Computer Organization and Assembly Language CSC-210

Size: px
Start display at page:

Download "Computer Organization and Assembly Language CSC-210"

Transcription

1 Computer Organization and Assembly Language CSC-2

2 Lab # Lab() Lab(2) Lab(3) Lab(4) Lab(5) Lab(6) Lab(7) Lab(8) Lab(9) Lab() Lab() Lab(2) Lab(3) Title Computer Anatomy Memory and ports Motherboard and cards Numbering systems Registers types Loading the DEBUG Program Assembly basic Instructions part () Assembly basic Instructions part (2) Assembly basic Instructions part (3) Execution Assembly Instructions() Execution Assembly Instructions(2) Execution Assembly Instructions(3) Assembly logic operation Instructions page

3 Lab (): Computer Anatomy Objectives Identify the basic components of computer and their working Explain the importance of various units of a computer Question (): What are the four basic functions of performed by the computer? Question (2): Choose the correct answer? (a) The task of performing arithmetic and logical operation is performed by. (i) ALU (ii) Editor (iii) storage (iv) output (b) The ALU and CPU are jointly knows as (i) RAM (ii) ROM (iii) CPU (iv) none of the above (c) The process of producing results from the data for getting useful information is called? (i) Output (ii) input (iii) processing (iv) storage 2

4 Question (3): (a): List four input devices? (b): List four input devices? Question (4): What are the major components of computer? Question (5): What is CPU and how does it work? Explain briefly? Question (6): What are the four basic functions performed by the computer? 3

5 Lab (2): Computer Anatomy part (2) )Memory and ports) Objectives Identify the ports computer and their working. Explain the importance types of memory and ports. Question (): Fill the tables below by write the suitable ports? A): B) C( 4

6 Question (2): Differentiate between the following: (a) RAM and ROM (b) DRAM and SRAM Question (3): a. Distinguish between bit and byte? b. Define volatile and non-volatile memory? Question (4): Write True or False? (a) There are two kinds of computer memory: primary and secondary. (b) The computer can understand decimal system also. (c) The storage of program and data in the RAM is permanent. (d) PROM is secondary memory. (e) The memories which do not lose their content on failure of power Supplies are known as non-volatile memories 5

7 Objectives Lab (3): Computer Anatomy part (3) )Motherboard and cards) Identify the components computer and their functions. Explain the importance types of mother board. Question (): write the parts names of motherboard? 6

8 Question (2): Fill in the blanks? (a)... unit coordinates the activities of all the other units in The system. (b) The standard size of display screen is... Lines by... Characters. Question (3): What is Hard Disk? Question (4): Write Performance parameters of hard disk? - 2- Question (5): What s a Graphics Card? 7

9 Question (6): Department of Computer Science a- What is it? - Basic Input Output System b- Why is it necessary? C- List the important Functions of Basic Input Output System? Question (7): Define the following? a- Sound Card b- Network Interface Card

10 Lab (4): Numbering systems Objectives Review and explain the importance types of numbering systems types. Explain the basic operations performed on numbers. Question (): find the st and 2nd complement of the following decimal values? a) 54 b) 43 Question (2):. What is the 3-digit s complement of 247? a. Answer: 2. What is the 3-digit s complement of 7? a. Answer: is a s complement representation of what decimal value? a. Answer: 4. What is -2 expressed as an 8-bit binary number in 2 s complement notation? a. Answer: 5. is a 7-bit binary number in 2 s complement notation. What is the decimal value? a. Answer: 9

11 Question (3): I-Add 2 to 2 using signed-magnitude arithmetic. II-Add 2 ( 9) to 2 (+3) using signed-magnitude arithmetic. Question (4): I-Subtract 2 to 2 using signed-magnitude arithmetic II-Subtract 2 (99) from 2 (79) using signed magnitude arithmetic III-Subtract 2 ( 24) from 2 ( 43) using signed-magnitude arithmetic. Question (5): I-Express 23 and 9 in 8-bit binary one's complement form. II-Add 23 to 9 using one's complement arithmetic. III-Express 23, 23, and 9 in 8-bit binary two's complement forms. IV-Add 9 to 23 using two's complement arithmetic Question (7): (a) The 2s complement of ()2 is (b) The 2s complement of (.)2 is (c) The s complement of (4887) is (d) The s complement of (48.87) is

12 Objectives Lab (5): Registers types Identify computer registers and there functions Question (): List types of data registers? Question (2): List types of Sections Registers? Question (3): What are the Differences between AH & AX?

13 Lab (6): Loading the DEBUG Program Objectives Part : Explain Loading the DEBUG Program. Start Emu886 by selecting its icon from the start menu, or by running Emu886.exe. 2. Select "Samples" from "File" menu. 3. Click [Compile and Emulate] button (or press F5 hot key). 4. Click [Single Step] button (or press F8 hot key), and watch how the cod is being executed. 5. Try opening other samples, all samples are heavily commented, so it's a great learning tool. Part 2: Examining and Modifying the Contents of the 8x86's Internal Registers. Use the REGISTER command to display the current contents of all of the 8x86's internal registers. List the initial values held in CS, DS, and SS.,, 2- Here is a short program that demonstrates the use of MOV instruction: #MAKE_COM# ; instruct compiler to make COM file. ORG h ; directive required for a COM program. MOV AX, B8h ; set AX to hexadecimal value of B8h. MOV DS, AX ; copy value of AX to DS. MOV CL, 'A' ; set CL to ASCII code of 'A', it is 4h. MOV CH, b ; set CH to binary value. MOV BX, 5Eh ; set BX to 5Eh. MOV [BX], CX ; copy contents of CX to memory at B8:5E RET ; returns to operating system. 2

14 Objectives Lab (7): Assembly basic Instructions Identify Assembly basic Instructions MOV,XCHG Question () : Write the syntax of MOV,XCHG? Question (2): Explain the following statements? - MOV AX,word 2- MOV AL,'A' Question (3): Explain the following statements? - XCHG AH,BL 2- XCHG AX,WORD Question (4): Save the Value of A in B Question (5): Find the error and rewrite the statements? -MOV DS, 2- MOV DS,ES 3

15 Lab (8): Assembly basic Instructions Objectives Identify Assembly basic Instructions ADD,SUB Question () : Write the syntax of ADD,SUB? Question (2) : Write assembly Instructions for the following statements - A= 5 A Question (3): Write assembly Instructions for the following statements - A=B-2*A Question (4): Fill the Blanks in the Following: Assume A=5 B=6 MOV AX, A (AX= ) SUB AX, B (AX= ) MOV A, AX (A= ) 4

16 Lab (9): Assembly basic Instructions Objectives Identify Assembly basic Instructions. SUB,DIV,DEC,INC Question () : write the outputs of the following? A- MOV DH,4H ADD DH,3 B- MOV AL, 6 MOV CL, 8 ADD AL, CL Question (2) :write a program to execute the following statement CL=2*AL+BL 5

17 Question (3): write the outputs of the following? MOV AL, 8 MOV CL, 6 SUB AL, CL Question (4) :write a program to execute the following statement 2/2H 6

18 Objectives Department of Computer Science Lab (): Execution Assembly Instructions Learn how to execute Assembly instructions and observe the results Question () : Encode each of the instructions that follow into machine code. a. MOVAX,BX b. MOV AX, OAAAA c. MOV AX, [BX] d. MOV AX, [4] e. MOV AX, [BX + SI] f. MOV AX, [SI+4] g. MOV AX, [BX + SI +4] Question (2): write the outputs of the following? MOV AX, 5 ; ADD AX, 3 ;, INC AX ; DEC AX ; SUB AX, 6 ; 7

19 Lab (): Execution Assembly Instructions Question () Procedure. Initialize the internal registers of the 8x86 as follows: (AX) = H (BX) = H 2. Initialize the word storage locations in the memory as follow: (DS: H) = BBBBH (DS: 4H) = CCCCH 3. Enter the following Assembly instructions at the current CS:IP MOV AX, BX MOV AX, OAAAA MOV AX, [BX] MOV AX, [4] ADD AX, BX 8

20 Step Data transfer instructions Step 2 Step 3 Step 4 Using emu886 to assemble the instructions (a) MOV AX,BX (b) MOV AX,AAAAh (c) MOV AX,[BX] (d) MOV AX,[4] (e) MOV AX,[BX+SI] (f) MOV AX,[SI+4] (g) MOV AX,[BX+SI+4] Initializing the internal registers of the 8x86 as follows: (AX) = H (BX) = H (CX) = 2H (DX) = 3H (SI) = H (DI) = 2H (BP) = 3H (DS) = B6H Verify the initialization by displaying the new content of registers Fill all memory locations in the range DS: through DS:F with H and then initialize the following storage locations: (DS:H) = BBBBH (DS:4H) = CCCCH (DS:H) = DDDDH (DS:4H) = EEEEH (DS:6H) = FFFFH Trace the execution of the instructions (a) through (g). Explain the execution of each instruction, including addressing mode, physical address for memory addressing mode, value in AX. Fill the table below. Question (2): fill the following table? Instruction a b c d e f Addressing Mode Physical Address AX Function 9

21 Lab (2): Execution Assembly Instructions Question () memory in positions 2h, 22h? Write a program to add two numbers of length 6 bits stored in Question (2): Suppose AL= 35H BL= 39H write program to add the numbers and correct the result? Question (3): Suppose [2f8h] =4h DS=2fh SI=8h write program to subtract 3f8h From [SI]? Question (4): write program to divide two numbers 9/4? 2

22 Lab (3): Assembly logic Operation Identify Assembly basic operation Instructions. OR, AND, Test, XOR, NOT Question () : Fill the following table? A B A+B Question (2) : find the value of registers OR AL, BL,suppose AL= 2FH, BL=52H? AL BL OR AL,BL Question (3) : Fill the following table? A B A.B 2

23 Question (4): find the value of registers AND AL, BL,suppose AL= 27H, BL=56H? AL BL AND AL,BL Question (5) : Fill the following table? A B Test A,B Question (6) : Find the value of registers TEST AL, BL,suppose AL= 27H, BL=56H? AL BL TEST AL,BL 22

24 Question (7) : Fill the following table? A B A XOR B Question (8) : Find the value of registers XOR AL, BL,suppose AL= 7H, BL=76H? AL BL XOR AL,BL Question (9) : Fill the following table? A NOT A 23

LABORATORY 1: EXPLORING THE SOFTWARE ARCHITECTURE OF THE MICROPROCESSOR

LABORATORY 1: EXPLORING THE SOFTWARE ARCHITECTURE OF THE MICROPROCESSOR LABORATORY 1: EXPLORING THE SOFTWARE ARCHITECTURE OF THE 80 86 MICROPROCESSOR NAME: STUDENT ID#: Objectives Learn how to: Bring up the DEBUG program. Examine and modify the contents of the 80 86 s code

More information

Microprocessor I, Spring 2007 Lab 2: Assembling and executing instructions with DEBUG software Due on 03/02/2007, 12:30pm EST

Microprocessor I, Spring 2007 Lab 2: Assembling and executing instructions with DEBUG software Due on 03/02/2007, 12:30pm EST 16.317 Microprocessor I, Spring 2007 Lab 2: Assembling and executing instructions with DEBUG software Due on 03/02/2007, 12:30pm EST Reference: Walter A. Triebel and Avtar Singh, Lab Manual to Accompany

More information

Mr. Sapan Naik 1. Babu Madhav Institute of Information Technology, UTU

Mr. Sapan Naik 1. Babu Madhav Institute of Information Technology, UTU 5 Years Integrated M.Sc.(IT) Semester 4 060010402 System Programming Question Bank Unit 1: Introduction 1. Write the decimal equivalent for each integral power of 2 from 2! to 2!". 2. Convert the following

More information

Microprocessors & Assembly Language Lab 1 (Introduction to 8086 Programming)

Microprocessors & Assembly Language Lab 1 (Introduction to 8086 Programming) Microprocessors & Assembly Language Lab 1 (Introduction to 8086 Programming) Learning any imperative programming language involves mastering a number of common concepts: Variables: declaration/definition

More information

Microcomputer Architecture..Second Year (Sem.2).Lecture(2) مدرس المادة : م. سندس العزاوي... قسم / الحاسبات

Microcomputer Architecture..Second Year (Sem.2).Lecture(2) مدرس المادة : م. سندس العزاوي... قسم / الحاسبات 1) Input/output In computing, input/output or I/O, is the communication between an information processing system (such as a computer) and the outside world, possibly a human or another information processing

More information

Computer Organization and Assembly Language. Lab Session 01

Computer Organization and Assembly Language. Lab Session 01 Objective: Lab Session 01 Introduction to Assembly Language Tools and Familiarization with Emu8086 environment To be able to understand Data Representation and perform conversions from one system to another

More information

Assembly Language Each statement in an assembly language program consists of four parts or fields.

Assembly Language Each statement in an assembly language program consists of four parts or fields. Chapter 3: Addressing Modes Assembly Language Each statement in an assembly language program consists of four parts or fields. The leftmost field is called the label. - used to identify the name of a memory

More information

INSTRUCTOR: ABDULMUTTALIB A. H. ALDOURI

INSTRUCTOR: ABDULMUTTALIB A. H. ALDOURI 8 Unsigned and Signed Integer Numbers 1. Unsigned integer numbers: each type of integer can be either byte-wide or word-wide. This data type can be used to represent decimal numbers in the range 0 through

More information

Babu Madhav Institute of Information Technology, UTU

Babu Madhav Institute of Information Technology, UTU 5 Years Integrated M.Sc.(IT) Semester 4 060010309 : DSE3 Microprocessor Programming and Interfacing Question Bank 1. Write an assembly language program to check whether the given number is odd or even.

More information

BAHAR DÖNEMİ MİKROİŞLEMCİLER LAB3 FÖYÜ

BAHAR DÖNEMİ MİKROİŞLEMCİLER LAB3 FÖYÜ INTRODUCTION OF SEGMENT A typical program on 8086 consists of at least three segments Code segment: Contains instructions that accomplish certain tasks Data segment: Stores information to be processed

More information

EEM336 Microprocessors I. Data Movement Instructions

EEM336 Microprocessors I. Data Movement Instructions EEM336 Microprocessors I Data Movement Instructions Introduction This chapter concentrates on common data movement instructions. 2 Chapter Objectives Upon completion of this chapter, you will be able to:

More information

Q1: Define a character string named CO_NAME containing "Internet Services" as a constant?

Q1: Define a character string named CO_NAME containing Internet Services as a constant? CS 321 Lab Model Answers ١ First Lab : Q1: Define a character string named CO_NAME containing "Internet Services" as a constant? ANS: CO_NAME EQU ' Internet Services' Q2: Define the following numeric values

More information

Tutorial Letter 103/3/2012 Computer Organization COS2621 Semesters 1 & 2

Tutorial Letter 103/3/2012 Computer Organization COS2621 Semesters 1 & 2 COS2621/103/3/2012 Tutorial Letter 103/3/2012 Computer Organization COS2621 Semesters 1 & 2 School of Computing Solutions to self tests Bar code 2 Self-test A Question 1 Alternative 1 Which one of the

More information

FACULTY OF ENGINEERING LAB SHEET

FACULTY OF ENGINEERING LAB SHEET FACULTY OF ENGINEERING LAB SHEET ECE366: ADVANCED MICROPROCESSORS TRIMESTER (08/09) AM: Real- Mode Programming *Note: On-the-spot evaluation may be carried out during or at the end of the experiment. Students

More information

Chapter 3: Addressing Modes

Chapter 3: Addressing Modes Chapter 3: Addressing Modes Chapter 3 Addressing Modes Note: Adapted from (Author Slides) Instructor: Prof. Dr. Khalid A. Darabkh 2 Introduction Efficient software development for the microprocessor requires

More information

Arithmetic Instructions

Arithmetic Instructions Segment 3C Arithmetic Instructions This topic covers the following instructions: Addition (ADD, INC, ADC) Subtraction (SUB, DEC, SBB,CMP) Multiplication (MUL, IMUL) Division (DIV, IDIV) BCD Arithmetic

More information

Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit

Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit 1 1. introduction The internal function of 8086 processor are partitioned logically into processing units,bus Interface Unit(BIU)

More information

Intel 8086 MICROPROCESSOR. By Y V S Murthy

Intel 8086 MICROPROCESSOR. By Y V S Murthy Intel 8086 MICROPROCESSOR By Y V S Murthy 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14,

More information

Intel 8086 MICROPROCESSOR ARCHITECTURE

Intel 8086 MICROPROCESSOR ARCHITECTURE Intel 8086 MICROPROCESSOR ARCHITECTURE 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14, 16

More information

EC 333 Microprocessor and Interfacing Techniques (3+1)

EC 333 Microprocessor and Interfacing Techniques (3+1) EC 333 Microprocessor and Interfacing Techniques (3+1) Lecture 6 8086/88 Microprocessor Programming (Arithmetic Instructions) Dr Hashim Ali Fall 2018 Department of Computer Science and Engineering HITEC

More information

We can study computer architectures by starting with the basic building blocks. Adders, decoders, multiplexors, flip-flops, registers,...

We can study computer architectures by starting with the basic building blocks. Adders, decoders, multiplexors, flip-flops, registers,... COMPUTER ARCHITECTURE II: MICROPROCESSOR PROGRAMMING We can study computer architectures by starting with the basic building blocks Transistors and logic gates To build more complex circuits Adders, decoders,

More information

Section 001 & 002. Read this before starting!

Section 001 & 002. Read this before starting! Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 2150 (Tarnoff) Computer Organization TEST 3 for Spring Semester,

More information

FACULTY OF ENGINEERING LAB SHEET

FACULTY OF ENGINEERING LAB SHEET FACULTY OF ENGINEERING LAB SHEET ADVANCED MICROPROCESSORS ECE TRIMESTER (0/0) AM: Real- Mode Programming AM: Protected- Mode Programming *Note: On-the-spot evaluation may be carried out during or at the

More information

3- ADDRESSING MODES in 8086: In this section we use the MOV instruction to describe the data-addressing modes. Figure 3-1 shows the MOV instruction.

3- ADDRESSING MODES in 8086: In this section we use the MOV instruction to describe the data-addressing modes. Figure 3-1 shows the MOV instruction. 3- ADDRSING MOD in 8086: In this section we use the MOV instruction to describe the data-addressing modes. Figure 3-1 shows the MOV instruction. Fig 3-1 The MOV instruction An addressing mode is a method

More information

Assembly Language. Dr. Esam Al_Qaralleh CE Department Princess Sumaya University for Technology. Overview of Assembly Language

Assembly Language. Dr. Esam Al_Qaralleh CE Department Princess Sumaya University for Technology. Overview of Assembly Language 4345 Assembly Language Assembly Language Dr. Esam Al_Qaralleh CE Department Princess Sumaya University for Technology Assembly Language 3-1 Overview of Assembly Language Advantages: Faster as compared

More information

Chapter 2 COMPUTER SYSTEM HARDWARE

Chapter 2 COMPUTER SYSTEM HARDWARE Chapter 2 COMPUTER SYSTEM HARDWARE A digital computer system consists of hardware and software. The hardware consists of the physical components of the system, whereas the software is the collection of

More information

Q1: Multiple choice / 20 Q2: Memory addressing / 40 Q3: Assembly language / 40 TOTAL SCORE / 100

Q1: Multiple choice / 20 Q2: Memory addressing / 40 Q3: Assembly language / 40 TOTAL SCORE / 100 16.317: Microprocessor-Based Systems I Summer 2012 Exam 1 July 20, 2012 Name: ID #: For this exam, you may use a calculator and one 8.5 x 11 double-sided page of notes. All other electronic devices (e.g.,

More information

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language The x86 Microprocessors Introduction 1.1 Assembly Language Numbering and Coding Systems Human beings use the decimal system (base 10) Decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Computer systems use the

More information

1. Introduction to Assembly Language

1. Introduction to Assembly Language www.vchowk.com 1. Introduction to Assembly Language Solved EXERCISE 1 Note: Dear fellows I tried my best to solve this exercise questions if there s any mistake or doubt in any question correct it and

More information

Computer Architecture 1 ح 303

Computer Architecture 1 ح 303 Lecture 4 A. Addressing MODES 1. Introduction to assembly language programming: Program is a sequence of commands used to tell a microcomputer what to do. Each command in a program is an instruction Programs

More information

MICROPROCESSOR TECHNOLOGY

MICROPROCESSOR TECHNOLOGY MICROPROCESSOR TECHNOLOGY Assis. Prof. Hossam El-Din Moustafa Lecture 6 Ch.3 Addressing Modes 1 Chapter Objectives Explain the operation of each data-addressing mode. Use data-addressing modes to form

More information

Advanced Microprocessors

Advanced Microprocessors Advanced Microprocessors Notes #2 Software Architecture & Instruction Set Architecture Part 1 EE 467/567 Winter 2012 by Avinash Kodi SWA.1 Background Materials Textbook: 2.1, 2.2, 3.1 Other: IA-32 Intel

More information

Computer Architecture and System Software Lecture 04: Floating Points & Intro to Assembly

Computer Architecture and System Software Lecture 04: Floating Points & Intro to Assembly Computer Architecture and System Software Lecture 04: Floating Points & Intro to Assembly Instructor: Rob Bergen Applied Computer Science University of Winnipeg Decimal Addition Review decimal addition

More information

SHEET-2 ANSWERS. [1] Rewrite Program 2-3 to transfer one word at a time instead of one byte.

SHEET-2 ANSWERS. [1] Rewrite Program 2-3 to transfer one word at a time instead of one byte. SHEET-2 ANSWERS [1] Rewrite Program 2-3 to transfer one word at a time instead of one byte. TITLE PROG2-3 PURPOSE: TRANSFER 6 WORDS OF DATA PAGE 60,132.MODEL SMALL.STACK 64.DATA ORG 10H DATA_IN DW 234DH,

More information

Section 001. Read this before starting!

Section 001. Read this before starting! Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 2150 (Tarnoff) Computer Organization TEST 3 for Fall Semester,

More information

EEM336 Microprocessors I. Addressing Modes

EEM336 Microprocessors I. Addressing Modes EEM336 Microprocessors I Addressing Modes Introduction Efficient software development for the microprocessor requires a complete familiarity with the addressing modes employed by each instruction. This

More information

Addressing Modes on the x86

Addressing Modes on the x86 Addressing Modes on the x86 register addressing mode mov ax, ax, mov ax, bx mov ax, cx mov ax, dx constant addressing mode mov ax, 25 mov bx, 195 mov cx, 2056 mov dx, 1000 accessing data in memory There

More information

6/20/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to:

6/20/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to: Introduction Efficient software development for the microprocessor requires a complete familiarity with the addressing modes employed by each instruction. This chapter explains the operation of the stack

More information

1-Operand instruction types 1 INC/ DEC/ NOT/NEG R/M. 2 PUSH/ POP R16/M16/SR/F 2 x ( ) = 74 opcodes 3 MUL/ IMUL/ DIV/ DIV R/M

1-Operand instruction types 1 INC/ DEC/ NOT/NEG R/M. 2 PUSH/ POP R16/M16/SR/F 2 x ( ) = 74 opcodes 3 MUL/ IMUL/ DIV/ DIV R/M Increment R16 1-Operand instruction types 1 INC/ DEC/ NOT/NEG R/M 4 x (16+48) = 256 opcodes 2 PUSH/ POP R16/M16/SR/F 2 x (8+24+4+1) = 74 opcodes 3 MUL/ IMUL/ DIV/ DIV R/M 4 x (16+48) = 256 opcodes INC

More information

Assignment no:4 on chapter no :3 : Instruction set of 8086

Assignment no:4 on chapter no :3 : Instruction set of 8086 Assignment no:4 on chapter no :3 : Instruction set of 8086 1) Describe any two string operation instruction of 8086 with syntax & one example of each. 1] REP: REP is a prefix which is written before one

More information

Name (10) # Student. Student. 2017, Microprocessors 1 / 11

Name (10) # Student. Student. 2017, Microprocessors 1 / 11 Microprocessorss Laboratory 01 Debug/EMU86 # Student ID Student Name Grade (10) 1 / 11 DEBUG COMMAND SUMMARY Debug commands may be divided into four categories: program creation/debugging, memory manipulation,

More information

Q1: Define a character string named CO_NAME containing "Internet Services" as a constant?

Q1: Define a character string named CO_NAME containing Internet Services as a constant? CS 321 Lab Model Answers ١ First Lab : Q1: Define a character string named CO_NAME containing "Internet Services" as a constant? ANS: CO_NAME EQU ' Internet Services' Q2: Define the following numeric values

More information

Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy

Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy Digital Logic Design Ch1-1 8086 Microprocessor Features: The 8086 microprocessor is a 16 bit microprocessor. The term 16 bit means

More information

16.317: Microprocessor Systems Design I Fall 2013

16.317: Microprocessor Systems Design I Fall 2013 16.317: Microprocessor Systems Design I Fall 2013 Exam 1 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

CC411: Introduction To Microprocessors

CC411: Introduction To Microprocessors CC411: Introduction To Microprocessors OBJECTIVES this chapter enables the student to: Describe the Intel family of microprocessors from 8085 to Pentium. In terms of bus size, physical memory & special

More information

Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions.

Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions. 8086 Microprocessor Microprocessor Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions. It is used as CPU (Central Processing Unit) in computers.

More information

Chapter Three Addressing Mode MOV AX, BX

Chapter Three Addressing Mode MOV AX, BX Chapter Three The 8086 The 8086 When the 8086 executes an instruction, it performs the specified function on data. The data are called its operands and may be part of the instruction reside in one of the

More information

Signed number Arithmetic. Negative number is represented as

Signed number Arithmetic. Negative number is represented as Signed number Arithmetic Signed and Unsigned Numbers An 8 bit number system can be used to create 256 combinations (from 0 to 255), and the first 128 combinations (0 to 127) represent positive numbers

More information

Lecture (07) x86 programming 6

Lecture (07) x86 programming 6 Lecture (07) x86 programming 6 By: Dr. Ahmed ElShafee 1 The Flag Register 31 21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0 ID VIP VIF AC VM RF NT IOP 1 IOP 0 O D I T S Z A P C 8088/8086 80286 80386 80486

More information

Read this before starting!

Read this before starting! Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 2150 (Tarnoff) Computer Organization TEST 3 for Fall Semester,

More information

9/25/ Software & Hardware Architecture

9/25/ Software & Hardware Architecture 8086 Software & Hardware Architecture 1 INTRODUCTION It is a multipurpose programmable clock drive register based integrated electronic device, that reads binary instructions from a storage device called

More information

EC-333 Microprocessor and Interfacing Techniques

EC-333 Microprocessor and Interfacing Techniques EC-333 Microprocessor and Interfacing Techniques Lecture 3 The Microprocessor and its Architecture Dr Hashim Ali Fall - 2018 Department of Computer Science and Engineering HITEC University Taxila Slides

More information

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY BACKGROUND 8086 CPU has 8 general purpose registers listed below: AX - the accumulator register (divided into AH / AL): 1. Generates shortest machine code 2. Arithmetic, logic and data transfer 3. One

More information

Basic Assembly SYSC-3006

Basic Assembly SYSC-3006 Basic Assembly Program Development Problem: convert ideas into executing program (binary image in memory) Program Development Process: tools to provide people-friendly way to do it. Tool chain: 1. Programming

More information

Q1: Multiple choice / 20 Q2: Memory addressing / 40 Q3: Assembly language / 40 TOTAL SCORE / 100

Q1: Multiple choice / 20 Q2: Memory addressing / 40 Q3: Assembly language / 40 TOTAL SCORE / 100 16.317: Microprocessor-Based Systems I Fall 2012 Exam 1 October 3, 2012 Name: ID #: For this exam, you may use a calculator and one 8.5 x 11 double-sided page of notes. All other electronic devices (e.g.,

More information

Marking Scheme. Examination Paper. Module: Microprocessors (630313)

Marking Scheme. Examination Paper. Module: Microprocessors (630313) Philadelphia University Faculty of Engineering Marking Scheme Examination Paper Department of CE Module: Microprocessors (630313) Final Exam Second Semester Date: 12/06/2017 Section 1 Weighting 40% of

More information

Ex : Write an ALP to evaluate x(y + z) where x = 10H, y = 20H and z = 30H and store the result in a memory location 54000H.

Ex : Write an ALP to evaluate x(y + z) where x = 10H, y = 20H and z = 30H and store the result in a memory location 54000H. Ex : Write an ALP to evaluate x(y + z) where x = 10H, y = 20H and z = 30H and store the result in a memory location 54000H. MOV AX, 5000H MOV DS, AX MOV AL, 20H MOV CL, 30H ADD AL, CL MOV CL, 10H MUL CL

More information

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313)

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313) Philadelphia University Faculty of Engineering Marking Scheme Examination Paper Department of CE Module: Microprocessors (630313) Final Exam Second Semester Date: 02/06/2018 Section 1 Weighting 40% of

More information

CS401 Assembly Language Solved MCQS From Midterm Papers

CS401 Assembly Language Solved MCQS From Midterm Papers CS401 Assembly Language Solved MCQS From Midterm Papers May 14,2011 MC100401285 Moaaz.pk@gmail.com MC100401285@gmail.com PSMD01(IEMS) Question No:1 ( Marks: 1 ) - Please choose one The first instruction

More information

8086 Programming. Multiplication Instructions. Multiplication can be performed on signed and unsigned numbers.

8086 Programming. Multiplication Instructions. Multiplication can be performed on signed and unsigned numbers. Multiplication Instructions 8086 Programming Multiplication can be performed on signed and unsigned numbers. MUL IMUL source source x AL source x AX source AX DX AX The source operand can be a memory location

More information

MODE (mod) FIELD CODES. mod MEMORY MODE: 8-BIT DISPLACEMENT MEMORY MODE: 16- OR 32- BIT DISPLACEMENT REGISTER MODE

MODE (mod) FIELD CODES. mod MEMORY MODE: 8-BIT DISPLACEMENT MEMORY MODE: 16- OR 32- BIT DISPLACEMENT REGISTER MODE EXERCISE 9. Determine the mod bits from Figure 7-24 and write them in Table 7-7. MODE (mod) FIELD CODES mod 00 01 10 DESCRIPTION MEMORY MODE: NO DISPLACEMENT FOLLOWS MEMORY MODE: 8-BIT DISPLACEMENT MEMORY

More information

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM EXPERIMENT WRITE UP AIM: Assembly language program for 16 bit BCD addition LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM TOOLS/SOFTWARE

More information

Lesson 1. Fundamentals of assembly language

Lesson 1. Fundamentals of assembly language Lesson 1. Fundamentals of assembly language Computer Structure and Organization Graduate in Computer Sciences Graduate in Computer Engineering Graduate in Computer Sciences Graduate in Computer Engineering

More information

Computer Processors. Part 2. Components of a Processor. Execution Unit The ALU. Execution Unit. The Brains of the Box. Processors. Execution Unit (EU)

Computer Processors. Part 2. Components of a Processor. Execution Unit The ALU. Execution Unit. The Brains of the Box. Processors. Execution Unit (EU) Part 2 Computer Processors Processors The Brains of the Box Computer Processors Components of a Processor The Central Processing Unit (CPU) is the most complex part of a computer In fact, it is the computer

More information

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad Introduction to MS-DOS Debugger DEBUG In this laboratory, we will use DEBUG program and learn how to: 1. Examine and modify the contents of the 8086 s internal registers, and dedicated parts of the memory

More information

16.317: Microprocessor Systems Design I Spring 2014

16.317: Microprocessor Systems Design I Spring 2014 16.317: Microprocessor Systems Design I Spring 2014 Exam 1 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by

More information

Experiment #2. Addressing Modes and Data Transfer using TASM

Experiment #2. Addressing Modes and Data Transfer using TASM 2.0 Objective Experiment #2 Addressing Modes and Data Transfer using TASM The objective of this experiment is to learn various addressing modes and to verify the actions of data transfer. 2.1 Introduction

More information

Microprocessor and Assembly Language Week-5. System Programming, BCS 6th, IBMS (2017)

Microprocessor and Assembly Language Week-5. System Programming, BCS 6th, IBMS (2017) Microprocessor and Assembly Language Week-5 System Programming, BCS 6th, IBMS (2017) High Speed Memory Registers CPU store data temporarily in these location CPU process, store and transfer data from one

More information

.code. lea dx,msg2. Page 1/8. Problem 1: Programming in Assembly [25 Points]

.code. lea dx,msg2. Page 1/8. Problem 1: Programming in Assembly [25 Points] Problem : Programming in Assembly [ Points] The following assembly program is supposed to: receive three integer numbers from the console, call a function, name sort, function sort arranges the three input

More information

EXPERIMENT 1. FAMILIARITY WITH DEBUG, x86 REGISTERS and MACHINE INSTRUCTIONS

EXPERIMENT 1. FAMILIARITY WITH DEBUG, x86 REGISTERS and MACHINE INSTRUCTIONS EXPERIMENT 1 FAMILIARITY WITH DEBUG, x86 REGISTERS and MACHINE INSTRUCTIONS Pre-lab: This lab introduces you to a software tool known as DEBUG. Before the lab session, read the first two sections of chapter

More information

EC 333 Microprocessor and Interfacing Techniques (3+1)

EC 333 Microprocessor and Interfacing Techniques (3+1) EC 333 Microprocessor and Interfacing Techniques (3+1) Lecture 7 8086/88 Microprocessor Programming (Data Movement Instructions) Dr Hashim Ali Spring 2018 Department of Computer Science and Engineering

More information

Week 2 The 80x86 Microprocessor Architecture

Week 2 The 80x86 Microprocessor Architecture Week 2 The 80x86 Microprocessor Architecture OBJECTIVES this chapter enables the student to: Describe the Intel family of microprocessors from 8085 to Pentium. In terms of bus size, physical memory & special

More information

Code segment Stack segment

Code segment Stack segment Registers Most of the registers contain data/instruction offsets within 64 KB memory segment. There are four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1

More information

CS-202 Microprocessor and Assembly Language

CS-202 Microprocessor and Assembly Language CS-202 Microprocessor and Assembly Language Lecture 2 Introduction to 8086 Assembly Language Dr Hashim Ali Spring - 2019 Department of Computer Science and Engineering HITEC University Taxila!1 Lecture

More information

ORG ; TWO. Assembly Language Programming

ORG ; TWO. Assembly Language Programming Dec 2 Hex 2 Bin 00000010 ORG ; TWO Assembly Language Programming OBJECTIVES this chapter enables the student to: Explain the difference between Assembly language instructions and pseudo-instructions. Identify

More information

Experiment 3. TITLE Optional: Write here the Title of your program.model SMALL This directive defines the memory model used in the program.

Experiment 3. TITLE Optional: Write here the Title of your program.model SMALL This directive defines the memory model used in the program. Experiment 3 Introduction: In this experiment the students are exposed to the structure of an assembly language program and the definition of data variables and constants. Objectives: Assembly language

More information

THE UNIVERSITY OF TRINIDAD & TOBAGO

THE UNIVERSITY OF TRINIDAD & TOBAGO THE UNIVERSITY OF TRINIDAD & TOBAGO FINAL ASSESSMENT/EXAMINATIONS DECEMBER 2012 Course Code and Title: Microprocessor Architecture & Interfacing Programme: Computer Engineering Technician Date and Time:

More information

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY BACKGROUND Segment The "SEGMENT" and "ENDS" directives indicate to the assembler the beginning and ending of a segment and have the following format label SEGMENT [options] ;place the statements belonging

More information

8086 INTERNAL ARCHITECTURE

8086 INTERNAL ARCHITECTURE 8086 INTERNAL ARCHITECTURE Segment 2 Intel 8086 Microprocessor The 8086 CPU is divided into two independent functional parts: a) The Bus interface unit (BIU) b) Execution Unit (EU) Dividing the work between

More information

8088/8086 Programming Integer Instructions and Computations

8088/8086 Programming Integer Instructions and Computations Unit3 reference 2 8088/8086 Programming Integer Instructions and Computations Introduction Up to this point we have studied the software architecture of the 8088 and 8086 microprocessors, their instruction

More information

Internal architecture of 8086

Internal architecture of 8086 Case Study: Intel Processors Internal architecture of 8086 Slide 1 Case Study: Intel Processors FEATURES OF 8086 It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 220 memory locations (1

More information

Logic Instructions. Basic Logic Instructions (AND, OR, XOR, TEST, NOT, NEG) Shift and Rotate instructions (SHL, SAL, SHR, SAR) Segment 4A

Logic Instructions. Basic Logic Instructions (AND, OR, XOR, TEST, NOT, NEG) Shift and Rotate instructions (SHL, SAL, SHR, SAR) Segment 4A Segment 4A Logic Instructions Basic Logic Instructions (AND, OR, XOR, TEST, NOT, NEG) Shift and Rotate instructions (SHL, SAL, SHR, SAR) Course Instructor Mohammed Abdul kader Lecturer, EEE, IIUC Basic

More information

Intel 8086: Instruction Set

Intel 8086: Instruction Set IUST-EE (Chapter 6) Intel 8086: Instruction Set 1 Outline Instruction Set Data Transfer Instructions Arithmetic Instructions Bit Manipulation Instructions String Instructions Unconditional Transfer Instruction

More information

mith College Computer Science CSC231 - Assembly Week #4 Dominique Thiébaut

mith College Computer Science CSC231 - Assembly Week #4 Dominique Thiébaut mith College Computer Science CSC231 - Assembly Week #4 Dominique Thiébaut dthiebaut@smith.edu Homework Solutions Outline Review Hexdump Pentium Data Registers 32-bit, 16-bit and 8-bit quantities (registers

More information

An 8-Bit Scientific Calculator Based Intel 8086 Virtual Machine Emulator

An 8-Bit Scientific Calculator Based Intel 8086 Virtual Machine Emulator Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 21 (2013 ) 506 511 The 4th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2013)

More information

Week /8086 Microprocessor Programming I

Week /8086 Microprocessor Programming I Week 4 8088/8086 Microprocessor Programming I Example. The PC Typewriter Write an 80x86 program to input keystrokes from the PC s keyboard and display the characters on the system monitor. Pressing any

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST 2 Date : 02/04/2018 Max Marks: 40 Subject & Code : Microprocessor (15CS44) Section : IV A and B Name of faculty: Deepti.C Time : 8:30 am-10:00 am Note: Note: Answer any five complete

More information

Assembling, Linking and Executing 1) Assembling: .obj obj .obj.lst .crf Assembler Types: a) One pass assembler:

Assembling, Linking and Executing 1) Assembling: .obj obj .obj.lst .crf Assembler Types: a) One pass assembler: Assembling, Linking and Executing 1) Assembling: - Assembling converts source program into object program if syntactically correct and generates an intermediate.obj file or module. - It calculates the

More information

Assembler Programming. Lecture 2

Assembler Programming. Lecture 2 Assembler Programming Lecture 2 Lecture 2 8086 family architecture. From 8086 to Pentium4. Registers, flags, memory organization. Logical, physical, effective address. Addressing modes. Processor Processor

More information

Introduction to Microprocessor

Introduction to Microprocessor Introduction to Microprocessor The microprocessor is a general purpose programmable logic device. It is the brain of the computer and it performs all the computational tasks, calculations data processing

More information

Philadelphia University Student Name: Student Number:

Philadelphia University Student Name: Student Number: Philadelphia University Student Name: Student Number: Faculty of Engineering Serial Number: Final Exam, Second Semester: 2016/2017 Dept. of Computer Engineering Course Title: Microprocessors Date: 12/06/2017

More information

CS/ECE/EEE/INSTR F241 MICROPROCESSOR PROGRAMMING & INTERFACING MODULE 4: 80X86 INSTRUCTION SET QUESTIONS ANUPAMA KR BITS, PILANI KK BIRLA GOA CAMPUS

CS/ECE/EEE/INSTR F241 MICROPROCESSOR PROGRAMMING & INTERFACING MODULE 4: 80X86 INSTRUCTION SET QUESTIONS ANUPAMA KR BITS, PILANI KK BIRLA GOA CAMPUS CS/ECE/EEE/INSTR F241 MICROPROCESSOR PROGRAMMING & INTERFACING MODULE 4: 80X86 INSTRUCTION SET QUESTIONS ANUPAMA KR BITS, PILANI KK BIRLA GOA CAMPUS Q1. IWrite an ALP that will examine a set of 20 memory

More information

EE2007 Microprocessor systems.

EE2007 Microprocessor systems. EE2007 Microprocessor systems Tutorial 1 Semester 1 AY 2010-11 Ganesh Iyer ganesh.vigneswara@gmail.com (facebook, gtalk) http://ganeshniyer.com About Me I have 3 years of Industry work experience in Bangalore,

More information

Arithmetic and Logic Instructions And Programs

Arithmetic and Logic Instructions And Programs Dec Hex Bin 3 3 00000011 ORG ; FOUR Arithmetic and Logic Instructions And Programs OBJECTIVES this chapter enables the student to: Demonstrate how 8-bit and 16-bit unsigned numbers are added in the x86.

More information

Ex: Write a piece of code that transfers a block of 256 bytes stored at locations starting at 34000H to locations starting at 36000H. Ans.

Ex: Write a piece of code that transfers a block of 256 bytes stored at locations starting at 34000H to locations starting at 36000H. Ans. INSTRUCTOR: ABDULMUTTALIB A H ALDOURI Conditional Jump Cond Unsigned Signed = JE : Jump Equal JE : Jump Equal ZF = 1 JZ : Jump Zero JZ : Jump Zero ZF = 1 JNZ : Jump Not Zero JNZ : Jump Not Zero ZF = 0

More information

UMBC. A register, an immediate or a memory address holding the values on. Stores a symbolic name for the memory location that it represents.

UMBC. A register, an immediate or a memory address holding the values on. Stores a symbolic name for the memory location that it represents. Intel Assembly Format of an assembly instruction: LABEL OPCODE OPERANDS COMMENT DATA1 db 00001000b ;Define DATA1 as decimal 8 START: mov eax, ebx ;Copy ebx to eax LABEL: Stores a symbolic name for the

More information

A Presentation created By Ramesh.K Press Ctrl+l for full screen view

A Presentation created By Ramesh.K Press Ctrl+l for full screen view Press Ctrl+l for full screen view A Presentation created By Ramesh.K rameshpkd@gmail.com Press Ctrl+l for full screen view A Microprocessor sor is a multipurpose, programmable logic device that reads binary

More information

Microprocessor. By Mrs. R.P.Chaudhari Mrs.P.S.Patil

Microprocessor. By Mrs. R.P.Chaudhari Mrs.P.S.Patil Microprocessor By Mrs. R.P.Chaudhari Mrs.P.S.Patil Chapter 1 Basics of Microprocessor CO-Draw Architecture Of 8085 Salient Features of 8085 It is a 8 bit microprocessor. It is manufactured with N-MOS technology.

More information

CG2007 Microprocessor systems.

CG2007 Microprocessor systems. CG2007 Microprocessor systems Tutorial 1 Semester 2 AY 2011-12 Ganesh Iyer ganesh.vigneswara@gmail.com http://ganeshniyer.com About Me I have 3 years of Industry work experience in Bangalore, India. I

More information

if 2 16bit operands multiplied the result will be

if 2 16bit operands multiplied the result will be how many operands in ADC? ans:3 how 32 bit word is defined? ans define double if 2 16bit operands multiplied the result will be ans 32bit if div by ero occurs then?? ans div by zero int for software int

More information