The principal behavioral postulate is. most preferred alternative from those

Size: px
Start display at page:

Download "The principal behavioral postulate is. most preferred alternative from those"

Transcription

1 Chapter 5 Choice

2 Economic Rationality The principal behavioral postulate is that a decisionmaker chooses its most preferred alternative from those available to it. The available choices constitute the choice set. How is the most preferred bundle in the choice set located?

3 Rational Constrained Choice

4 Rational Constrained Choice Utility

5 Rational Constrained Choice Utility

6 Rational Constrained Choice Utility

7 Rational Constrained Choice Utility

8 Rational Constrained Choice Utility

9 Rational Constrained Choice Utility

10 Rational Constrained Choice Utility

11 Rational Constrained Choice Utility Affordable, but not the most preferred affordable bundle.

12 Rational Constrained Choice Utility The most preferred of the affordable bundles. Affordable, but not the most preferred affordable bundle.

13 Rational Constrained Choice Utility

14 Rational Constrained Choice Utility

15 Rational Constrained Choice Utility

16 Rational Constrained Choice Utility

17 Rational Constrained Choice

18 Rational Constrained Choice Affordable bundles

19 Rational Constrained Choice Affordable bundles

20 Rational Constrained Choice More preferred bundles Affordable bundles

21 Rational Constrained Choice More preferred bundles Affordable bundles

22 Rational Constrained Choice * *

23 Rational Constrained Choice ( *, *)isthemost preferred affordable bundle. * *

24 Rational Constrained Choice The most preferred affordable bundle is called the consumer ss ORDINARY DEMAND at the given prices and budget. Ordinary demands will be denoted by *(p 1,p 2,m) and *(p 1,p 2,m).

25 Rational Constrained Choice When * > 0 and * > 0 the demanded bundle is INTERIOR. If buying ( *, *) costs $m then the budget is exhausted.

26 Rational Constrained Choice ( *, *) is interior. ( *, *) exhausts the budget. * *

27 Rational Constrained Choice ( *, *) is interior. (a) ( *, *) exhausts the budget; p 1 *+p 2 *=m m. * *

28 Rational Constrained Choice * ( *, *) is interior. (b) The slope of the indiff. curve at ( *x*) *, *) equals the slope of the budget constraint. *

29 Rational Constrained Choice ( *, *) satisfies two conditions: (a) the budget is exhausted; p 1 *+p 2 *=m (b) the slope of the budget constraint, -p 1 /p 2, and the slope of the indifference curve containing ( *, *) are equal at ( *, *).

30 Computing Ordinary Demands How can this information be used to locate ( *, *) for given p 1, p 2 and m?

31 Computing Ordinary Demands - a Cobb-Douglas Example. Suppose that the consumer has Cobb-Douglas preferences a b 2 Ux (, x ) x x

32 Computing Ordinary Demands - a Cobb-Douglas Example. Suppose that the consumer has Cobb-Douglas preferences. Then a b 2 Ux (, x ) x x MU U ax a x x b MU 2 U x 2 1 a b 2 1 bx x

33 Computing Ordinary Demands - a Cobb-Douglas Example. So the MRS is a b dx U/ x ax x ax MRS dx U / x a b bx x bx

34 Computing Ordinary Demands - a Cobb-Douglas Example. So the MRS is a b dx U/ x ax x ax MRS dx U / x a b bx x bx At ( *, *), MRS = -p 1 /p 2 so

35 Computing Ordinary Demands - a Cobb-Douglas Example. So the MRS is a b dx U/ x ax x ax MRS dx U / x a b bx x bx At ( *, *), MRS = -p 1 /p 2 so * ax 2 p 1 * bp x 1 * 2 ap x *. (A) bx p

36 Computing Ordinary Demands - a Cobb-Douglas Example. ( *, *) also exhausts the budget so * * px px m. (B)

37 Computing Ordinary Demands - a Cobb-Douglas Example. So now we know that bp x 2 1 ap x * * 2 1 * * (A) px px m. (B)

38 Computing Ordinary Demands - a Cobb-Douglas Example. So now we know that * bp x 1 2 ap x * 2 1 (A) Substitute * * p 1 p 2 m. (B)

39 Computing Ordinary Demands - a Cobb-Douglas Example. So now we know that * bp x 1 2 ap x * 2 1 (A) Substitute * * p 1 p 2 m. (B) and get px p bp 1 * x * 1 m. ap 2 This simplifies to.

40 Computing Ordinary Demands - a Cobb-Douglas Example. x * 1 am ( a b ) p 1.

41 Computing Ordinary Demands - a Cobb-Douglas Example. x * 1 am ( a b ) p 1. Substituting for * in then gives * * px px m x * 2 bm ( a b) p 2.

42 Computing Ordinary Demands - a Cobb-Douglas Example. So we have discovered that the most preferred affordable bundle for a consumer with Cobb-Douglas preferences a b 2 Ux (, x ) x x is * * ( ) ( am bm x 1, x 2 ),. ( a b) p ( a b ) p 1 2

43 Computing Ordinary Demands - a Cobb-Douglas Example. U ( x, x ) x x a b 2 * bm ( a b ) p 2 x x * am 1 ( a b) p 1

44 Rational Constrained Choice When * > 0 and * > 0 and ( *, *) exhausts the budget, and indifference curves have no kinks, the ordinary demands are obtained by solving: (a) p 1 * + p 2 * = y (b) the slopes of the budget constraint, -p 1 /p 2, and of the indifference curve containing ( *, *) are equal at ( *, *).

45 Rational Constrained Choice But what if * = 0? Or if *=0? If either * = 0 or * = 0 then the ordinary demand ( *, *) is at a corner solution to the problem of maximizing utility subject to a budget constraint.

46 Examples of Corner Solutions -- the Perfect Substitutes Case MRS =-1

47 Examples of Corner Solutions -- the Perfect Substitutes Case MRS =-1 Slope = -p 1 /p 2 with p 1 >p 2.

48 Examples of Corner Solutions -- the Perfect Substitutes Case MRS =-1 Slope = -p 1 /p 2 with p 1 >p 2.

49 Examples of Corner Solutions -- the Perfect Substitutes Case x y MRS =-1 * 2 p 2 Slope = -p 1 /p 2 with p 1 >p 2. * 0

50 Examples of Corner Solutions -- the Perfect Substitutes Case MRS =-1 Slope = -p 1 /p 2 with p 1 <p 2. * 0 x * 1 y p 1

51 Examples of Corner Solutions -- the Perfect Substitutes Case So when U(, )= +x 2, the most preferred affordable bundle is ( *, *) where * * y (x 1,x 2 ),0 if p 1 <p 2 p1 and * * y ( x1,x 2 ) 0, if p 1 >p 2. p2

52 Examples of Corner Solutions -- the Perfect Substitutes Case MRS =-1 y p 2 Slope = -p 1 /p 2 with p 1 = p 2. y p 1

53 Examples of Corner Solutions -- the Perfect Substitutes Case y p 2 All the bundles in the constraint are equally the most preferred affordable when p 1 = p 2. y p 1

54 Examples of Corner Solutions -- the Non-Convex Preferences Case

55 Examples of Corner Solutions -- the Non-Convex Preferences Case

56 Examples of Corner Solutions -- the Non-Convex Preferences Case Which is the most preferred affordable bundle?

57 Examples of Corner Solutions -- the Non-Convex Preferences Case The most preferred affordable bundle

58 Examples of Corner Solutions -- the Non-Convex Preferences Case Notice that t the tangency solution is not the most preferred affordable bundle. The most preferred affordable bundle

59 Examples of Kinky Solutions - - the Perfect Complements Case U(, ) = min{a, } = a

60 Examples of Kinky Solutions - - the Perfect Complements Case U(, ) = min{a, } = a MRS = 0

61 Examples of Kinky Solutions - - the Perfect Complements Case U(, ) = min{a, } MRS = - = a MRS = 0

62 Examples of Kinky Solutions - - the Perfect Complements Case U(, ) = min{a, } MRS = - MRS is undefined = a MRS = 0

63 Examples of Kinky Solutions - - the Perfect Complements Case U(, ) = min{a, } = a

64 Examples of Kinky Solutions - - the Perfect Complements Case U(, ) = min{a, } Which is the most preferred affordable bundle? = a

65 Examples of Kinky Solutions - - the Perfect Complements Case U(, ) = min{a, } The most preferred affordable bundle = a

66 Examples of Kinky Solutions - - the Perfect Complements Case U(, ) = min{a, } * = a *

67 Examples of Kinky Solutions - - the Perfect Complements Case U(, ) = min{a, } (a) p 1 *+p 2 *=m * = a *

68 Examples of Kinky Solutions - - the Perfect Complements Case U(, ) = min{a, } (a) p 1 *+p 2 *=m (b) * = a * * = a *

69 Examples of Kinky Solutions - - the Perfect Complements Case (a) p 1 * + p 2 * = m; (b) * = a *.

70 Examples of Kinky Solutions - - the Perfect Complements Case (a) p 1 * + p 2 * = m; (b) * = a *. Substitution from (b) for * in (a) gives p 1 *+p 2 a *=m

71 Examples of Kinky Solutions - - the Perfect Complements Case (a) p 1 * + p 2 * = m; (b) * = a *. Substitution from (b) for * in (a) gives p 1 *+p 2 a *=m which gives * m p ap 1 2

72 Examples of Kinky Solutions - - the Perfect Complements Case (a) p 1 * + p 2 * = m; (b) * = a *. Substitution from (b) for * in (a) gives p 1 *+p 2 a *=m which gives m x * * am 1 ; x 2 p1 ap2 p1 ap2.

73 Examples of Kinky Solutions - - the Perfect Complements Case (a) p 1 * + p 2 * = m; (b) * = a *. Substitution from (b) for * in (a) gives p 1 *+p 2 a *=m which gives m x * * am 1 ; x 2 p1 ap2 p1 ap2 A bundle of 1 commodity 1 unit and a commodity 2 units costs p 1 + ap 2 ; m/(p 1 + ap 2 ) such bundles are affordable..

74 Examples of Kinky Solutions - - the Perfect Complements Case U(, ) = min{a, } * am p ap 1 2 x m ap = a * 1 1 p1 2

Chapter 4: Utility Function

Chapter 4: Utility Function Econ Microeconomic Analysis Chapter : Utility Function Instructor: Hiroki Watanabe Spring Watanabe Econ Utility Function / Introduction Utility Function Indifference Curves Examples Trinity Now We Know

More information

CONSUMPTION BASICS. MICROECONOMICS Principles and Analysis Frank Cowell. July 2017 Frank Cowell: Consumption Basics 1

CONSUMPTION BASICS. MICROECONOMICS Principles and Analysis Frank Cowell. July 2017 Frank Cowell: Consumption Basics 1 CONSUMPTION BASICS MICROECONOMICS Principles and Analysis Frank Cowell July 2017 Frank Cowell: Consumption Basics 1 Overview Consumption: Basics The setting The environment for the basic consumer optimisation

More information

EC422 Mathematical Economics 2

EC422 Mathematical Economics 2 EC422 Mathematical Economics 2 Chaiyuth Punyasavatsut Chaiyuth Punyasavatust 1 Course materials and evaluation Texts: Dixit, A.K ; Sydsaeter et al. Grading: 40,30,30. OK or not. Resources: ftp://econ.tu.ac.th/class/archan/c

More information

3/1/2016. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder

3/1/2016. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder 1 Intermediate Microeconomics W3211 Lecture 5: Choice and Demand Introduction Columbia Universit, Spring 2016 Mark Dean: mark.dean@columbia.edu 2 The Stor So Far. 3 Toda s Aims 4 We have now have had a

More information

Constrained Optimization

Constrained Optimization Constrained Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Constrained Optimization 1 / 46 EC2040 Topic 5 - Constrained Optimization Reading 1 Chapters 12.1-12.3

More information

Name. Final Exam, Economics 210A, December 2012 There are 8 questions. Answer as many as you can... Good luck!

Name. Final Exam, Economics 210A, December 2012 There are 8 questions. Answer as many as you can... Good luck! Name Final Exam, Economics 210A, December 2012 There are 8 questions. Answer as many as you can... Good luck! 1) Let S and T be convex sets in Euclidean n space. Let S + T be the set {x x = s + t for some

More information

1. Show that the rectangle of maximum area that has a given perimeter p is a square.

1. Show that the rectangle of maximum area that has a given perimeter p is a square. Constrained Optimization - Examples - 1 Unit #23 : Goals: Lagrange Multipliers To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition).

More information

MTAEA Convexity and Quasiconvexity

MTAEA Convexity and Quasiconvexity School of Economics, Australian National University February 19, 2010 Convex Combinations and Convex Sets. Definition. Given any finite collection of points x 1,..., x m R n, a point z R n is said to be

More information

Lecture 2 Optimization with equality constraints

Lecture 2 Optimization with equality constraints Lecture 2 Optimization with equality constraints Constrained optimization The idea of constrained optimisation is that the choice of one variable often affects the amount of another variable that can be

More information

Objectives Graph and Analyze Rational Functions Find the Domain, Asymptotes, Holes, and Intercepts of a Rational Function

Objectives Graph and Analyze Rational Functions Find the Domain, Asymptotes, Holes, and Intercepts of a Rational Function SECTIONS 3.5: Rational Functions Objectives Graph and Analyze Rational Functions Find the Domain, Asymptotes, Holes, and Intercepts of a Rational Function I. Rational Functions A rational function is a

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Boolean Algebra. P1. The OR operation is closed for all x, y B x + y B

Boolean Algebra. P1. The OR operation is closed for all x, y B x + y B Boolean Algebra A Boolean Algebra is a mathematical system consisting of a set of elements B, two binary operations OR (+) and AND ( ), a unary operation NOT ('), an equality sign (=) to indicate equivalence

More information

C:\jim\COURSES\8858\code-bk 2012\M2-2.gms Monday, January 09, :34:24 AM Page 1

C:\jim\COURSES\8858\code-bk 2012\M2-2.gms Monday, January 09, :34:24 AM Page 1 C:\jim\COURSES\8858\code-bk 2012\M2-2.gms Monday, January 09, 2012 3:34:24 AM Page 1 $TITLE: M2-2.GMS: consumer choice, modeled as an NLP and a MCP * maximize utility subject to a linear budget constraint

More information

EC5555 Economics Masters Refresher Course in Mathematics September Lecture 6 Optimization with equality constraints Francesco Feri

EC5555 Economics Masters Refresher Course in Mathematics September Lecture 6 Optimization with equality constraints Francesco Feri EC5555 Economics Masters Refresher Course in Mathematics September 2013 Lecture 6 Optimization with equality constraints Francesco Feri Constrained optimization The idea of constrained optimisation is

More information

A CLASS OF INDIRECT UTILITY FUNCTIONS PREDICTING GIFFEN BEHAVIOUR. P.G. MOFFATT, School of Economics, University of East Anglia, UK.

A CLASS OF INDIRECT UTILITY FUNCTIONS PREDICTING GIFFEN BEHAVIOUR. P.G. MOFFATT, School of Economics, University of East Anglia, UK. A CLASS OF INDIRECT UTILITY FUNCTIONS PREDICTING GIFFEN BEHAVIOUR P.G. MOFFATT, School of Economics, University of East Anglia, UK September 2010 Abstract The problem of recognising Giffen behaviour is

More information

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check Thinkwell s Placement Test 5 Answer Key If you answered 7 or more Test 5 questions correctly, we recommend Thinkwell's Algebra. If you answered fewer than 7 Test 5 questions correctly, we recommend Thinkwell's

More information

Open and Closed Sets

Open and Closed Sets Open and Closed Sets Definition: A subset S of a metric space (X, d) is open if it contains an open ball about each of its points i.e., if x S : ɛ > 0 : B(x, ɛ) S. (1) Theorem: (O1) and X are open sets.

More information

Derivatives. Day 8 - Tangents and Linearizations

Derivatives. Day 8 - Tangents and Linearizations Derivatives Day 8 - Tangents and Linearizations Learning Objectives Write an equation for the tangent line to a graph Write an equation for the normal line to a graph Find the locations of horizontal and

More information

5.6 Exercises. Section 5.6 Optimization Find the exact maximum value of the function f(x) = x 2 3x.

5.6 Exercises. Section 5.6 Optimization Find the exact maximum value of the function f(x) = x 2 3x. Section 5.6 Optimization 541 5.6 Exercises 1. Find the exact maximum value of the function fx) = x 2 3x. 2. Find the exact maximum value of the function fx) = x 2 5x 2. 3. Find the vertex of the graph

More information

Algebra Reviews & LP Graphic Solutions

Algebra Reviews & LP Graphic Solutions Algebra Reviews & LP Graphic Solutions Given Constraints to Draw Straight Lines and Identify Feasible Region Draw Straight Lines for Each Constraint: From Equ(1), Set X = 0, Y = 3, a(0, 3); Set Y = 0,

More information

Constrained and Unconstrained Optimization

Constrained and Unconstrained Optimization Constrained and Unconstrained Optimization Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Oct 10th, 2017 C. Hurtado (UIUC - Economics) Numerical

More information

c x y f() f (x) Determine the Determine the Approximate c : Replacin on the AP exam: under-approximation

c x y f() f (x) Determine the Determine the Approximate c : Replacin on the AP exam: under-approximation Tangent Lines and Linear Approximations Students should be able to: Determine the slope of tangent line to a curve at a point Determine the equations of tangent lines and normal lines Approximate a value

More information

Math 1120, Section 4 Calculus Test 2. November 5, 2008 Name. work. 1. (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2.

Math 1120, Section 4 Calculus Test 2. November 5, 2008 Name. work. 1. (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2. November 5, 2008 Name The total number of points available is 139 work Throughout this test, show your 1 (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2 (a) Use the product rule to find f (x)

More information

Notes Lesson 3 4. Positive. Coordinate. lines in the plane can be written in standard form. Horizontal

Notes Lesson 3 4. Positive. Coordinate. lines in the plane can be written in standard form. Horizontal A, B, C are Notes Lesson 3 4 Standard Form of an Equation: Integers Ax + By = C Sometimes it is preferred that A is Positive All lines in the plane can be written in standard form. Oblique Coordinate Horizontal

More information

( ) y #S, where! "[0,1]. In other words, if you connect any two

( ) y #S, where! [0,1]. In other words, if you connect any two IX. ANALYSIS: FUNCTIONS, CORRESPONDENCES, AND FIXED POINTS Compact sets are nice because any function is guaranteed a maximum and a minimum on one. Today we start off by talking about another nice property

More information

Tangent Planes and Linear Approximations

Tangent Planes and Linear Approximations February 21, 2007 Tangent Planes Tangent Planes Let S be a surface with equation z = f (x, y). Tangent Planes Let S be a surface with equation z = f (x, y). Let P(x 0, y 0, z 0 ) be a point on S. Tangent

More information

Competitive Prices as a Ranking System over Networks. Ehud Lehrer and Ady Pauzner Tel Aviv University July 2012

Competitive Prices as a Ranking System over Networks. Ehud Lehrer and Ady Pauzner Tel Aviv University July 2012 Competitive Prices as a Ranking System over Networks Ehud Lehrer and Ady Pauzner Tel Aviv University July 2012 Ranking systems based (only) on network structure Examples: Science Citation Index: Rank of

More information

Let s go through some examples of applying the normal distribution in practice.

Let s go through some examples of applying the normal distribution in practice. Let s go through some examples of applying the normal distribution in practice. 1 We will work with gestation period of domestic cats. Suppose that the length of pregnancy in cats (which we will denote

More information

2. Write the point-slope form of the equation of the line passing through the point ( 2, 4) with a slope of 3. (1 point)

2. Write the point-slope form of the equation of the line passing through the point ( 2, 4) with a slope of 3. (1 point) Parallel and Perpendicular Lines Unit Test David Strong is taking this assessment. Multiple Choice 1. Which construction is illustrated above? a segment congruent to a given segment an angle congruent

More information

Differentiation. The Derivative and the Tangent Line Problem 10/9/2014. Copyright Cengage Learning. All rights reserved.

Differentiation. The Derivative and the Tangent Line Problem 10/9/2014. Copyright Cengage Learning. All rights reserved. Differentiation Copyright Cengage Learning. All rights reserved. The Derivative and the Tangent Line Problem Copyright Cengage Learning. All rights reserved. 1 Objectives Find the slope of the tangent

More information

Math 101 Exam 1 Review

Math 101 Exam 1 Review Math 101 Exam 1 Review Reminder: Exam 1 will be on Friday, October 14, 011 at 8am. It will cover sections 1.1, 1. and 10.1 10.3 Room Assignments: Room Sections Nesbitt 111 9, 14, 3, 4, 8 Nesbitt 15 0,

More information

MATH 19520/51 Class 6

MATH 19520/51 Class 6 MATH 19520/51 Class 6 Minh-Tam Trinh University of Chicago 2017-10-06 1 Review partial derivatives. 2 Review equations of planes. 3 Review tangent lines in single-variable calculus. 4 Tangent planes to

More information

The Fundamentals of Economic Dynamics and Policy Analyses: Learning through Numerical Examples. Part II. Dynamic General Equilibrium

The Fundamentals of Economic Dynamics and Policy Analyses: Learning through Numerical Examples. Part II. Dynamic General Equilibrium The Fundamentals of Economic Dynamics and Policy Analyses: Learning through Numerical Examples. Part II. Dynamic General Equilibrium Hiroshi Futamura The objective of this paper is to provide an introductory

More information

) 2 + (y 2. x 1. y c x2 = y

) 2 + (y 2. x 1. y c x2 = y Graphing Parabola Parabolas A parabola is a set of points P whose distance from a fixed point, called the focus, is equal to the perpendicular distance from P to a line, called the directrix. Since this

More information

Ricardain Model and Comparative Advantage! Chayun Tantivasadakarn! Faculty of Economics, Thammasat University!

Ricardain Model and Comparative Advantage! Chayun Tantivasadakarn! Faculty of Economics, Thammasat University! Ricardain Model and Comparative Advantage! Chayun Tantivasadakarn! Faculty of Economics, Thammasat University! 1 Outline! Assumption Production Possibility Curves Autarky equilibrium Comparative advantage

More information

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS GRADO EN A.D.E. GRADO EN ECONOMÍA GRADO EN F.Y.C. ACADEMIC YEAR 2011-12 INDEX UNIT 1.- AN INTRODUCCTION TO OPTIMIZATION 2 UNIT 2.- NONLINEAR PROGRAMMING

More information

Solution Methods Numerical Algorithms

Solution Methods Numerical Algorithms Solution Methods Numerical Algorithms Evelien van der Hurk DTU Managment Engineering Class Exercises From Last Time 2 DTU Management Engineering 42111: Static and Dynamic Optimization (6) 09/10/2017 Class

More information

Lectures on Challenging Mathematics. Integrated Mathematics 4 Analytic geometry and vector operations. Idea Math. Summer 2018.

Lectures on Challenging Mathematics. Integrated Mathematics 4 Analytic geometry and vector operations. Idea Math. Summer 2018. Lectures on Challenging Mathematics c Copyright 2008 2018 Integrated Mathematics 4 Analytic geometry and vector operations Summer 2018 Zuming Feng Phillips Exeter Academy and IDEA Math zfeng@exeter.edu

More information

Mathematical Themes in Economics, Machine Learning, and Bioinformatics

Mathematical Themes in Economics, Machine Learning, and Bioinformatics Western Kentucky University From the SelectedWorks of Matt Bogard 2010 Mathematical Themes in Economics, Machine Learning, and Bioinformatics Matt Bogard, Western Kentucky University Available at: https://works.bepress.com/matt_bogard/7/

More information

Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis 1 Warm-Up to Ponder

Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis   1 Warm-Up to Ponder Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis http://www.geometer.org/mathcircles/pick.pdf 1 Warm-Up to Ponder 1. Is it possible to draw an equilateral triangle on graph paper so

More information

Pick s Theorem and Lattice Point Geometry

Pick s Theorem and Lattice Point Geometry Pick s Theorem and Lattice Point Geometry 1 Lattice Polygon Area Calculations Lattice points are points with integer coordinates in the x, y-plane. A lattice line segment is a line segment that has 2 distinct

More information

14.4: Tangent Planes and Linear Approximations

14.4: Tangent Planes and Linear Approximations 14.4: Tangent Planes and Linear Approximations Marius Ionescu October 15, 2012 Marius Ionescu () 14.4: Tangent Planes and Linear Approximations October 15, 2012 1 / 13 Tangent Planes Marius Ionescu ()

More information

3.7 Rational Functions. Copyright Cengage Learning. All rights reserved.

3.7 Rational Functions. Copyright Cengage Learning. All rights reserved. 3.7 Rational Functions Copyright Cengage Learning. All rights reserved. Objectives Rational Functions and Asymptotes Transformations of y = 1/x Asymptotes of Rational Functions Graphing Rational Functions

More information

2.4. A LIBRARY OF PARENT FUNCTIONS

2.4. A LIBRARY OF PARENT FUNCTIONS 2.4. A LIBRARY OF PARENT FUNCTIONS 1 What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal function. Identify and graph step and

More information

Graphs and transformations, Mixed Exercise 4

Graphs and transformations, Mixed Exercise 4 Graphs and transformations, Mixed Exercise 4 a y = x (x ) 0 = x (x ) So x = 0 or x = The curve crosses the x-axis at (, 0) and touches it at (0, 0). y = x x = x( x) As a = is negative, the graph has a

More information

Unconstrained Optimization

Unconstrained Optimization Unconstrained Optimization Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 13, 2013 1 Denitions Economics is a science of optima We maximize utility functions, minimize

More information

UNIT 1 SIMILARITY, CONGRUENCE, AND PROOFS Lesson 10: Proving Theorems About Parallelograms Instruction

UNIT 1 SIMILARITY, CONGRUENCE, AND PROOFS Lesson 10: Proving Theorems About Parallelograms Instruction Prerequisite Skills This lesson requires the use of the following skills: applying angle relationships in parallel lines intersected by a transversal applying triangle congruence postulates applying triangle

More information

Multiplying and Dividing Rational Expressions

Multiplying and Dividing Rational Expressions Multiplying and Dividing Rational Expressions Warm Up Simplify each expression. Assume all variables are nonzero. 1. x 5 x 2 3. x 6 x 2 x 7 Factor each expression. 2. y 3 y 3 y 6 x 4 4. y 2 1 y 5 y 3 5.

More information

REF: Resource Elasticity Fairness with Sharing Incentives for Multiprocessors

REF: Resource Elasticity Fairness with Sharing Incentives for Multiprocessors REF: Resource Elasticity Fairness with Sharing Incentives for Multiprocessors Seyed Majid Zahedi Duke University seyedmajid.zahedi@duke.edu Benjamin C. Lee Duke University benjamin.c.lee@duke.edu Abstract

More information

Warm Up Simplify each expression. Assume all variables are nonzero.

Warm Up Simplify each expression. Assume all variables are nonzero. Warm Up Simplify each expression. Assume all variables are nonzero. 1. x 5 x 2 3. x 6 x 2 x 7 x 4 Factor each expression. 2. y 3 y 3 y 6 4. y 2 1 y 5 y 3 5. x 2 2x 8 (x 4)(x + 2) 6. x 2 5x x(x 5) 7. x

More information

What is linear programming (LP)? NATCOR Convex Optimization Linear Programming 1. Solving LP problems: The standard simplex method

What is linear programming (LP)? NATCOR Convex Optimization Linear Programming 1. Solving LP problems: The standard simplex method NATCOR Convex Optimization Linear Programming 1 Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk 14 June 2016 What is linear programming (LP)? The most important model used in

More information

Hossein Arsham Johns Hopkins University, USA M. Bardossy University of Baltimore, USA D. K. Sharma University of Baltimore, USA This chapter provides a critical overview of Linear Programming (LP) from

More information

Writing Equations of Parallel and Perpendicular Lines

Writing Equations of Parallel and Perpendicular Lines Writing Equations of Parallel and Perpendicular Lines The coordinate plane provides a connection between algebra and geometry. Postulates 17 and 18 establish a simple way to find lines that are parallel

More information

Math 2 Spring Unit 5 Bundle Transformational Graphing and Inverse Variation

Math 2 Spring Unit 5 Bundle Transformational Graphing and Inverse Variation Math 2 Spring 2017 Unit 5 Bundle Transformational Graphing and Inverse Variation 1 Contents Transformations of Functions Day 1... 3 Transformations with Functions Day 1 HW... 10 Transformations with Functions

More information

Quadratic Equations. Learning Objectives. Quadratic Function 2. where a, b, and c are real numbers and a 0

Quadratic Equations. Learning Objectives. Quadratic Function 2. where a, b, and c are real numbers and a 0 Quadratic Equations Learning Objectives 1. Graph a quadratic function using transformations. Identify the vertex and axis of symmetry of a quadratic function 3. Graph a quadratic function using its vertex,

More information

AM 221: Advanced Optimization Spring 2016

AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof Yaron Singer Lecture 3 February 1st 1 Overview In our previous lecture we presented fundamental results from convex analysis and in particular the separating

More information

LP Graphic Solution & Solver for LP

LP Graphic Solution & Solver for LP LP Graphic Solution & Excel@ Solver for LP 5X + 3Y = 0 (3) Draw the objective function line on the graph: Any (including the optimal) LP solution has to be part of

More information

Math 115 Second Midterm March 25, 2010

Math 115 Second Midterm March 25, 2010 Math 115 Second Midterm March 25, 2010 Name: Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 9 pages including this cover. There are 8 problems. Note that the

More information

QUADRATIC FUNCTIONS TEST REVIEW NAME: SECTION 1: FACTORING Factor each expression completely. 1. 3x p 2 16p. 3. 6x 2 13x 5 4.

QUADRATIC FUNCTIONS TEST REVIEW NAME: SECTION 1: FACTORING Factor each expression completely. 1. 3x p 2 16p. 3. 6x 2 13x 5 4. QUADRATIC FUNCTIONS TEST REVIEW NAME: SECTION 1: FACTORING Factor each expression completely. 1. 3x 2 48 2. 25p 2 16p 3. 6x 2 13x 5 4. 9x 2 30x + 25 5. 4x 2 + 81 6. 6x 2 14x + 4 7. 4x 2 + 20x 24 8. 4x

More information

1.1 What is Microeconomics?

1.1 What is Microeconomics? 1.1 What is Microeconomics? Economics is the study of allocating limited resources to satisfy unlimited wants. Such a tension implies tradeoffs among competing goals. The analysis can be carried out at

More information

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation:

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation: UNIT 8: SOLVING AND GRAPHING QUADRATICS 8-1 Factoring to Solve Quadratic Equations Zero Product Property For all numbers a & b Solve each equation: If: ab 0, 1. (x + 3)(x 5) = 0 Then one of these is true:

More information

Curve Construction via Local Fitting

Curve Construction via Local Fitting Curve Construction via Local Fitting Suppose we are given points and tangents Q k, and T k (k = 0,..., n), and a fitting tolerance ε. We want to fit this data with the minimum (in some sense) number of

More information

Math Analysis Chapter 1 Notes: Functions and Graphs

Math Analysis Chapter 1 Notes: Functions and Graphs Math Analysis Chapter 1 Notes: Functions and Graphs Day 6: Section 1-1 Graphs Points and Ordered Pairs The Rectangular Coordinate System (aka: The Cartesian coordinate system) Practice: Label each on the

More information

Lecture 6: Interpolation

Lecture 6: Interpolation Lecture 6: Interpolation Fatih Guvenen January 10, 2016 Fatih Guvenen ( ) Lecture 6: Interpolation January 10, 2016 1 / 25 General Idea Suppose you are given a grid (x 1, x 2,..., x n ) and the function

More information

Finding the Maximum or Minimum of a Quadratic Function. f(x) = x 2 + 4x + 2.

Finding the Maximum or Minimum of a Quadratic Function. f(x) = x 2 + 4x + 2. Section 5.6 Optimization 529 5.6 Optimization In this section we will explore the science of optimization. Suppose that you are trying to find a pair of numbers with a fixed sum so that the product of

More information

College Algebra. Fifth Edition. James Stewart Lothar Redlin Saleem Watson

College Algebra. Fifth Edition. James Stewart Lothar Redlin Saleem Watson College Algebra Fifth Edition James Stewart Lothar Redlin Saleem Watson 4 Polynomial and Rational Functions 4.6 Rational Functions Rational Functions A rational function is a function of the form Px (

More information

MATHEMATICS LESSON PLAN

MATHEMATICS LESSON PLAN MATHEMATICS LESSON PLAN 2017-18 CLASS: 8 TH STANDARD Teacher Name : Prasanna.K.Hegde AIMS OF LEARNING MATHEMATICS: 1. To enable the students to solve mathematical in their daily life. 2. To enable the

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

Graphs of Parabolas. typical graph typical graph moved up 4 units. y = x 2 3. typical graph moved down 3 units

Graphs of Parabolas. typical graph typical graph moved up 4 units. y = x 2 3. typical graph moved down 3 units Graphs of Parabolas = x 2 = x 2 + 1 = x 2 + 4 = x 2 3 tpical graph tpical graph moved up 1 unit tpical graph moved up 4 units tpical graph moved down 3 units = x 2 = (x 1) 2 = (x 4) 2 = (x + 3) 2 tpical

More information

Linear Programming Problems: Geometric Solutions

Linear Programming Problems: Geometric Solutions Linear Programming Problems: Geometric s Terminology Linear programming problems: problems where we must find the optimum (minimum or maximum) value of a function, subject to certain restrictions. Objective

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

The big picture and a math review

The big picture and a math review The big picture and a math review Intermediate Micro Topic 1 Mathematical appendix of Varian The big picture Microeconomics Study of decision-making under scarcity Individuals households firms investors

More information

Unconstrained and Constrained Optimization

Unconstrained and Constrained Optimization Unconstrained and Constrained Optimization Agenda General Ideas of Optimization Interpreting the First Derivative Interpreting the Second Derivative Unconstrained Optimization Constrained Optimization

More information

practice: quadratic functions [102 marks]

practice: quadratic functions [102 marks] practice: quadratic functions [102 marks] A quadratic function, f(x) = a x 2 + bx, is represented by the mapping diagram below. 1a. Use the mapping diagram to write down two equations in terms of a and

More information

2. Suppose we drew many tangent lines for this second curve. How do the slopes of these tangent lines change as we look from left to right?

2. Suppose we drew many tangent lines for this second curve. How do the slopes of these tangent lines change as we look from left to right? Do now as a warm up: 1. Suppose we drew many tangent lines for this first curve. How do the slopes of these tangent lines change as we look from left to right? 2. Suppose we drew many tangent lines for

More information

Working with Quadratic Functions in Standard and Vertex Forms

Working with Quadratic Functions in Standard and Vertex Forms Working with Quadratic Functions in Standard and Vertex Forms Example 1: Identify Characteristics of a Quadratic Function in Standard Form f( x) ax bx c, a 0 For the quadratic function f( x) x x 3, identify

More information

Math Analysis Chapter 1 Notes: Functions and Graphs

Math Analysis Chapter 1 Notes: Functions and Graphs Math Analysis Chapter 1 Notes: Functions and Graphs Day 6: Section 1-1 Graphs; Section 1- Basics of Functions and Their Graphs Points and Ordered Pairs The Rectangular Coordinate System (aka: The Cartesian

More information

Chapter - 2: Geometry and Line Generations

Chapter - 2: Geometry and Line Generations Chapter - 2: Geometry and Line Generations In Computer graphics, various application ranges in different areas like entertainment to scientific image processing. In defining this all application mathematics

More information

Index. acronyms, list of, xvii asymmetric digital subscriber line (ADSL), tier structure, 4 asynchronous transfer mode (ATM), 2, 163

Index. acronyms, list of, xvii asymmetric digital subscriber line (ADSL), tier structure, 4 asynchronous transfer mode (ATM), 2, 163 Index p-median problem (PM), 9 p-median problem, applications, 15 p-median problem, complexity results, 14 p-median problem, continuous, 10 p-median problem, directional, 12 p-median problem, discrete,

More information

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016 Simulation Lecture O Optimization: Linear Programming Saeed Bastani April 06 Outline of the course Linear Programming ( lecture) Integer Programming ( lecture) Heuristics and Metaheursitics (3 lectures)

More information

Optimization. A first course on mathematics for economists Problem set 6: Linear programming

Optimization. A first course on mathematics for economists Problem set 6: Linear programming Optimization. A first course on mathematics for economists Problem set 6: Linear programming Xavier Martinez-Giralt Academic Year 2015-2016 6.1 A company produces two goods x and y. The production technology

More information

Chapter 02: Computer Organization. Lesson 02: Functional units and components in a computer organization- Part 1: Processor

Chapter 02: Computer Organization. Lesson 02: Functional units and components in a computer organization- Part 1: Processor Chapter 02: Computer Organization Lesson 02: Functional units and components in a computer organization- Part 1: Processor Objective Understand functional units in Processor Understand execution unit,

More information

Lesson 1: Analyzing Quadratic Functions

Lesson 1: Analyzing Quadratic Functions UNIT QUADRATIC FUNCTIONS AND MODELING Lesson 1: Analyzing Quadratic Functions Common Core State Standards F IF.7 F IF.8 Essential Questions Graph functions expressed symbolically and show key features

More information

Analytical Solid Geometry

Analytical Solid Geometry Analytical Solid Geometry Distance formula(without proof) Division Formula Direction cosines Direction ratios Planes Straight lines Books Higher Engineering Mathematics by B S Grewal Higher Engineering

More information

Shippensburg Math & Computer Day 2013 Individual Math Contest Solutions

Shippensburg Math & Computer Day 2013 Individual Math Contest Solutions Shippensburg Math & Computer Day 2013 Individual Math Contest Solutions 1. Row n of Pascal s Triangle lists all the coefficients of the expansion of (1 + x) n. What is the smallest value of n for which

More information

Chapter 2: Rational. Functions. SHMth1: General Mathematics. Accountancy, Business and Management (ABM. Mr. Migo M. Mendoza

Chapter 2: Rational. Functions. SHMth1: General Mathematics. Accountancy, Business and Management (ABM. Mr. Migo M. Mendoza Chapter 2: Rational Functions SHMth1: General Mathematics Accountancy, Business and Management (ABM Mr. Migo M. Mendoza Chapter 2: Rational Functions Lecture 6: Basic Concepts Lecture 7: Solving Rational

More information

1.1 Graphing Quadratic Functions (p. 2) Definitions Standard form of quad. function Steps for graphing Minimums and maximums

1.1 Graphing Quadratic Functions (p. 2) Definitions Standard form of quad. function Steps for graphing Minimums and maximums 1.1 Graphing Quadratic Functions (p. 2) Definitions Standard form of quad. function Steps for graphing Minimums and maximums Quadratic Function A function of the form y=ax 2 +bx+c where a 0 making a u-shaped

More information

The total cost function is linear. The fixed cost is $3482 and the total cost to produce 20 Trinkets is $4004. Find the total cost function.

The total cost function is linear. The fixed cost is $3482 and the total cost to produce 20 Trinkets is $4004. Find the total cost function. 1. Finding the equation of a line. 1. Find two points (x 1, y 1 ), (x 2, y 2 ) and compute the slope m = y 2 y 1 x 2 x 1. 2. The line equation is y = m(x x 1 ) + y 2 (expand to get in the form y = mx +

More information

Convexity and Optimization

Convexity and Optimization Convexity and Optimization Richard Lusby Department of Management Engineering Technical University of Denmark Today s Material Extrema Convex Function Convex Sets Other Convexity Concepts Unconstrained

More information

Derivatives and Graphs of Functions

Derivatives and Graphs of Functions Derivatives and Graphs of Functions September 8, 2014 2.2 Second Derivatives, Concavity, and Graphs In the previous section, we discussed how our derivatives can be used to obtain useful information about

More information

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Planes, and Differentials ( 11.3-11.4) Feb. 26, 2012 (Sun) Signs of Partial Derivatives on Level Curves Level curves are shown for a function

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

x 2 + 8x - 12 = 0 Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials

x 2 + 8x - 12 = 0 Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials Do Now - Solve using any strategy. If irrational, express in simplest radical form x 2 + 8x - 12 = 0 Review Topic Index 1.

More information

9.1 Linear Inequalities in Two Variables Date: 2. Decide whether to use a solid line or dotted line:

9.1 Linear Inequalities in Two Variables Date: 2. Decide whether to use a solid line or dotted line: 9.1 Linear Inequalities in Two Variables Date: Key Ideas: Example Solve the inequality by graphing 3y 2x 6. steps 1. Rearrange the inequality so it s in mx ± b form. Don t forget to flip the inequality

More information

Sec.4.1 Increasing and Decreasing Functions

Sec.4.1 Increasing and Decreasing Functions U4L1: Sec.4.1 Increasing and Decreasing Functions A function is increasing on a particular interval if for any, then. Ie: As x increases,. A function is decreasing on a particular interval if for any,

More information

9.1: GRAPHING QUADRATICS ALGEBRA 1

9.1: GRAPHING QUADRATICS ALGEBRA 1 9.1: GRAPHING QUADRATICS ALGEBRA 1 OBJECTIVES I will be able to graph quadratics: Given in Standard Form Given in Vertex Form Given in Intercept Form What does the graph of a quadratic look like? https://www.desmos.com/calculator

More information

describes a ray whose endpoint is point A. g. A plane has no thickness. h. Symbols XY and YX describe the same line. i. Symbols AB

describes a ray whose endpoint is point A. g. A plane has no thickness. h. Symbols XY and YX describe the same line. i. Symbols AB RVIW FOR TH GOMTRY MITRM XM. 1. True or False? e prepared to explain your answer. a. efinitions and theorems are very important in mathematics but every mathematical system must contain some undefined

More information

1 MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988: edited March 26, 2013.

1 MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988: edited March 26, 2013. 1 MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988: edited March 26, 2013. TANGENTS Suppose that Apple Computers notices that every time they raise (or lower) the price of a $5,000 Mac II by $100, the number

More information

NATCOR Convex Optimization Linear Programming 1

NATCOR Convex Optimization Linear Programming 1 NATCOR Convex Optimization Linear Programming 1 Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk 5 June 2018 What is linear programming (LP)? The most important model used in

More information

Modeling Demand. Short Course on CGE Modeling, United Nations ESCAP. John Gilbert

Modeling Demand. Short Course on CGE Modeling, United Nations ESCAP. John Gilbert Modeling Short Course on CGE Modeling, United Nations ESCAP Professor Department of Economics and Finance Jon M. Huntsman School of Business Utah State University jgilbert@usu.edu September 24-26, 2014

More information