 7 8 9 0 5 6 7 8 9 0 5 - - -5-6 -7 Construct Your Understanding

More information

SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS. 5! x7 7! + = 6! + = 4! x6

SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS. 5! x7 7! + = 6! + = 4! x6 SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS PO-LAM YUNG We defined earlier the sine cosine by the following series: sin x = x x3 3! + x5 5! x7 7! + = k=0 cos x = 1 x! + x4 4! x6 6! + = k=0 ( 1) k x k+1

More information

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Saul Glasman 14 September 2016 Let s give the definition of an open subset of R. Definition 1. Let U R. We

More information

Using Arithmetic of Real Numbers to Explore Limits and Continuity

Using Arithmetic of Real Numbers to Explore Limits and Continuity Using Arithmetic of Real Numbers to Explore Limits and Continuity by Maria Terrell Cornell University Problem Let a =.898989... and b =.000000... (a) Find a + b. (b) Use your ideas about how to add a and

More information

A Catalog of Essential Functions

A Catalog of Essential Functions Section. A Catalog of Essential Functions Kiryl Tsishchanka A Catalog of Essential Functions In this course we consider 6 groups of important functions:. Linear Functions. Polynomials 3. Power functions.

More information

3 = Advanced Math 3 Fall Final Exam Review. Unit 1: If f(x) = x 2 + 3, g(x) = 3x + 1, and h(x) = x + 1, evaluate each.

3 = Advanced Math 3 Fall Final Exam Review. Unit 1: If f(x) = x 2 + 3, g(x) = 3x + 1, and h(x) = x + 1, evaluate each. Advanced Math Fall Final Eam Review Name: Unit 1: If f() +, g() + 1, and h() + 1, evaluate each. 1. f(g()). f(h()). g(- 4) 4. Given ff() + 9, represent its inverse as a (a) graph, (b) chart, and (c) function.

More information

PreCalculus Review for Math 400

PreCalculus Review for Math 400 PreCalculus Review for Math.) Completely factor..) For the function.) For the functions f ( ), evaluate ( ) f. f ( ) and g( ), find and simplify f ( g( )). Then, give the domain of f ( g( ))..) Solve.

More information

Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before.

Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before. Pre Calculus Worksheet: Fundamental Identities Day 1 Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before. Strategy

More information

Pre Calculus Worksheet: Fundamental Identities Day 1

Pre Calculus Worksheet: Fundamental Identities Day 1 Pre Calculus Worksheet: Fundamental Identities Day 1 Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before. Strategy

More information

Exam 1 Review. MATH Intuitive Calculus Fall Name:. Show your reasoning. Use standard notation correctly.

Exam 1 Review. MATH Intuitive Calculus Fall Name:. Show your reasoning. Use standard notation correctly. MATH 11012 Intuitive Calculus Fall 2012 Name:. Exam 1 Review Show your reasoning. Use standard notation correctly. 1. Consider the function f depicted below. y 1 1 x (a) Find each of the following (or

More information

lim x c x 2 x +2. Suppose that, instead of calculating all the values in the above tables, you simply . What do you find? x +2

lim x c x 2 x +2. Suppose that, instead of calculating all the values in the above tables, you simply . What do you find? x +2 MA123, Chapter 3: The idea of its (pp. 47-67, Gootman) Chapter Goals: Evaluate its. Evaluate one-sided its. Understand the concepts of continuity and differentiability and their relationship. Assignments:

More information

Precalculus: Graphs of Tangent, Cotangent, Secant, and Cosecant Practice Problems. Questions

Precalculus: Graphs of Tangent, Cotangent, Secant, and Cosecant Practice Problems. Questions Questions 1. Describe the graph of the function in terms of basic trigonometric functions. Locate the vertical asymptotes and sketch two periods of the function. y = 3 tan(x/2) 2. Solve the equation csc

More information

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving The Bisection Method and Newton s Method. If f( x ) a function, then a number r for which f( r) 0 is called a zero or a root of the function f( x ), or a solution to the equation f( x) 0. You are already

More information

Regional Precalculus/Trigonometry Contest 2006

Regional Precalculus/Trigonometry Contest 2006 Regional Precalculus/Trigonometry Contest 006 Select the best answer for each of the following questions and mark it on the answer sheet provided. Be sure to read all the answer choices before making your

More information

. (h - 1) (h - 1) [(h - 1) + 1] [(h - 1)2 - l(h - 1) J 1 O h = lim = lim. f is continuous from the right at 3

. (h - 1) (h - 1) [(h - 1) + 1] [(h - 1)2 - l(h - 1) J 1 O h = lim = lim. f is continuous from the right at 3 144 D CHAPTER LMTS AND DERVATVES EXERCSES 1. (a) (i) lim f () = 3 (ii) lim f() = 0 -----++ -----+-3+ (iii) lim f() does not eist since the left and right limits are not equal. (The left limit is -.) -----+-3

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1 PRACTICE FINAL - MATH 2, Spring 22 The Final will have more material from Chapter 4 than other chapters. To study for chapters -3 you should review the old practice eams IN ADDITION TO what appears here.

More information

Chapter Goals: Evaluate limits. Evaluate one-sided limits. Understand the concepts of continuity and differentiability and their relationship.

Chapter Goals: Evaluate limits. Evaluate one-sided limits. Understand the concepts of continuity and differentiability and their relationship. MA123, Chapter 3: The idea of its (pp. 47-67) Date: Chapter Goals: Evaluate its. Evaluate one-sided its. Understand the concepts of continuit and differentiabilit and their relationship. Assignments: Assignment

More information

THS Step By Step Calculus Chapter 3

THS Step By Step Calculus Chapter 3 Name: Class Period: Throughout this packet there will be blanks you are expected to fill in prior to coming to class. This packet follows your Larson Textbook. Do NOT throw away! Keep in 3 ring-binder

More information

Solutions to Some Examination Problems MATH 300 Monday 25 April 2016

Solutions to Some Examination Problems MATH 300 Monday 25 April 2016 Name: s to Some Examination Problems MATH 300 Monday 25 April 2016 Do each of the following. (a) Let [0, 1] denote the unit interval that is the set of all real numbers r that satisfy the contraints that

More information

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school.

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school. Albertson AP Calculus AB Name AP CALCULUS AB SUMMER PACKET 2017 DUE DATE: The beginning of class on the last class day of the first week of school. This assignment is to be done at you leisure during the

More information

Solutions to assignment 3

Solutions to assignment 3 Math 9 Solutions to assignment Due: : Noon on Thursday, October, 5.. Find the minimum of the function f, y, z) + y + z subject to the condition + y + z 4. Solution. Let s define g, y, z) + y + z, so the

More information

Downloaded from

Downloaded from 1 Class XI: Math Chapter 13: Limits and Derivatives Chapter Notes Key-Concepts 1. The epected value of the function as dictated by the points to the left of a point defines the left hand it of the function

More information

An Improved Upper Bound for the Sum-free Subset Constant

An Improved Upper Bound for the Sum-free Subset Constant 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 13 (2010), Article 10.8.3 An Improved Upper Bound for the Sum-free Subset Constant Mark Lewko Department of Mathematics University of Texas at Austin

More information

Curriculum Map: Mathematics

Curriculum Map: Mathematics Curriculum Map: Mathematics Course: Honors Advanced Precalculus and Trigonometry Grade(s): 11-12 Unit 1: Functions and Their Graphs This chapter will develop a more complete, thorough understanding of

More information

2 A topological interlude

2 A topological interlude 2 A topological interlude 2.1 Topological spaces Recall that a topological space is a set X with a topology: a collection T of subsets of X, known as open sets, such that and X are open, and finite intersections

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

Section 2.2: Absolute Value Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a

Section 2.2: Absolute Value Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Section.: Absolute Value Functions, from College Algebra: Corrected Edition b Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license.

More information

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) =

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) = Graphing Functions Section. of your tetbook is devoted to reviewing a series of steps that you can use to develop a reasonable graph of a function. Here is my version of a list of things to check. You

More information

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not.

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not. AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 2: Spline Approximations Dianne P O Leary c 2001, 2002, 2007 Piecewise polynomial interpolation Piecewise polynomial interpolation Read: Chapter 3 Skip:

More information

PreCalculus 300. Algebra 2 Review

PreCalculus 300. Algebra 2 Review PreCalculus 00 Algebra Review Algebra Review The following topics are a review of some of what you learned last year in Algebra. I will spend some time reviewing them in class. You are responsible for

More information

Math 208/310 HWK 4 Solutions Section 1.6

Math 208/310 HWK 4 Solutions Section 1.6 Math 208/310 HWK 4 Solutions Problem 1, 1.6, p35. Prove that the neighborhood z z 0 < ρ is an open set. [Hint: Show that if z 1 belongs to the neighborhood, then so do all points z that satisfy z z + 1

More information

Contents 20. Trigonometric Formulas, Identities, and Equations

Contents 20. Trigonometric Formulas, Identities, and Equations Contents 20. Trigonometric Formulas, Identities, and Equations 2 20.1 Basic Identities............................... 2 Using Graphs to Help Verify Identities................... 2 Example 20.1................................

More information

Math 814 HW 2. September 29, p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). u(x, y) = x 3 3xy 2, u(x, y) = x/(x 2 + y 2 ),

Math 814 HW 2. September 29, p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). u(x, y) = x 3 3xy 2, u(x, y) = x/(x 2 + y 2 ), Math 814 HW 2 September 29, 2007 p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). u(x, y) = x 3 3xy 2, u(x, y) = x/(x 2 + y 2 ), p.43, Exercise 1. Show that the function f(z) = z 2 = x 2 + y 2 has a derivative

More information

MAT 145: PROBLEM SET 6

MAT 145: PROBLEM SET 6 MAT 145: PROBLEM SET 6 DUE TO FRIDAY MAR 8 Abstract. This problem set corresponds to the eighth week of the Combinatorics Course in the Winter Quarter 2019. It was posted online on Friday Mar 1 and is

More information

FINAL EXAM (PRACTICE A) MATH 265

FINAL EXAM (PRACTICE A) MATH 265 UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS FINAL EXAM (PRACTICE A) MATH 265 NAME STUDENT ID EXAMINATION RULES 1. This is a closed book eamination. 2. Calculators are

More information

Math 1131 Practice Exam 1 Spring 2018

Math 1131 Practice Exam 1 Spring 2018 Universit of Connecticut Department of Mathematics Spring 2018 Name: Signature: Instructor Name: TA Name: Lecture Section: Discussion Section: Read This First! Please read each question carefull. All questions

More information

Graph Theory Questions from Past Papers

Graph Theory Questions from Past Papers Graph Theory Questions from Past Papers Bilkent University, Laurence Barker, 19 October 2017 Do not forget to justify your answers in terms which could be understood by people who know the background theory

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

We can determine this with derivatives: the graph rises where its slope is positive.

We can determine this with derivatives: the graph rises where its slope is positive. Math 1 Derivatives and Graphs Stewart. Increasing and decreasing functions. We will see how to determine the important features of a graph y = f(x) from the derivatives f (x) and f (x), summarizing our

More information

Data Structure and Algorithm Midterm Reference Solution TA

Data Structure and Algorithm Midterm Reference Solution TA Data Structure and Algorithm Midterm Reference Solution TA email: dsa1@csie.ntu.edu.tw Problem 1. To prove log 2 n! = Θ(n log n), it suffices to show N N, c 1, c 2 > 0 such that c 1 n ln n ln n! c 2 n

More information

Notes on Minimum Cuts and Modular Functions

Notes on Minimum Cuts and Modular Functions Notes on Minimum Cuts and Modular Functions 1 Introduction The following are my notes on Cunningham s paper [1]. Given a submodular function f and a set S, submodular minimisation is the problem of finding

More information

ORTHOGONAL FAMILIES OF CURVES

ORTHOGONAL FAMILIES OF CURVES 8 ORTHOGONAL CURVES Spring her winning the car is the probability of her initially choosing a door with a goat behind it, that is 66%! There is a very nice, complete discussion of this topic, and the controversy

More information

Polynomial Exact-3-SAT Solving Algorithm

Polynomial Exact-3-SAT Solving Algorithm Polynomial Eact-3-SAT Solving Algorithm Louis Coder louis@louis-coder.com December 0 Abstract In this document I want to introduce and eplain an algorithm that determines the solvability state (solvable

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information