Designing for Ultra-Low Power with MSP430

Size: px
Start display at page:

Download "Designing for Ultra-Low Power with MSP430"

Transcription

1 Designing for Ultra-Low Power with MSP430 Christian Hernitscheck MSP430 FAE Europe Texas Instruments 2006 Texas Instruments Inc, Slide 1 Agenda Introduction to Ultra-Low Power Looking for Ultra-Low Power Parts MSP430 The Ultra-Low Power MCU Low-Power Efficient Coding Techniques Summary 2006 Texas Instruments Inc, Slide 2 1

2 Achieving Ultra-low Power Extended Ultra-low Power standby mode Minimum active duty cycle Performance on-demand Always-on On demand 2006 Texas Instruments Inc, Slide 3 Ultra-low Power Clock Control CPU Off Off DCO on on ACLK on on 35uA Active DCO on on ACLK on on 250uA <6us Off Off All All Clocks Off Off 0.1uA LPM0 LPM3 RTC function LCD driver RAM/SFR retained <6us Stand-by DCO off off ACLK on on 0.8uA LPM4 RAM/SFR retained 2006 Texas Instruments Inc, Slide 4 2

3 Agenda Introduction to Ultra-Low Power Looking for Ultra-Low Power Parts MSP430 The Ultra-Low Power MCU Low-Power Efficient Coding Techniques Summary 2006 Texas Instruments Inc, Slide 5 Ultra-Low Power Architecture Multiple operating modes 0.1uA power down 0.7uA standby mode 250uA / 1MIPS Zero-power BOR 50nA pin leakage Modern CPU Minimum cycles per task Instant-on stable high-speed clock Intelligent peripherals 2006 Texas Instruments Inc, Slide 6 3

4 Power Consumption in CMOS Designs CMOS Inverter: Vin Vcc t I t Power Consumption of a CMOS Inverter: P = P stat + P Q + P dyn P stat = Vcc * I LL P Q = β / 12 * (Vcc 2*U Tn ) 3 * τ / T P dyn = C L * f * Vcc Texas Instruments Inc, Slide 7 MCU s Digital Supply Current CH2 MSP430 + Vcc - AVcc AVss DVcc DVss CH1 Reset CPU Clock 2006 Texas Instruments Inc, Slide 8 4

5 MSP430 Active Mode Supply Current MSP430F2131 data sheet [slas439a]: 2006 Texas Instruments Inc, Slide 9 Device, Voltage, Temperature & Clock MSP430F16x LPM3 LFXT1 MSP430F20xx LPM3 VLO Die size and # pins Family architectures and clock system 2006 Texas Instruments Inc, Slide 10 5

6 Power Manage Internal Peripherals Comparator_A P1OUT P1OUT = = 0x02; 0x02; // // Power Power divider CACTL1 = CARSEL + CAREF_2 + CAON; CAON; // // Comp_A on on if if (CAOUT & CACTL2) P1OUT P1OUT = = 0x01; 0x01; // // Fault Fault else else P1OUT P1OUT &= &= ~0x01; P1OUT P1OUT &= &= ~0x02; // // de-power divider CACTL1 = 0; 0; // // Disable Comp_A 2006 Texas Instruments Inc, Slide 11 Integrated Analog Power Managing ADC10 DAC12 OA 2006 Texas Instruments Inc, Slide 12 6

7 Agenda Introduction to Ultra-Low Power Looking for Ultra-Low Power Parts MSP430 The Ultra-Low Power MCU Low-Power Efficient Coding Techniques Summary 2006 Texas Instruments Inc, Slide 13 MSP430x11x/12x Basic Clock R2/SR: Reserved V SCG1 SCG0 OSC OFF CPU OFF GIE N Z C 2006 Texas Instruments Inc, Slide 14 7

8 Performance on Demand Interrupt DCO Immediate-stable clock start for reaction to events 2006 Texas Instruments Inc, Slide 15 Low Power Mode Configuration R2/SR: Reserved V SCG1 SCG0 OSC OFF CPU OFF GIE N Z C Active Mode ~ 250uA LPM ~ 35uA LPM ~ 0.8uA LPM ~ 0.1uA Assembler Code Example: bis.w bis.w #CPUOFF,SR ; LPM0 LPM0 C Code Example: _BIS_SR (CPUOFF); // // LPM0 LPM Texas Instruments Inc, Slide 16 8

9 Interrupt Processing SP Prior to ISR PC SR SP ISR hardware - automatically PC pushed SR pushed Interrupt vector moved to PC SR is cleared IFG flag cleared on single source flags PC SR SP reti - automatically SR popped - original PC popped 2006 Texas Instruments Inc, Slide 17 Low Power Modes In Assembler PC SR=0018 PC SR=0008 ORG ORG 0F000h RESET RESET mov.w mov.w #300h,SP SP mov.w mov.w #WDT_MDLY_32,&WDTCTL bis.b bis.b #WDTIE,&IE1 bis.b bis.b #01h,&P1DIR Mainloop bis.w bis.w #CPUOFF+GIE,SR xor.b xor.b #01h,&P1OUT SP jmp jmp Mainloop WDT_ISR bic.w bic.w #CPUOFF,0(SP) reti reti ORG ORG 0FFFEh DW DW RESET RESET ORG ORG 0FFF4h SP DW DW WDT_ISR PC SR 2006 Texas Instruments Inc, Slide 18 9

10 Low Power Modes In C PC SR=0018 PC SR=0008 void void main(void) { SP WDTCTL = WDT_MDLY_32; IE1 IE1 = = WDTIE; P1DIR P1DIR = = 0x01; 0x01; for for (;;) (;;) { _BIS_SR(CPUOFF + GIE); GIE); SP P1OUT P1OUT ^= ^= 0x01; 0x01; } } #pragma vector=wdt_vector interrupt void void watchdog_timer(void) { _BIC_SR_IRQ(CPUOFF); } SP PC SR 2006 Texas Instruments Inc, Slide 19 2xx Basic Clock Module+ with VLO Clock VLO provides crystal alternative Lower power < 500 nano-amp 2006 Texas Instruments Inc, Slide 20 10

11 Interrupts Control Program Flow 9600 baud UART RX TX // // Polling UART UART Receive for for (;;) (;;) { while while (!(IFG2&URXIFG0)); TXBUF0 = RXBUF0; } 100% CPU Load // // UART UART Receive Interrupt #pragma vector=uart_vector interrupt void void rx rx (void) { TXBUF0 = RXBUF0; } 0.1% CPU Load 2006 Texas Instruments Inc, Slide 21 Software Functions >> Peripherals MCU P1.2 // // Endless Loop Loop for for (;;) (;;) { P1OUT P1OUT = = 0x04; 0x04; // // Set Set delay1(); P1OUT P1OUT &= &= ~0x04; // // Reset Reset delay2(); } 100% CPU Load // // Setup Setup output unit unit CCTL1 CCTL1 = OUTMOD0_1; _BIS_SR(CPUOFF); Zero CPU Load 2006 Texas Instruments Inc, Slide 22 11

12 MSP430 ADC10 10-bit ADC 200ksps+ Autoscan Single Sequence Repeat-single Repeat-sequence Internal/external reference TA SOC triggers Direct transfer controller (DTC) 2006 Texas Instruments Inc, Slide 23 Is Timer-Triggered ADC Important? Timer Memory ADC // // Interrupt CPU CPU cycles ; MSP430 ISR ISR to to start start conversion 6 BIS BIS #ADC12SC,&ADC12CTL0 ; Start Start conversion 5 RETI RETI ; Return 5 ; Texas Instruments Inc, Slide 24 12

13 Why Is Autoscan + DTC Important? AUTO ADC DTC Data2 Data1 Data0 Data2 // // Software Res[pRes++] = ADC10MEM; ADC10CTL0 &= &= ~ENC; ~ENC; if if (pres (pres < NR_CONV) { CurrINCH++; if if (CurrINCH == == 3) 3) CurrINCH = 0; 0; ADC10CTL1 &= &= ~INCH_3; ADC10CTL1 = = CurrINCH; ADC10CTL0 = = ENC+ADC10SC; } // // Autoscan + DTC DTC _BIS_SR(CPUOFF); 70 cycles/sample Fully Automatic 2006 Texas Instruments Inc, Slide 25 Why Is DMA Important? Memory Data >> DAC DAC // // Interrupt CPU CPU cycles DMA DMA clocks ; MSP430 ISR ISR for for one one output waveform 6 0 MOV ; Update DAC0 DAC0 5 2 AND AND #1F,R5 ; Modulo pointer 2 0 RETI RETI ; Return 5 0 ; ; MSP430 ISR ISR for for two two output waveforms 6 0 MOV ; Update DAC0 DAC0 5 2 MOV ; Update DAC1 DAC1 5 2 AND AND #3F,R5 ; Modulo pointer 2 0 RETI RETI ; Return 5 0 ; Texas Instruments Inc, Slide 26 13

14 Low-Power Peripheral Features ADC10 reference buffer automatically controlled ADC10, ADC12, SD16 cores automatically controlled Auto-scan ADC modes Timer-triggered data conversion I2C and USCI modules automatically enable clock DAC and OA have speed vs. power settings What can I do without the CPU? 2006 Texas Instruments Inc, Slide 27 Power Manage External Devices 0.01uA = Shutdown 20uA = Active uA = Average 1uA = Quiescent 1uA = Active uA = Average OPA with shutdown can be 20x lower total power 2006 Texas Instruments Inc, Slide 28 14

15 How To Terminate Unused Pins? Floating inputs cause additional current consumption! 3.0V I MSP430 Vcc Vss Icc [ua] P V 0.5 V 1.0 V 1.5 V 2.0 V 2.5 V 3.0 V Vin at P1.0 [V] Please see last page of chapter 2 in User s Guide 2006 Texas Instruments Inc, Slide 29 Agenda Introduction to Ultra-Low Power Looking for Ultra-Low Power Parts MSP430 The Ultra-Low Power MCU Low-Power Efficient Coding Techniques Summary 2006 Texas Instruments Inc, Slide 30 15

16 Bytes, Words & CPU Registers ; 16-bit addition Code/Cycles add.w add.w R4,R5 R4,R5 ; 1/1 1/ add.w add.w &0200,&0202 ; 3/6 3/6 ; 8-bit 8-bit addition add.b add.b R4,R5 R4,R5 ; 1/1 1/1 52D add.b add.b &0200,&0202 ; 3/6 3/6 Use CPU registers for calculations and dedicated variables Same code size for word or byte Use word operations when possible 2006 Texas Instruments Inc, Slide 31 Effect Of The Constant Generator D3E20021 bis.b bis.b #002h,&P1OUT ; With With CG CG D0F bis.b bis.b #010h,&P1OUT ; Without CG CG Immediate values 0xFFFF, 0, 1, 2, 4, 8 generated in hardware Reduces code size and cycles Completely Automatic! 2006 Texas Instruments Inc, Slide 32 16

17 Interrupt Vector Generator Interrupt vector 0 TAIV TAIV is used to efficiently decode the TIMER_A1 interrupt vector for all other interrupt sources Contents is either 0, 2, 4, or 10 Reading TAIV returns and clears the highest-priority pending interrupt Add TAIV to the PC and use a jump-table for TAIV demux Using TAIV instead of IFG polling greatly reduces interrupt overhead 2006 Texas Instruments Inc, Slide 33 C Coding Tips Use local variable as much as possible. Local variables use CPU registers whereas global variables use RAM. Use bit mask instead of bitfields for unsigned int and unsigned char. Use unsigned data types where possible Use pointers to access structures and unions Use static const class to avoid run-time copying of structures, unions, and arrays. Avoid modulo Count down for loops Get to know your C code and its disassembly! 2006 Texas Instruments Inc, Slide 34 17

18 Agenda Introduction to Ultra-Low Power Looking for Ultra-Low Power Parts MSP430 The Ultra-Low Power MCU Low-Power Efficient Coding Techniques Summary 2006 Texas Instruments Inc, Slide 35 Principles For ULP Applications Maximize the time in standby (LPM3) Use interrupts to control program flow Replace software functions with peripheral hardware Power manage internal peripherals Power manage external devices Device choice can make a difference Effective code is a must. Every unnecessary instruction executed is a portion of the battery wasted that will never return Texas Instruments Inc, Slide 36 18

Designing for Ultra-Low Power with MSP430

Designing for Ultra-Low Power with MSP430 Designing for Ultra-Low Power with MSP430 Christian Hernitscheck MSP430 FAE Europe Texas Instruments 2006 Texas Instruments Inc, Slide 1 Agenda Introduction to Ultra-Low Power Looking for Ultra-Low Power

More information

Lecture 2 MSP430 Architecture. Atul Lele Ramakrishna Reddy

Lecture 2 MSP430 Architecture. Atul Lele Ramakrishna Reddy Lecture 2 MSP430 Architecture Atul Lele Ramakrishna Reddy About me Education B.E. in Electronics and Telecommunication, PICT, Pune (2000) Professional experience Working with Texas Instruments India Pvt

More information

MSP430 Design in an hour

MSP430 Design in an hour MSP430 Design in an hour Frank-huang@ti.com TI China University Program 021-23073395 2009-7-5 1 TI Invented The MCU 1974 ROM RAM Clock Decode ALU I/O 2009-7-5 2 Anybody Miss The 70 s? 3 MSP430 Name? MSP

More information

Block diagram of processor (Harvard)

Block diagram of processor (Harvard) Block diagram of processor (Harvard) Register transfer view of Harvard architecture Separate busses for instruction memory and data memory Example: PIC 16 load path OP REG AC 16 16 store path rd wr data

More information

Intro. MEB/ Texas Instruments Inc, Slide 1

Intro. MEB/ Texas Instruments Inc, Slide 1 Intro MEB/0404 2004 Texas Instruments Inc, Slide 1 MSP430 Agenda Core Architecture Integrated Peripherals Device Roadmap Ideal Applications Development Tools MEB/0404 2004 Texas Instruments Inc, Slide

More information

Analog Peripherals. Introduction. Objectives

Analog Peripherals. Introduction. Objectives Analog Peripherals Introduction In this section we ll take a look at the MSP430 analog peripherals. It s not possible in this limited amount of time to give you a complete overview of the possible analog

More information

Interrupts, Low Power Modes

Interrupts, Low Power Modes Interrupts, Low Power Modes Registers Status Register Interrupts (Chapter 6 in text) A computer has 2 basic ways to react to inputs: 1) polling: The processor regularly looks at the input and reacts as

More information

Lecture test next week

Lecture test next week Lecture test next week Write a short program in Assembler doing. You will be given the print outs of all the assembler programs from the manual You can bring any notes you want Today: Announcements General

More information

Lab 4: Interrupt. CS4101 Introduction to Embedded Systems. Prof. Chung-Ta King. Department of Computer Science National Tsing Hua University, Taiwan

Lab 4: Interrupt. CS4101 Introduction to Embedded Systems. Prof. Chung-Ta King. Department of Computer Science National Tsing Hua University, Taiwan CS4101 Introduction to Embedded Systems Lab 4: Interrupt Prof. Chung-Ta King Department of Computer Science, Taiwan Introduction In this lab, we will learn interrupts of MSP430 Handling interrupts in MSP430

More information

ECE2049: Embedded Computing in Engineering Design C Term Spring 2019 Lecture #22: MSP430F5529 Operating Mode & the WDT

ECE2049: Embedded Computing in Engineering Design C Term Spring 2019 Lecture #22: MSP430F5529 Operating Mode & the WDT ECE2049: Embedded Computing in Engineering Design C Term Spring 2019 Lecture #22: MSP430F5529 Operating Mode & the WDT Reading for Today: User's Guide 1.4, Ch 16 Reading for Next Class: Review all since

More information

Interrupts CS4101 嵌入式系統概論. Prof. Chung-Ta King. Department of Computer Science National Tsing Hua University, Taiwan

Interrupts CS4101 嵌入式系統概論. Prof. Chung-Ta King. Department of Computer Science National Tsing Hua University, Taiwan CS4101 嵌入式系統概論 Interrupts Prof. Chung-Ta King Department of Computer Science, Taiwan Materials from MSP430 Microcontroller Basics, John H. Davies, Newnes, 2008 Inside MSP430 (MSP430G2551) 1 Introduction

More information

5xx Active & Low Power Mode Operation

5xx Active & Low Power Mode Operation 5xx Active & Low Power Mode Operation 38 Lab 2: ULP Operation Lab Goals Learn ULP Best Practices Learn & understand how to configure two key modules of the 5xx to achieve ultra-low power operation. Power

More information

What is an Interrupt?

What is an Interrupt? MSP430 Interrupts What is an Interrupt? Reaction to something in I/O (human, comm link) Usually asynchronous to processor activities interrupt handler or interrupt service routine (ISR) invoked to take

More information

CONTENTS: Program 1 in C:

CONTENTS: Program 1 in C: CONTENTS: 1) Program 1 in C (Blink) 2) Program 2 in C (Interrupt ) 3) ADC example 4) Addressing Modes 5) Selected Assembly instructions 6) ADC10 register descriptions Program 1 in C: /* * PHYS319 Lab3

More information

Lab 4 Interrupts ReadMeFirst

Lab 4 Interrupts ReadMeFirst Lab 4 Interrupts ReadMeFirst Lab Folder Content 1) ReadMeFirst 2) Interrupt Vector Table 3) Pin out Summary Objectives Understand how interrupts work Learn to program Interrupt Service Routines in C Language

More information

// Conditions for 9600/4=2400 Baud SW UART, SMCLK = 1MHz #define Bitime_5 0x05*4 // ~ 0.5 bit length + small adjustment #define Bitime 13*4//0x0D

// Conditions for 9600/4=2400 Baud SW UART, SMCLK = 1MHz #define Bitime_5 0x05*4 // ~ 0.5 bit length + small adjustment #define Bitime 13*4//0x0D /****************************************************************************** * * * 1. Device starts up in LPM3 + blinking LED to indicate device is alive * + Upon first button press, device transitions

More information

LECTURE - 4 Programming MSP430 using Code Composer Studio(CCS)

LECTURE - 4 Programming MSP430 using Code Composer Studio(CCS) LECTURE - 4 Programming MSP430 using Code Composer Studio(CCS) Atul Lele, Ramakrishna Reddy K, MSP430 Design, Texas Instruments India Pvt Ltd. 2/16/2012 1 Outline of today s session What have we learnt

More information

MSP430. More on MSP430

MSP430. More on MSP430 MSP430 More on MSP430 CodeComposer TI recently launched Code Composer Essentials v3. This IDE s latest version (version 3) supports all available MSP430 devices. The new features of CCE v3 include: - Free

More information

Timer Module Timer A. ReadMeFirst

Timer Module Timer A. ReadMeFirst Timer Module Timer A ReadMeFirst Lab Folder Content 1) ReadMeFirst 2) TimerModule Lecture material 3) PinOutSummary 4) InterruptsVectorTable 5) Source code for screencast Interrupt Review Overview A Timer

More information

CPE 325: Embedded Systems Laboratory Laboratory #7 Tutorial MSP430 Timers, Watchdog Timer, Timers A and B

CPE 325: Embedded Systems Laboratory Laboratory #7 Tutorial MSP430 Timers, Watchdog Timer, Timers A and B CPE 325: Embedded Systems Laboratory Laboratory #7 Tutorial MSP430 Timers, Watchdog Timer, Timers A and B Aleksandar Milenković Email: milenka@uah.edu Web: http://www.ece.uah.edu/~milenka Objective This

More information

CPE/EE 323 Introduction to Embedded Computer Systems Homework V

CPE/EE 323 Introduction to Embedded Computer Systems Homework V CPE/EE 323 Introduction to Embedded Computer Systems Homework V 1(15) 2(15) 3(25) 4(25) 5(20) Total Problem #1 (15 points) Power, Low power systems A sensor platform features a microcontroller, a sensor,

More information

Today's plan: Announcements General Strategy Microcontroller programming concepts/last bits of assembly Activity 2

Today's plan: Announcements General Strategy Microcontroller programming concepts/last bits of assembly Activity 2 Today's plan: Announcements General Strategy Microcontroller programming concepts/last bits of assembly Activity 2 Intro to programming in C time permitting Lab 1&2 Marking scheme: Announcements: Turn

More information

IV B.Tech. I Sem (R13) ECE : Embedded Systems : UNIT -2 1 UNIT 2

IV B.Tech. I Sem (R13) ECE : Embedded Systems : UNIT -2 1 UNIT 2 IV B.Tech. I Sem (R13) ECE : Embedded Systems : UNIT -2 1 UNIT 2 1. Block diagram of MSP430x5xx series micro-controller --------------------- 1 2. CPU architecture of MSP430x5xx ------------------------------------------------

More information

2002 Mixed Signal Products SLAU056B

2002 Mixed Signal Products SLAU056B User s Guide 22 Mixed Signal Products SLAU56B IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,

More information

CPE 323 Introduction to Embedded Computer Systems: MSP430 System Architecture An Overview

CPE 323 Introduction to Embedded Computer Systems: MSP430 System Architecture An Overview CPE 323 Introduction to Embedded Computer Systems: MSP430 System Architecture An Overview Aleksandar Milenkovic Electrical and Computer Engineering The University of Alabama in Huntsville milenka@ece.uah.edu

More information

CPE 323: MSP430 Timers

CPE 323: MSP430 Timers CPE 323: MSP430 Timers Aleksandar Milenkovic Electrical and Computer Engineering The University of Alabama in Huntsville milenka@ece.uah.edu http://www.ece.uah.edu/~milenka Outline Watchdog Timer TimerA

More information

Before next weeks lab:

Before next weeks lab: Before next weeks lab: - To sign in to lab computers use student and Phys319. - read the lab manual for week two. - look at the tools installation guide for OS of your choice and/or lab computer guide,

More information

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction.

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction. AVR XMEGA TM Product Introduction 32-bit AVR UC3 AVR Flash Microcontrollers The highest performance AVR in the world 8/16-bit AVR XMEGA Peripheral Performance 8-bit megaavr The world s most successful

More information

Lecture 5: MSP430 Interrupt

Lecture 5: MSP430 Interrupt ECE342 Intro. to Embedded Systems Lecture 5: MSP430 Interrupt Ying Tang Electrical and Computer Engineering Rowan University 1 How A Computer React to Inputs? Polling: the processor regularly looks at

More information

2006 Mixed Signal Products SLAU049F

2006 Mixed Signal Products SLAU049F User s Guide 2006 Mixed Signal Products SLAU049F Related Documentation From Texas Instruments Preface About This Manual This manual discusses modules and peripherals of the MSP430x1xx family of devices.

More information

2.996/6.971 Biomedical Devices Design Laboratory Lecture 6: Microprocessors II

2.996/6.971 Biomedical Devices Design Laboratory Lecture 6: Microprocessors II 2.996/6.971 Biomedical Devices Design Laboratory Lecture 6: Microprocessors II Instructor: Dr. Hong Ma Oct. 1, 2007 Structure of MSP430 Program 1. Declarations 2. main() 1. Watch-dog timer servicing 2.

More information

MSP430 Interrupts. Change value of internal variable (count) Read a data value (sensor, receive) Write a data value (actuator, send)

MSP430 Interrupts. Change value of internal variable (count) Read a data value (sensor, receive) Write a data value (actuator, send) MSP430 Interrupts What is an Interrupt? Reaction to something in I/O (human, comm link) Usually asynchronous to processor activities interrupt handler or interrupt service routine (ISR) invoked to take

More information

Hacettepe University

Hacettepe University www.msp430.ubi.pt MSP430 Teaching Materials Introductory Overview Week2 Hacettepe University Outline Microcontrollers Versus Microprocessors Central Processing Unit System Buses Memory Organization I/O

More information

The digital I/O is configured with user software. The setup and operation of the digital I/O is discussed in the following sections.

The digital I/O is configured with user software. The setup and operation of the digital I/O is discussed in the following sections. Digital I/O Introduction www.ti.com 8. Digital I/O Introduction MSP43 devices have up to eight digital I/O ports implemented, P to P8. Each port has up to eight I/O pins. Every I/O pin is individually

More information

CPE 323 Introduction to Embedded Computer Systems: ADC12 and DAC12. Instructor: Dr Aleksandar Milenkovic Lecture Notes

CPE 323 Introduction to Embedded Computer Systems: ADC12 and DAC12. Instructor: Dr Aleksandar Milenkovic Lecture Notes CPE 323 Introduction to Embedded Computer Systems: ADC12 and DAC12 Instructor: Dr Aleksandar Milenkovic Lecture Notes Outline MSP430: System Architecture ADC12 Module DAC12 Module CPE 323 2 ADC12 Introduction

More information

PHYS 319. Things to do before next week's lab Whirlwind tour of the MSP430 CPU and its assembly language Activity 1.

PHYS 319. Things to do before next week's lab Whirlwind tour of the MSP430 CPU and its assembly language Activity 1. PHYS 319 Things to do before next week's lab Whirlwind tour of the MSP430 CPU and its assembly language Activity 1. Before next week's lab: Read manual for Lab 2 and your OS setup guide then prepare your

More information

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I.

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I. University of Texas at El Paso Electrical and Computer Engineering Department EE 3176 Laboratory for Microprocessors I Fall 2016 LAB 03 Low Power Mode and Port Interrupts Goals: Bonus: Pre Lab Questions:

More information

Chapter 26 Topic Page 26.1 ADC12 Introduction

Chapter 26 Topic Page 26.1 ADC12 Introduction Chapter 26 The module is a high-performance 12-bit analog-to-digital converter (ADC). This chapter describes the. The is implemented in the MSP430x43x MSP430x44x, MSP430FG461x devices. Topic Page 26.1

More information

Understanding the new '5xx Integrated Power Management Module (PMM) Stefan Schauer

Understanding the new '5xx Integrated Power Management Module (PMM) Stefan Schauer Understanding the new '5xx Integrated Power Management Module (PMM) Stefan Schauer 6/5/2008 1 Agenda Introduction into the PMM System Technical Data, specified Values Software controlled PMM configuration

More information

Copyright 2009 Texas Instruments All Rights Reserved

Copyright 2009 Texas Instruments All Rights Reserved MSP430 Teaching Materials Week 3 Further into the MSP430 Hacettepe University Anatomy of a Typical Small Microcontroller Central processing unit Arithmetic logic unit (ALU), which performs computation.

More information

2006 Mixed Signal Products SLAU049F

2006 Mixed Signal Products SLAU049F User s Guide 2006 Mixed Signal Products SLAU049F IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,

More information

Hacettepe University

Hacettepe University MSP430 Teaching Materials Week 3 Further into the MSP430 Hacettepe University Anatomy of a Typical Small Microcontroller Central processing unit Arithmetic logic unit (ALU), which performs computation.

More information

063[[[0LFURFRQWUROOHUV /RZ3RZHU0RGHV &3($GYDQFHG0LFURFRPSXWHU7HFKQLTXHV 'U(PLO-RYDQRY /RZ3RZHU. Power: A First-Class Architectural Design Constraint

063[[[0LFURFRQWUROOHUV /RZ3RZHU0RGHV &3($GYDQFHG0LFURFRPSXWHU7HFKQLTXHV 'U(PLO-RYDQRY /RZ3RZHU. Power: A First-Class Architectural Design Constraint 063[[[0LFURFRQWUROOHUV /RZ3RZHU0RGHV &3($GYDQFHG0LFURFRPSXWHU7HFKQLTXHV 'U(PLO-RYDQRY MSP430 low power concepts 1 /RZ3RZHU Power: A First-Class Architectural Design Constraint Trevor Mudge, IEEE Computer,

More information

Network Embedded Systems Sensor Networks Fall Hardware. Marcus Chang,

Network Embedded Systems Sensor Networks Fall Hardware. Marcus Chang, Network Embedded Systems Sensor Networks Fall 2013 Hardware Marcus Chang, mchang@cs.jhu.edu 1 Embedded Systems Designed to do one or a few dedicated and/or specific functions Embedded as part of a complete

More information

Lab 1: I/O, timers, interrupts on the ez430-rf2500

Lab 1: I/O, timers, interrupts on the ez430-rf2500 Lab 1: I/O, timers, interrupts on the ez430-rf2500 UC Berkeley - EE 290Q Thomas Watteyne January 25, 2010 1 The ez430-rf2500 and its Components 1.1 Crash Course on the MSP430f2274 The heart of this platform

More information

MSP430FG4618 Programming Reference Revision 3

MSP430FG4618 Programming Reference Revision 3 MSP430FG4618/F2013 Experimenter Board MSP430FG4618 Programming Reference Revision 3 George Mason University 1. CPU Registers The CPU incorporates sixteen 20-bit registers. R0, R1, R2 and R3 have dedicated

More information

Application Report. 1 Hardware Description. John Fahrenbruch... MSP430 Applications

Application Report. 1 Hardware Description. John Fahrenbruch... MSP430 Applications Application Report SLAA309 June 2006 Low-Power Tilt Sensor Using the MSP430F2012 John Fahrenbruch... MSP430 Applications ABSTRACT The MSP430 family of low-power microcontrollers are ideal for low-power

More information

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I.

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I. University of Texas at El Paso Electrical and Computer Engineering Department EE 3176 Laboratory for Microprocessors I Fall 2016 LAB 04 Timer Interrupts Goals: Learn about Timer Interrupts. Learn how to

More information

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices,

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, CISC and RISC processors etc. Knows the architecture and

More information

CPE 325: Embedded Systems Laboratory Laboratory #11 Tutorial Analog-to-Digital Converter and Digital-to-Analog Converter

CPE 325: Embedded Systems Laboratory Laboratory #11 Tutorial Analog-to-Digital Converter and Digital-to-Analog Converter CPE 325: Embedded Systems Laboratory Laboratory #11 Tutorial Analog-to-Digital Converter and Digital-to-Analog Converter Aleksandar Milenković Email: milenka@uah.edu Web: http://www.ece.uah.edu/~milenka

More information

Physics 319 Spring 2015: Introduction to the Programming and Use of Microprocessors

Physics 319 Spring 2015: Introduction to the Programming and Use of Microprocessors Physics 319 Spring 2015: Introduction to the Programming and Use of Microprocessors Sing Chow, Andrzej Kotlicki, Ryan Wicks, and Carl Michal December 2014 This lab is going to introduce you to the world

More information

Embedded Systems. 3. Hardware Software Interface. Lothar Thiele. Computer Engineering and Networks Laboratory

Embedded Systems. 3. Hardware Software Interface. Lothar Thiele. Computer Engineering and Networks Laboratory Embedded Systems 3. Hardware Software Interface Lothar Thiele Computer Engineering and Networks Laboratory Do you Remember? 3 2 3 3 High Level Physical View 3 4 High Level Physical View 3 5 What you will

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller The 8051, Motorola and PIC families are the 3 leading sellers in the microcontroller market. The 8051 microcontroller was originally developed by Intel in the late 1970 s. Today many

More information

Using peripherals on the MSP430 (if time)

Using peripherals on the MSP430 (if time) Today's Plan: Announcements Review Activities 1&2 Programming in C Using peripherals on the MSP430 (if time) Activity 3 Announcements: Midterm coming on Feb 9. Will need to write simple programs in C and/or

More information

MIDTERM#1. 2-(3pts) What is the difference between Von Neumann & Harvard processor architectures?

MIDTERM#1. 2-(3pts) What is the difference between Von Neumann & Harvard processor architectures? CSE421-Microprocessors & Microcontrollers-Spring 2013 (March 26, 2013) NAME: MIDTERM#1 1- (2pts) What does MSP stand for in MSP430? Why? Mixed Signal Processor. It contains both analog and digital circuitry.

More information

ECE 492 WINTER 2015 GROUP 2. Texas Instruments MSP430-FR Bit ADC Setup Guide

ECE 492 WINTER 2015 GROUP 2. Texas Instruments MSP430-FR Bit ADC Setup Guide APPLICATION NOTE MIKE PAPPAS ECE 492 WINTER 2015 GROUP 2 Texas Instruments MSP430-FR5969 12-Bit ADC Setup Guide March 2015 Table of Contents Preface... 3 Pin Assignments... 4 Configuring the ADC... 4 Sampling

More information

Advanced Microcontrollers Grzegorz Budzyń Lecture. 4: 16-bit. microcontrollers

Advanced Microcontrollers Grzegorz Budzyń Lecture. 4: 16-bit. microcontrollers Advanced Microcontrollers Grzegorz Budzyń Lecture 4: 16-bit microcontrollers Plan MSP430 family PIC24 family Introduction MSP430 TI microcontrollersportfolio Source: [1] TI microcontrollersportfolio Source:

More information

Hello, and welcome to this presentation of the STM32L4 power controller. The STM32L4 s power management functions and all power modes will also be

Hello, and welcome to this presentation of the STM32L4 power controller. The STM32L4 s power management functions and all power modes will also be Hello, and welcome to this presentation of the STM32L4 power controller. The STM32L4 s power management functions and all power modes will also be covered in this presentation. 1 Please note that this

More information

2006 Mixed Signal Products SLAU144B

2006 Mixed Signal Products SLAU144B User s Guide 2006 Mixed Signal Products SLAU144B IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,

More information

Alex Milenkovich 1. CPE/EE 421 Microcomputers: The MSP430 Introduction. Outline

Alex Milenkovich 1. CPE/EE 421 Microcomputers: The MSP430 Introduction. Outline Outline CPE/EE 421 Microcomputers: The MSP430 Introduction Instructor: Dr Aleksandar Milenkovic Lecture Notes MSP430: An Introduction The MSP430 family Technology Roadmap Typical Applications The MSP430

More information

Microcontrollers. vs Microprocessors

Microcontrollers. vs Microprocessors Microcontrollers vs Microprocessors Microprocessors Arbitrary computations Arbitrary control structures Arbitrary data structures Specify function at high-level and use compilers and debuggers Composed

More information

Create and Add the Source File

Create and Add the Source File IAR Kickstart Procedure Create and Add the Source File 8. Create the Source File From the IAR Embedded Workbench menu bar, select File New File. In the untitled editor window that appears, type the following

More information

embos Real Time Operating System CPU & Compiler specifics for Texas Instruments MSP430 CPUs and Rowley compiler for MSP430 Document Rev.

embos Real Time Operating System CPU & Compiler specifics for Texas Instruments MSP430 CPUs and Rowley compiler for MSP430 Document Rev. embos Real Time Operating System CPU & Compiler specifics for Texas Instruments MSP430 CPUs and Rowley compiler for MSP430 Document Rev. 1 A product of Segger Microcontroller Systeme GmbH www.segger.com

More information

The 16-bit timer/counter register, TAR, increments or decrements (depending on mode of operation) with each rising edge of the clock signal.

The 16-bit timer/counter register, TAR, increments or decrements (depending on mode of operation) with each rising edge of the clock signal. Timer & Real Time Clock (RTC), PWM control, timing generation and measurements. Analog interfacing and data acquisition: ADC and Comparator in MSP430, data transfer using DMA. Case Study: MSP430 based

More information

3. (a) Explain the steps involved in the Interfacing of an I/O device (b) Explain various methods of interfacing of I/O devices.

3. (a) Explain the steps involved in the Interfacing of an I/O device (b) Explain various methods of interfacing of I/O devices. Code No: R05320202 Set No. 1 1. (a) Discuss the minimum mode memory control signals of 8086? (b) Explain the write cycle operation of the microprocessor with a neat timing diagram in maximum mode. [8+8]

More information

Towards Hard Real-time Performance in a Highly Asynchronous Multitasking MSP430 Application Andrew E. Kalman, Ph.D.

Towards Hard Real-time Performance in a Highly Asynchronous Multitasking MSP430 Application Andrew E. Kalman, Ph.D. Towards Hard Real-time Performance in a Highly Asynchronous Multitasking MSP430 Application Andrew E. Kalman, Ph.D. Slide 1 Outline Overview Part I: TimerA does PWM Part II: TimerB drives a Stepper Part

More information

2-Oct-13. the world s most energy friendly microcontrollers and radios

2-Oct-13.  the world s most energy friendly microcontrollers and radios 1 2 3 EFM32 4 5 LESENSE Low Energy Sensor Interface Autonomous sensing in Deep Sleep LESENSE with central control logic ACMP for sensor input DAC for reference generation Measure up to 16 sensors Inductive

More information

Configuring the Default Setting of the CDC7005 Using a MSP430 Microcontroller

Configuring the Default Setting of the CDC7005 Using a MSP430 Microcontroller Application Report SCAA071 - AUGUST 2004 Configuring the Default Setting of the CDC7005 Using a MSP430 Microcontroller Daniel T. Pherson TI Clock Solutions ABSTRACT This application report demonstrates

More information

CPE 323 MSP430 INSTRUCTION SET ARCHITECTURE (ISA)

CPE 323 MSP430 INSTRUCTION SET ARCHITECTURE (ISA) CPE 323 MSP430 INSTRUCTION SET ARCHITECTURE (ISA) Aleksandar Milenković Email: milenka@uah.edu Web: http://www.ece.uah.edu/~milenka Objective Introduce MSP430 Instruction Set Architecture (Class of ISA,

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Stefan Kowalewski, 4. November 25 Introduction to Embedded Systems Part 2: Microcontrollers. Basics 2. Structure/elements 3. Digital I/O 4. Interrupts 5. Timers/Counters Introduction to Embedded Systems

More information

MSP430F149 P3.4/UTXD0 P3.5/URXD0 P1.5 P1.6 P1.7 MSP430F149 P1.0 P5.4 P5.3 P5.2 P5.1. Figure B-1. BSL Replicator Block Diagram

MSP430F149 P3.4/UTXD0 P3.5/URXD0 P1.5 P1.6 P1.7 MSP430F149 P1.0 P5.4 P5.3 P5.2 P5.1. Figure B-1. BSL Replicator Block Diagram Appendix B Appendix B MSP430 BSL Replicator Author: Greg Morton, MSP430 Applications B.1 BSL Replicator Overview The BSL Replicator application, executing on a host MSP430F149 device, uses the BSL protocol

More information

Interfacing CMA3000-D01 to an MSP430 ultra low-power microcontroller

Interfacing CMA3000-D01 to an MSP430 ultra low-power microcontroller Interfacing CMA3000-D01 to an MSP430 ultra low-power microcontroller 1 INTRODUCTION The objective of this document is to show how to set up SPI/I2C communication between VTI Technologies CMA3000-D01 digital

More information

Chapter 1 MSP430 Microcontroller Family

Chapter 1 MSP430 Microcontroller Family Chapter 1 1-1 Introduction 1.1 Introduction The MSP430 is a 16-bit microcontroller that has a number of special features not commonly available with other microcontrollers: Complete system on-a-chip includes

More information

8051 I/O and 8051 Interrupts

8051 I/O and 8051 Interrupts 8051 I/O and 8051 Interrupts Class 7 EE4380 Fall 2002 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Agenda 8051 I/O Interfacing Scanned LED displays LCD displays

More information

Wireless Sensor Networks (WSN)

Wireless Sensor Networks (WSN) Wireless Sensor Networks (WSN) Operating Systems M. Schölzel Operating System Tasks Traditional OS Controlling and protecting access to resources (memory, I/O, computing resources) managing their allocation

More information

15.1 Timer_A Introduction

15.1 Timer_A Introduction Chapter 15 is a 16-bit timer/counter with multiple capture/compare registers. This chapter describes. This chapter describes the operation of the of the MSP430x4xx device family. Topic Page 15.1 Introduction.........................................

More information

Network Embedded Systems Sensor Networks. Tips and Tricks. Marcus Chang,

Network Embedded Systems Sensor Networks. Tips and Tricks. Marcus Chang, Network Embedded Systems Sensor Networks Tips and Tricks Marcus Chang, mchang@cs.jhu.edu 1 Project Part 3 PC --UART--> Telosb --radio--> Telosb Reliable communication and storage Data corruption Missing

More information

TAxCTL Register

TAxCTL Register Timer_A Registers 17.3.1 TAxCTL Register Timer_Ax Control Register Figure 17-16. TAxCTL Register Reserved TASSEL ID MC Reserved TACLR TAIE TAIFG rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) w-(0) rw-(0) rw-(0) 15-10

More information

ECE 492 WINTER 2015 GROUP 2. Texas Instruments MSP430-FR Bit ADC Setup Guide

ECE 492 WINTER 2015 GROUP 2. Texas Instruments MSP430-FR Bit ADC Setup Guide APPLICATION NOTE MIKE PAPPAS ECE 492 WINTER 2015 GROUP 2 Texas Instruments MSP430-FR5969 12-Bit ADC Setup Guide March 2015 Table of Contents Preface... 3 Pin Assignments... 4 Configuring the ADC... 4 Sampling

More information

IV B.Tech. I Sem (R13) ECE : Embedded Systems : UNIT -1 1 UNIT 1

IV B.Tech. I Sem (R13) ECE : Embedded Systems : UNIT -1 1 UNIT 1 IV B.Tech. I Sem (R13) ECE : Embedded Systems : UNIT -1 1 UNIT 1 1. Embedded Systems Introduction (Definition, Applications and Classification) - 1 2. Elements of Embedded systems ----------------------------------------------------------

More information

MSP430 Microcontroller Basics

MSP430 Microcontroller Basics MSP430 Microcontroller Basics John H. Davies AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Newnes is an imprint of Elsevier N WPIGS Contents Preface

More information

Timers and Clocks CS4101 嵌入式系統概論. Prof. Chung-Ta King. Department of Computer Science National Tsing Hua University, Taiwan

Timers and Clocks CS4101 嵌入式系統概論. Prof. Chung-Ta King. Department of Computer Science National Tsing Hua University, Taiwan CS4101 嵌入式系統概論 Timers and Clocks Prof. Chung-Ta King Department of Computer Science, Taiwan Materials from MSP430 Microcontroller Basics, John H. Davies, Newnes, 2008 Recall the Container Thermometer Container

More information

Getting Started with the MSP430 IAR Assembly

Getting Started with the MSP430 IAR Assembly Getting Started with the MSP430 IAR Assembly by Alex Milenkovich, milenkovic@computer.org Objectives: This tutorial will help you get started with the MSP30 IAR Assembly program development. You will learn

More information

MSP430 Teaching Materials

MSP430 Teaching Materials MSP430 Teaching Materials Lecture 5 Timers Description of clock signals Texas Instruments Incorporated University of Beira Interior (PT) Pedro Dinis Gaspar, António Espírito Santo, Bruno Ribeiro, Humberto

More information

Team 3. By: Miriel Garcia. Microcontrollers/ TI MSP430F5438A. ECE 480 senior Design. Application Note 4/3/15

Team 3. By: Miriel Garcia. Microcontrollers/ TI MSP430F5438A. ECE 480 senior Design. Application Note 4/3/15 Microcontrollers/ TI MSP430F5438A ECE 480 senior Design Team 3 Application Note By: Miriel Garcia 4/3/15 Abstract Microcontrollers are key components on today s modern world. These devices have the ability

More information

ECE PRACTICE EXAM #2 Clocks, Timers, and Digital I/O

ECE PRACTICE EXAM #2 Clocks, Timers, and Digital I/O ECE2049 -- PRACTICE EXAM #2 Clocks, Timers, and Digital I/O Study HW3, Class Notes, Davies Ch 2.6, 5.8, 8, 9.2-3, 9.7, MSP43F5529 User's Guide Ch 5, 17, 28 Work all problems with your note sheet first

More information

Maximizing Runtime Performance in Peripheral-Rich MSP430 Applications

Maximizing Runtime Performance in Peripheral-Rich MSP430 Applications Maximizing Runtime Performance in Peripheral-Rich MSP430 Applications Andrew E. Kalman, Ph.D. Slide 1 Introduction Andrew E. Kalman President and CTO, Pumpkin, Inc. Author of Creator of the 20+ years of

More information

ARM Architecture and Assembly Programming Intro

ARM Architecture and Assembly Programming Intro ARM Architecture and Assembly Programming Intro Instructors: Dr. Phillip Jones http://class.ece.iastate.edu/cpre288 1 Announcements HW9: Due Sunday 11/5 (midnight) Lab 9: object detection lab Give TAs

More information

Micro computer Organization

Micro computer Organization Micro computer Organization I Base Basic Components CPU SYSTEM BUSES VDD CLK RESET 1 MPU vs MCU Microprocessor Unit (MPU) CPU (called Microprocessor) is a die All components external to die Basically on

More information

Hacettepe University

Hacettepe University MSP430 Teaching Materials Week 5 FUNDAMENTALS OF INTERFACING AND TIMERS for MSP430 Hacettepe University Elements in Basic MCU Interface Power Source Feeds CPU and peripherals Clock Oscillators System synchronization

More information

Interfacing CMR3000-D01 to an MSP430 ultra low-power microcontroller

Interfacing CMR3000-D01 to an MSP430 ultra low-power microcontroller Interfacing CMR3000-D01 to an MSP430 ultra low-power microcontroller 1 INTRODUCTION The objective of this document is to show how to set up SPI/I2C communication between VTI Technologies CMR3000-D01 digital

More information

Alex Milenkovich 1. CPE/EE 421 Microcomputers. Course Administration. Review: Outline. Getting Started with EasyWeb2. Review: MSP bit RISC

Alex Milenkovich 1. CPE/EE 421 Microcomputers. Course Administration. Review: Outline. Getting Started with EasyWeb2. Review: MSP bit RISC CPE/EE 421 Microcomputers Instructor: Dr Aleksandar Milenkovic Lecture Note S12 Course Administration Instructor: URL: TA: Labs: Test I: Text: Review: Today: Aleksandar Milenkovic milenka@ece.uah.edu www.ece.uah.edu/~milenka

More information

Creating Energy Efficient Computers Marius Grannæs

Creating Energy Efficient Computers Marius Grannæs www.silabs.com Creating Energy Efficient Computers Marius Grannæs Microcontrollers & Radios EFM32 Gecko Microcontrollers... the world s most energy friendly microcontrollers EFR Draco Radios... the world

More information

Department of Electronics and Instrumentation Engineering Question Bank

Department of Electronics and Instrumentation Engineering Question Bank www.examquestionpaper.in Department of Electronics and Instrumentation Engineering Question Bank SUBJECT CODE / NAME: ET7102 / MICROCONTROLLER BASED SYSTEM DESIGN BRANCH : M.E. (C&I) YEAR / SEM : I / I

More information

AVR XMEGA TM. A New Reference for 8/16-bit Microcontrollers. Ingar Fredriksen AVR Product Marketing Director

AVR XMEGA TM. A New Reference for 8/16-bit Microcontrollers. Ingar Fredriksen AVR Product Marketing Director AVR XMEGA TM A New Reference for 8/16-bit Microcontrollers Ingar Fredriksen AVR Product Marketing Director Kristian Saether AVR Product Marketing Manager Atmel AVR Success Through Innovation First Flash

More information

USB Connectivity using MSP430 and TUSB3410

USB Connectivity using MSP430 and TUSB3410 USB Connectivity using MSP430 and TUSB3410 Andreas Dannenberg MSP430 Applications Engineer Texas Instruments 2006 Texas Instruments Inc, Slide 1 Agenda Why USB connectivity? TUSB3410 MSP430 overview USB

More information

MSP430xxxx Microcontrollers Low Power Modes

MSP430xxxx Microcontrollers Low Power Modes MSP430xxxx Microcontrollers Low Power Modes Modes à basse consommation 1 Power is a priority architectural design constraint Why worry about power? Battery life in portable and mobile platforms Power consumption

More information

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I.

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I. University of Texas at El Paso Electrical and Computer Engineering Department EE 3176 Laboratory for Microprocessors I Fall 2016 LAB 08 UART Communication Goals: Learn about UART Communication and the

More information

Product Technical Brief S3C2440X Series Rev 2.0, Oct. 2003

Product Technical Brief S3C2440X Series Rev 2.0, Oct. 2003 Product Technical Brief S3C2440X Series Rev 2.0, Oct. 2003 S3C2440X is a derivative product of Samsung s S3C24XXX family of microprocessors for mobile communication market. The S3C2440X s main enhancement

More information

Introducing STM32 L0x Series. April

Introducing STM32 L0x Series. April Introducing STM32 L0x Series April 2014 www.emcu.it 20- to 80pins 20- to 100pins 48- to 144pins Memory size (Bytes) ST s Ultra-low-power Continuum (1/2) 2 512K 256K 192K STM32L0 Cortex TM -M0+ STM32L1

More information