PRACTICAL CONTROL FLOW INTEGRITY & RANDOMIZATION FOR BINARY EXECUTABLES

Size: px
Start display at page:

Download "PRACTICAL CONTROL FLOW INTEGRITY & RANDOMIZATION FOR BINARY EXECUTABLES"

Transcription

1 PRACTICAL CONTROL FLOW INTEGRITY & RANDOMIZATION FOR BINARY EXECUTABLES Christos Tselas, AM:875 Elisjana Ymeralli, AM:801 Ioanna Ramoutsaki, AM: 812 Vasilis Glabedakis, AM: 2921 cs-457 Department: Computer Science, University of Crete

2 Outline CFI CCFIR Approach Architecture of CCFIR Evaluation Discussion Conclusion

3 CFI Check label on function entry points Attach label to indirect call: l7 From Elias Athanasopoulos lecture about CS457 Introduction to Information Systems Security

4 Control Flow Integrity (CFI): Strong protection against modern control-flow hijacking attacks. However: A perception of complexity and inefficiency, Performance overhead (average/max: 7.7%/ 26.8%) and Compatibility issues limit its adoption.

5 Outline CFI CCFIR Approach Architecture of CCFIR Evaluation Discussion Conclusion

6 CCFIR CCFIR: New practical and realistic protection method against control flow hijacking attacks,which enforce CFI method. Collects all legal targets of indirect control-transfer instructions (call/jump/ret), puts them into a Springboard section in a random order, encodes target restrictions via code alignment and then limits indirect transfers to flow only to them Distinguishes between calls and returns Prevents unauthorized returns into sensitive functions (e.g. system()) Low performance overhead Compatible with unmodified legacy binaries Does not depend on source code or debug information

7 CCFIR Advantages Robust protection: against return-to-libc and ROP On-site randomization: randomize the order of stubs in Springboard at load-time High performance: low overhead 3.6%/8.6% (average/max) Binary only: no source code or debug symbols Progressive deployment: compatibility between protected and unprotected code

8 CCFIR Approach CCFIR improves CFI as it separates: Function pointers Sensitive return addresses Non-sensitive return addresses This happens in the Springboard section layout without requiring separate ID values and checks. This stops the jumps that would be most useful to attackers.

9 Assumptions ASLR and W X (such as DEP) are in use No self-modifying code or dynamically generated code Limited information disclosure vulnerabilities attackers cannot read entire memory regions

10 Protection Targets Control Transfer Method Exceptions Direct call/jmp Conditional jump(jo,jz) Transfer Targets user-defined exceptions handlers Targets are fixed in the code Integrity Protection SafeSEH DEP, W X Indirect jmp/call Ret instructions In memory function pointers On stack return addresses, overflow (ROP, return-to-libc) CCFIR CCFIR

11 Springboard Section A code section is split up into 2 sections, and all indirect control Transfers are only permitted to flow to an Aligned address in the Springboard section

12 Distinguishable Targets Executable Bits Meaning No * * * *** Non-executable section yes 1 * * *** Normal code section yes 0 * *!000 Springboard s invalid entry yes 0 * Springboard s function pointer stub yes Springboard s sensitive return stub yes Springboard s normal return stub q Entries in the Springboard are all aligned. (0-2 bits) q Three kinds of stubs in Springboard q Function pointer stub entries vs. ret-stub entries (3rd bit) q sensitive vs. normal ret-stub (26th bit) q Function pointer stubs: 8-byte aligned/return address stub: 16-byte aligned. q normal ret-stubs cannot return into the middle of sensitve functions q One or two bit testng instructons are sufficient to validate its target

13 Outline CFI CCFIR Approach Architecture of CCFIR Evaluation Discussion Conclusion

14 Architecture of CCFIR Source:

15 Background: Relocation Table

16 BitCover Source:

17 BitRewrite Rewriting of an indirect call and return Rewriting of a direct call and return

18 Compatibility Issues A protected module only allows indirect control transfers whose targets are valid springboard stubs so an indirect control transfer from a protected to an unprotected module will fail If every module is rewritten the separate modules will be compatible however : Rewriting all modules is not always possible

19 Problem 1 An external function that is not exported by any external module can be called(through an object of an unprotected library) The check will fail in the protected module because the function pointer is not in the Springboard

20 Problem 2 When an unprotected module calls a protected function, a false alarm is triggered by the protected function when it tries to return

21 Solution We run BitCover on all libraries which can possibly be loaded by a protected module A hash table is built from these valid code pointers When an error happens because of a failed check, the error handler looks up the hash table as a final chance to find the target Hash table is seldom used

22 Problem 3 Most calls to external functions are done through imported function pointers which are stored in the import address table Imported function pointers will be resolved at load time and the IAT entries are updated We can t statically modify these entries

23 Solution Bit Rewrite generates a read-only and nonexecutable wrapper to replace it

24 Problem 4:Some dynamic libraries are loaded and linked at run-time and their function pointers are obtained by GetProcAddress. The address of a given function can only be made at runtime in this case.

25 Solution We leave stubs in the Springboard which can be filled runtime Wrapper calls original GetProcAddress function and fills the new stub with the address Only the page containing this stub in the Springboard is writable for the time of this update

26

27 Security Enforcement and Randomization For security enforcement two extra layers of protection are added: 1. Sensitive Functions cannot be called via direct calls/ccfir raises alert in different case 2. CCFIR introduces randomization in the order of stubs

28 BitVerify Checks whether a given binary conforms to the following rules: Any executable section whose 27 th bit is zero is in Springboard section Code stubs in Springboard section are all aligned Function pointers are rewritten and redirected to the springboard section All call instructions have been rewritten to make sure the pushed return address points to the Springboard section Dynamic checks have been inserted before all indirect instructions

29 Outline CFI CCFIR Approach Architecture of CCFIR Evaluation Discussion Conclusion

30 Evaluation CCFIR was tested with the SPEC CPU2000 benchmark and some browsers to evaluate overhead and protection. A.Performance CCFIR is used to automatically disassemble and rewrite 26 benchmark binaries Scripts check that the new binaries have the same behavior and output as the original ones Windows 7 32-bit and Inter Core2 Duo CPU 3.00 GHz were used for the experiments

31 Performance Of Static Analysis

32 Performance of Load-Time Randomization Bootstrap code is placed in the protected executable to accomplish load-time randomization Results show that load time randomization is achieved in a very small amount of time It takes about 16 milliseconds for 1M memory movement

33 Performance overhead brought by CCFIR

34 Above observations show that CCFIR is capable of protecting all tested binaries with a reasonable overhead

35 B.Protection effects Randomization entropy Load time randomizations makes it hard to guess the address of a target function Makes a brute-force search infeasible as there are 2^23 possible positions in a 128 MB springboard Protection against real world exploits Some vulnerable modules(e.g xul.dll) were hardened with CCFIR and attacks were prevented

36 Protection against real world exploits

37 Outline CFI CCFIR Approach Architecture of CCFIR Evaluation Discussion Conclusion

38 Discussion A.Possible Attacks To attack CCFIR an attacker may: a) Forge a valid target(the attacker has to use a page which is writable and executable) b) Change memory pages protection attributes(some APIs are disable page protections but CCFIR raises an alert if such functions are called.even if a function makes a page executable the attacker must also penetrate the randomization) c) Jump to valid targets or chain them to launch attacks(attackers abilities for this attack are greatly constrained.call/jmp flow only to valid entry points)

39 Discussion B.Race condition of return address CCFIR checks value of esp and then executes ret in the next instruction Return address is stored in memory in the interim and it can be modified by another thread The time window is so small that the odds of a successful attack is extremely small

40 Outline CFI CCFIR Approach Architecture of CCFIR Evaluation Discussion Conclusion

41 Conclusion CCFIR is used to ensure that indirect control transfers jump only to safe targets It extends and enforces CFI Blocks various attacks including ROP attacks and return-into-libc Solves the performance and compatibility issues of CFI while its runtime overhead remains low

42 Thanks!!!

Practical Control Flow Integrity & Randomization for Binary Executables

Practical Control Flow Integrity & Randomization for Binary Executables 2013 IEEE Symposium on Security and Privacy Practical Control Flow Integrity & Randomization for Binary Executables Chao Zhang 1, Tao Wei 1,2, Zhaofeng Chen 1, Lei Duan 1, László Szekeres 2,3+, Stephen

More information

Prac%cal Control Flow Integrity & Randomiza%on for Binary Executables

Prac%cal Control Flow Integrity & Randomiza%on for Binary Executables Prac%cal Control Flow Integrity & Randomiza%on for Binary Executables Chao Zhang Tao Wei Zhaofeng Chen Lei Duan Peking University Peking University UC Berkeley Peking University Peking University László

More information

CSE 127: Computer Security. Memory Integrity. Kirill Levchenko

CSE 127: Computer Security. Memory Integrity. Kirill Levchenko CSE 127: Computer Security Memory Integrity Kirill Levchenko November 18, 2014 Stack Buffer Overflow Stack buffer overflow: writing past end of a stackallocated buffer Also called stack smashing One of

More information

Binary Stirring: Self-randomizing Instruction Addresses of Legacy x86 Binary Code

Binary Stirring: Self-randomizing Instruction Addresses of Legacy x86 Binary Code University of Crete Computer Science Department CS457 Introduction to Information Systems Security Binary Stirring: Self-randomizing Instruction Addresses of Legacy x86 Binary Code Papadaki Eleni 872 Rigakis

More information

CS 6V Control-Flow Integrity Principles, Implementations, and Applications. Sureshbabu Murugesan

CS 6V Control-Flow Integrity Principles, Implementations, and Applications. Sureshbabu Murugesan CS 6V81-05 Control-Flow Integrity Principles, Implementations, and Applications Sureshbabu Murugesan Department of Computer Science University of Texas at Dallas February 29 th, 2012 Outline 1 Overview

More information

FPGate: The Last Building Block For A Practical CFI Solution

FPGate: The Last Building Block For A Practical CFI Solution FPGate: The Last Building Block For A Practical CFI Solution Tao Wei 1,2, Chao Zhang 2, Zhaofeng Chen 2, Lei Duan 2, Laszlo Szekeres 1, Stephen McCamant 1, Dawn Song 1 1 UC Berkeley, EECS 2 Beijing Key

More information

Out Of Control: Overcoming Control-Flow Integrity

Out Of Control: Overcoming Control-Flow Integrity Out Of Control: Overcoming Control-Flow Integrity Enes Göktaş Vrije Universiteit Amsterdam, The Netherlands Email: enes.goktas@vu.nl Elias Athanasopoulos FORTH-ICS Heraklion, Crete, Greece Email: elathan@ics.forth.gr

More information

Remix: On-demand Live Randomization

Remix: On-demand Live Randomization Remix: On-demand Live Randomization Yue Chen, Zhi Wang, David Whalley, Long Lu* Florida State University, Stony Brook University* Background Buffer Overflow -> Code Injection Attack Background Buffer Overflow

More information

Control Flow Integrity for COTS Binaries Report

Control Flow Integrity for COTS Binaries Report Control Flow Integrity for COTS Binaries Report Zhang and Sekar (2013) January 2, 2015 Partners: Instructor: Evangelos Ladakis Michalis Diamantaris Giorgos Tsirantonakis Dimitris Kiosterakis Elias Athanasopoulos

More information

Module: Return-oriented Programming. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security

Module: Return-oriented Programming. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security CSE543 - Introduction to Computer and Network Security Module: Return-oriented Programming Professor Trent Jaeger 1 Anatomy of Control-Flow Exploits 2 Anatomy of Control-Flow Exploits Two steps in control-flow

More information

Shuffler: Fast and Deployable Continuous Code Re-Randomization

Shuffler: Fast and Deployable Continuous Code Re-Randomization Shuffler: Fast and Deployable Continuous Code Re-Randomization David Williams-King, Graham Gobieski, Kent Williams-King, James P. Blake, Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P. Kemerlis,

More information

Is Exploitation Over? Bypassing Memory Protections in Windows 7

Is Exploitation Over? Bypassing Memory Protections in Windows 7 Is Exploitation Over? Bypassing Memory Protections in Windows 7 Alexander Sotirov alex@sotirov.net About me Exploit development since 1999 Published research into reliable exploitation techniques: Heap

More information

Undermining Information Hiding (And What to do About it)

Undermining Information Hiding (And What to do About it) Undermining Information Hiding (And What to do About it) Enes Göktaş, Robert Gawlik, Benjamin Kollenda, Elias Athanasopoulos, Georgios Portokalidis, Cristiano Giuffrida, Herbert Bos Overview Mitigating

More information

Runtime Defenses against Memory Corruption

Runtime Defenses against Memory Corruption CS 380S Runtime Defenses against Memory Corruption Vitaly Shmatikov slide 1 Reading Assignment Cowan et al. Buffer overflows: Attacks and defenses for the vulnerability of the decade (DISCEX 2000). Avijit,

More information

Inline Reference Monitoring Techniques

Inline Reference Monitoring Techniques Inline Reference Monitoring Techniques In the last lecture, we started talking about Inline Reference Monitors. The idea is that the policy enforcement code runs with the same address space as the code

More information

Confinement (Running Untrusted Programs)

Confinement (Running Untrusted Programs) Confinement (Running Untrusted Programs) Chester Rebeiro Indian Institute of Technology Madras Untrusted Programs Untrusted Application Entire Application untrusted Part of application untrusted Modules

More information

CS 161 Computer Security

CS 161 Computer Security Paxson Spring 2011 CS 161 Computer Security Discussion 1 January 26, 2011 Question 1 Buffer Overflow Mitigations Buffer overflow mitigations generally fall into two categories: (i) eliminating the cause

More information

Module: Return-oriented Programming. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security

Module: Return-oriented Programming. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security CSE543 - Introduction to Computer and Network Security Module: Return-oriented Programming Professor Trent Jaeger 1 1 Anatomy of Control-Flow Exploits Two steps in control-flow exploitation First -- attacker

More information

Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras

Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras Week 08 Lecture 38 Preventing Buffer Overflow Attacks Hello.

More information

SoK: Eternal War in Memory

SoK: Eternal War in Memory SoK: Eternal War in Memory László Szekeres, Mathias Payer, Tao Wei, Dawn Song Presenter: Wajih 11/7/2017 Some slides are taken from original S&P presentation 1 What is SoK paper? Systematization of Knowledge

More information

Inject malicious code Call any library functions Modify the original code

Inject malicious code Call any library functions Modify the original code Inject malicious code Call any library functions Modify the original code 2 Sadeghi, Davi TU Darmstadt 2012 Secure, Trusted, and Trustworthy Computing Chapter 6: Runtime Attacks 2 3 Sadeghi, Davi TU Darmstadt

More information

CS 161 Computer Security

CS 161 Computer Security Paxson Spring 2017 CS 161 Computer Security Discussion 2 Question 1 Software Vulnerabilities (15 min) For the following code, assume an attacker can control the value of basket passed into eval basket.

More information

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices Runtime Integrity Checking for Exploit Mitigation on Embedded Devices Matthias Neugschwandtner IBM Research, Zurich eug@zurich.ibm.com Collin Mulliner Northeastern University, Boston collin@mulliner.org

More information

in memory: an evolution of attacks Mathias Payer Purdue University

in memory: an evolution of attacks Mathias Payer Purdue University in memory: an evolution of attacks Mathias Payer Purdue University Images (c) MGM, WarGames, 1983 Memory attacks: an ongoing war Vulnerability classes according to CVE Memory

More information

Software Vulnerabilities August 31, 2011 / CS261 Computer Security

Software Vulnerabilities August 31, 2011 / CS261 Computer Security Software Vulnerabilities August 31, 2011 / CS261 Computer Security Software Vulnerabilities...1 Review paper discussion...2 Trampolining...2 Heap smashing...2 malloc/free...2 Double freeing...4 Defenses...5

More information

1358 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 7, JULY 2018

1358 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 7, JULY 2018 1358 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 7, JULY 2018 Control Flow Integrity Based on Lightweight Encryption Architecture Pengfei Qiu, Yongqiang

More information

PRESENTED BY: SANTOSH SANGUMANI & SHARAN NARANG

PRESENTED BY: SANTOSH SANGUMANI & SHARAN NARANG PRESENTED BY: SANTOSH SANGUMANI & SHARAN NARANG Table of contents Introduction Binary Disassembly Return Address Defense Prototype Implementation Experimental Results Conclusion Buffer Over2low Attacks

More information

Return-orientated Programming

Return-orientated Programming Return-orientated Programming or The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86) Hovav Shacham, CCS '07 Return-Oriented oriented Programming programming

More information

CSE 127: Computer Security Control Flow Hijacking. Kirill Levchenko

CSE 127: Computer Security Control Flow Hijacking. Kirill Levchenko CSE 127: Computer Security Control Flow Hijacking Kirill Levchenko October 17, 2017 Control Flow Hijacking Defenses Avoid unsafe functions Stack canary Separate control stack Address Space Layout Randomization

More information

CODE reuse attacks (CRAs) emerged as a powerful attack, HCIC: Hardware-assisted Control-flow Integrity Checking

CODE reuse attacks (CRAs) emerged as a powerful attack, HCIC: Hardware-assisted Control-flow Integrity Checking This article has been accepted for publication in a future issue of this journal, but has not been fully edited Content may change prior to final publication Citation information: DOI 101109/JIOT20182866164,

More information

Software Security II: Memory Errors - Attacks & Defenses

Software Security II: Memory Errors - Attacks & Defenses 1 Software Security II: Memory Errors - Attacks & Defenses Chengyu Song Slides modified from Dawn Song 2 Administrivia Lab1 Writeup 3 Buffer overflow Out-of-bound memory writes (mostly sequential) Allow

More information

Sandboxing Untrusted Code: Software-Based Fault Isolation (SFI)

Sandboxing Untrusted Code: Software-Based Fault Isolation (SFI) Sandboxing Untrusted Code: Software-Based Fault Isolation (SFI) Brad Karp UCL Computer Science CS GZ03 / M030 9 th December 2011 Motivation: Vulnerabilities in C Seen dangers of vulnerabilities: injection

More information

Control Flow Integrity

Control Flow Integrity Control Flow Integrity Outline CFI Control Flow Integrity at Source Code Level BinCFI CFI for Binary Executables BinCC Binary Code Continent vfguard CFI Policy for Virtual Function Calls 1 M. Abadi, M.

More information

Countermeasures in Modern Operating Systems. Yves Younan, Vulnerability Research Team (VRT)

Countermeasures in Modern Operating Systems. Yves Younan, Vulnerability Research Team (VRT) Countermeasures in Modern Operating Systems Yves Younan, Vulnerability Research Team (VRT) Introduction Programs in C/C++: memory error vulnerabilities Countermeasures (mitigations): make exploitation

More information

Exploiting and Protecting Dynamic Code Generation

Exploiting and Protecting Dynamic Code Generation Exploiting and Protecting Dynamic Code Generation Chengyu Song Georgia Institute of Technology csong84@gatech.edu Chao Zhang UC Berkeley chaoz@berkeley.edu Tielei Wang, Wenke Lee Georgia Institute of Technology

More information

Applications. Cloud. See voting example (DC Internet voting pilot) Select * from userinfo WHERE id = %%% (variable)

Applications. Cloud. See voting example (DC Internet voting pilot) Select * from userinfo WHERE id = %%% (variable) Software Security Requirements General Methodologies Hardware Firmware Software Protocols Procedure s Applications OS Cloud Attack Trees is one of the inside requirement 1. Attacks 2. Evaluation 3. Mitigation

More information

Stack Vulnerabilities. CS4379/5375 System Security Assurance Dr. Jaime C. Acosta

Stack Vulnerabilities. CS4379/5375 System Security Assurance Dr. Jaime C. Acosta 1 Stack Vulnerabilities CS4379/5375 System Security Assurance Dr. Jaime C. Acosta Part 1 2 3 An Old, yet Still Valid Vulnerability Buffer/Stack Overflow ESP Unknown Data (unused) Unknown Data (unused)

More information

Malware

Malware reloaded Malware Research Team @ @xabiugarte Motivation Design principles / architecture Features Use cases Future work Dynamic Binary Instrumentation Techniques to trace the execution of a binary (or

More information

Reduction of Code Reuse Attacks Using Code Randomization and Recursive Traversal Algorithm

Reduction of Code Reuse Attacks Using Code Randomization and Recursive Traversal Algorithm Reduction of Code Reuse Attacks Using Code Randomization and Recursive Traversal Algorithm K. Krishna priya 1, Dr.P.Murugeswari 2 1 PG scholar, Department of CSE, Sri Vidya College of Engineering & Technology,

More information

Smashing the Buffer. Miroslav Štampar

Smashing the Buffer. Miroslav Štampar Smashing the Buffer Miroslav Štampar (mstampar@zsis.hr) Summary BSidesVienna 2014, Vienna (Austria) November 22nd, 2014 2 Buffer overflow (a.k.a.) Buffer overrun An anomaly where a program, while writing

More information

Vulnerability Analysis I:

Vulnerability Analysis I: Vulnerability Analysis I: Exploit Hardening Made Easy Surgically Returning to Randomized Lib(c) Mitchell Adair September 9 th, 2011 Outline 1 Background 2 Surgically Returning to Randomized lib(c) 3 Exploit

More information

On Compilers, Memory Errors and Control-Flow Integrity

On Compilers, Memory Errors and Control-Flow Integrity On Compilers, Memory Errors and Control-Flow Integrity Advanced Compiler Design SS 2015 Antonio Hüseyin Barresi Zürich, 27.5.2015 CVE-2012-0158 is a buffer overflow Vulnerability in the ListView / TreeView

More information

HideM: Protecting the Contents of Userspace Memory in the Face of Disclosure Vulnerabilities

HideM: Protecting the Contents of Userspace Memory in the Face of Disclosure Vulnerabilities HideM: Protecting the Contents of Userspace Memory in the Face of Disclosure Vulnerabilities Jason Gionta, William Enck, Peng Ning 1 JIT-ROP 2 Two Attack Categories Injection Attacks Code Integrity Data

More information

Defeating Code Reuse Attacks with Minimal Tagged Architecture. Samuel Fingeret. B.S., Massachusetts Institute of Technology (2014)

Defeating Code Reuse Attacks with Minimal Tagged Architecture. Samuel Fingeret. B.S., Massachusetts Institute of Technology (2014) Defeating Code Reuse Attacks with Minimal Tagged Architecture by Samuel Fingeret B.S., Massachusetts Institute of Technology (2014) Submitted to the Department of Electrical Engineering and Computer Science

More information

Bypassing SEHOP. Stéfan Le Berre Damien Cauquil

Bypassing SEHOP. Stéfan Le Berre Damien Cauquil Bypassing SEHOP Stéfan Le Berre s.leberre@sysdream.com Damien Cauquil d.cauquil@sysdream.com Table of contents 0. Introduction...3 1. SEHOP specifications (short version)...3 2. Dealing with SEHOP when

More information

Isomeron: Code Randomization Resilient to (Just-In-Time) Return-Oriented Programming

Isomeron: Code Randomization Resilient to (Just-In-Time) Return-Oriented Programming Isomeron: Code Randomization Resilient to (Just-In-Time) Return-Oriented Programming Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi CASED/Technische Universität Darmstadt, Germany Email: {lucas.davi,christopher.liebchen,

More information

Shellcode Analysis. Chapter 19

Shellcode Analysis. Chapter 19 Shellcode Analysis Chapter 19 What is Shellcode Shellcode a payload of raw executable code, attackers use this code to obtain interactive shell access. A binary chunk of data Can be generally referred

More information

Practical and Efficient Exploit Mitigation for Embedded Devices

Practical and Efficient Exploit Mitigation for Embedded Devices Practical and Efficient Exploit Mitigation for Embedded Devices Matthias Neugschwandtner IBM Research, Zurich Collin Mulliner Northeastern University, Boston Qualcomm Mobile Security Summit 2015 1 Embedded

More information

Outline. Format string attack layout. Null pointer dereference

Outline. Format string attack layout. Null pointer dereference CSci 5271 Introduction to Computer Security Day 5: Low-level defenses and counterattacks Stephen McCamant University of Minnesota, Computer Science & Engineering Null pointer dereference Format string

More information

Robust Shell Code Return Oriented Programming and HeapSpray. Zhiqiang Lin

Robust Shell Code Return Oriented Programming and HeapSpray. Zhiqiang Lin CS 6V81-05: System Security and Malicious Code Analysis Robust Shell Code Return Oriented Programming and HeapSpray Zhiqiang Lin Department of Computer Science University of Texas at Dallas April 16 th,

More information

How to Sandbox IIS Automatically without 0 False Positive and Negative

How to Sandbox IIS Automatically without 0 False Positive and Negative How to Sandbox IIS Automatically without 0 False Positive and Negative Professor Tzi-cker Chiueh Computer Science Department Stony Brook University chiueh@cs.sunysb.edu 1/10/06 Blackhat Federal 2006 1

More information

CNIT 127: Exploit Development. Ch 14: Protection Mechanisms. Updated

CNIT 127: Exploit Development. Ch 14: Protection Mechanisms. Updated CNIT 127: Exploit Development Ch 14: Protection Mechanisms Updated 3-25-17 Topics Non-Executable Stack W^X (Either Writable or Executable Memory) Stack Data Protection Canaries Ideal Stack Layout AAAS:

More information

0x1A Great Papers in Computer Security

0x1A Great Papers in Computer Security CS 380S 0x1A Great Papers in Computer Security Vitaly Shmatikov http://www.cs.utexas.edu/~shmat/courses/cs380s/ slide 1 Reference Monitor Observes execution of the program/process At what level? Possibilities:

More information

String Oriented Programming Exploring Format String Attacks. Mathias Payer

String Oriented Programming Exploring Format String Attacks. Mathias Payer String Oriented Programming Exploring Format String Attacks Mathias Payer Motivation Additional protection mechanisms prevent many existing attack vectors Format string exploits are often overlooked Drawback:

More information

Operating System Architecture. CS3026 Operating Systems Lecture 03

Operating System Architecture. CS3026 Operating Systems Lecture 03 Operating System Architecture CS3026 Operating Systems Lecture 03 The Role of an Operating System Service provider Provide a set of services to system users Resource allocator Exploit the hardware resources

More information

Outline. Heap meta-data. Non-control data overwrite

Outline. Heap meta-data. Non-control data overwrite Outline CSci 5271 Introduction to Computer Security Day 5: Low-level defenses and counterattacks Stephen McCamant University of Minnesota, Computer Science & Engineering Non-control data overwrite Heap

More information

Information Leaks. Kyriakos Kyriakou

Information Leaks. Kyriakos Kyriakou Information Leaks Kyriakos Kyriakou kkyria16@cs.ucy.ac.cy University of Cyprus EPL 682: Advanced Security Topics 1 Just-in-time Code Reuse On the effectiveness of Fine-Grained Address Space Layout Randomization

More information

Advanced Systems Security: Program Diversity

Advanced Systems Security: Program Diversity Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA Advanced Systems Security:

More information

CS 161 Computer Security. Week of January 22, 2018: GDB and x86 assembly

CS 161 Computer Security. Week of January 22, 2018: GDB and x86 assembly Raluca Popa Spring 2018 CS 161 Computer Security Discussion 1 Week of January 22, 2018: GDB and x86 assembly Objective: Studying memory vulnerabilities requires being able to read assembly and step through

More information

Bypassing Browser Memory Protections

Bypassing Browser Memory Protections Bypassing Browser Memory Protections Network Security Instructor: Dr. Shishir Nagaraja September 10, 2011. 1 Introduction to the topic A number of memory protection mechanisms like GS, SafeSEH, DEP and

More information

Lecture 10 Code Reuse

Lecture 10 Code Reuse Lecture 10 Code Reuse Computer and Network Security 4th of December 2017 Computer Science and Engineering Department CSE Dep, ACS, UPB Lecture 10, Code Reuse 1/23 Defense Mechanisms static & dynamic analysis

More information

Isomeron: Code Randomization Resilient to (Just-In-Time) Return-Oriented Programming

Isomeron: Code Randomization Resilient to (Just-In-Time) Return-Oriented Programming Isomeron: Code Randomization Resilient to (Just-In-Time) Return-Oriented Programming Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi CASED/Technische Universität Darmstadt, Germany Email: {lucas.davi,christopher.liebchen,

More information

It s a TRaP: Table Randomization and Protection against Function-Reuse Attacks

It s a TRaP: Table Randomization and Protection against Function-Reuse Attacks It s a TRaP: Table Randomization and Protection against Function-Reuse Attacks Stephen Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen, Lucas Davi, Ahmad-Reza Sadeghi, Thorsten

More information

How secure am I with EMET?

How secure am I with EMET? 4/23/2015 How secure am I with EMET? Benedikt Tröster btroester@ernw.de 23.04.2015 Old Attacks meet Modern Technologies #2 ERNW GmbH IT-Security Service Provider Vendor-independent Based in Heidelberg

More information

A Platform for Secure Static Binary Instrumentation

A Platform for Secure Static Binary Instrumentation A Platform for Secure Static Binary Instrumentation Mingwei Zhang, Rui Qiao, Niranjan Hasabnis and R. Sekar Stony Brook University VEE 2014 Work supported in part by grants from AFOSR, NSF and ONR Motivation

More information

20: Exploits and Containment

20: Exploits and Containment 20: Exploits and Containment Mark Handley Andrea Bittau What is an exploit? Programs contain bugs. These bugs could have security implications (vulnerabilities) An exploit is a tool which exploits a vulnerability

More information

Play with FILE Structure Yet Another Binary Exploitation Technique. Abstract

Play with FILE Structure Yet Another Binary Exploitation Technique. Abstract Play with FILE Structure Yet Another Binary Exploitation Technique An-Jie Yang (Angelboy) angelboy@chroot.org Abstract To fight against prevalent cyber threat, more mechanisms to protect operating systems

More information

Software Security: Buffer Overflow Defenses

Software Security: Buffer Overflow Defenses CSE 484 / CSE M 584: Computer Security and Privacy Software Security: Buffer Overflow Defenses Fall 2017 Franziska (Franzi) Roesner franzi@cs.washington.edu Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin,

More information

Beyond Stack Smashing: Recent Advances in Exploiting. Jonathan Pincus(MSR) and Brandon Baker (MS)

Beyond Stack Smashing: Recent Advances in Exploiting. Jonathan Pincus(MSR) and Brandon Baker (MS) Beyond Stack Smashing: Recent Advances in Exploiting Buffer Overruns Jonathan Pincus(MSR) and Brandon Baker (MS) Buffer Overflows and How they Occur Buffer is a contiguous segment of memory of a fixed

More information

Digital Forensics Lecture 02 PDF Structure

Digital Forensics Lecture 02 PDF Structure Digital Forensics Lecture 02 PDF Structure PDF Files Structure Akbar S. Namin Texas Tech University Spring 2017 PDF Format and Structure Tools used Text editor (e.g., vi) ClamAV antivirus (http://www.clamav.net/lang/en/download/

More information

Memory Safety (cont d) Software Security

Memory Safety (cont d) Software Security Memory Safety (cont d) Software Security CS 161: Computer Security Prof. Raluca Ada Popa January 17, 2016 Some slides credit to David Wagner and Nick Weaver Announcements Discussion sections and office

More information

CS 550 Operating Systems Spring System Call

CS 550 Operating Systems Spring System Call CS 550 Operating Systems Spring 2018 System Call 1 Recap: The need for protection When running user processes, the OS needs to protect itself and other system components For reliability: buggy programs

More information

Software Security: Buffer Overflow Attacks

Software Security: Buffer Overflow Attacks CSE 484 / CSE M 584: Computer Security and Privacy Software Security: Buffer Overflow Attacks (continued) Autumn 2018 Tadayoshi (Yoshi) Kohno yoshi@cs.washington.edu Thanks to Dan Boneh, Dieter Gollmann,

More information

What You See is Not What You Get! Thwarting Just-in-Time ROP with Chameleon

What You See is Not What You Get! Thwarting Just-in-Time ROP with Chameleon What You See is Not What You Get! Thwarting Just-in-Time ROP with Chameleon Ping Chen, Jun Xu, Zhisheng Hu, Xinyu Xing, Minghui Zhu, Bing Mao, Peng Liu College of Information Sciences and Technology, The

More information

Readactor: Practical Code Randomization Resilient to Memory Disclosure

Readactor: Practical Code Randomization Resilient to Memory Disclosure 2015 IEEE Symposium on Security and Privacy Readactor: Practical Code Randomization Resilient to Memory Disclosure Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen, Ahmad-Reza

More information

QPSI. Qualcomm Technologies Countermeasures Update

QPSI. Qualcomm Technologies Countermeasures Update QPSI Qualcomm Technologies Countermeasures Update 1 Introduction Sometime back in 2010 Let s have exploit countermeasures on our products Why? Hard to fix all bugs. We might as well make them more fun

More information

Outline. V Computer Systems Organization II (Honors) (Introductory Operating Systems) Language-based Protection: Solution

Outline. V Computer Systems Organization II (Honors) (Introductory Operating Systems) Language-based Protection: Solution Outline V22.0202-001 Computer Systems Organization II (Honors) (Introductory Operating Systems) Lecture 21 Language-Based Protection Security April 29, 2002 Announcements Lab 6 due back on May 6th Final

More information

Outline. Memory Exploit

Outline. Memory Exploit Outline CS 6V81-05: System Security and Malicious Code Analysis Robust Shell Code Return Oriented Programming and HeapSpray Zhiqiang Lin Department of Computer Science University of Texas at Dallas April

More information

P-TAXI: Enforcing Memory Safety with Programmable Tagged Architecture. Witchakorn Kamolpornwijit

P-TAXI: Enforcing Memory Safety with Programmable Tagged Architecture. Witchakorn Kamolpornwijit P-TAXI: Enforcing Memory Safety with Programmable Tagged Architecture by Witchakorn Kamolpornwijit S.B., Massachusetts Institute of Technology (2015) Submitted to the Department of Electrical Engineering

More information

A program execution is memory safe so long as memory access errors never occur:

A program execution is memory safe so long as memory access errors never occur: A program execution is memory safe so long as memory access errors never occur: Buffer overflows, null pointer dereference, use after free, use of uninitialized memory, illegal free Memory safety categories

More information

Exploit Mitigation - PIE

Exploit Mitigation - PIE Exploit Mitigation - PIE Compass Security Schweiz AG Werkstrasse 20 Postfach 2038 CH-8645 Jona Tel +41 55 214 41 60 Fax +41 55 214 41 61 team@csnc.ch www.csnc.ch ASCII Armor Arbitrary Write Overflow Local

More information

Buffer overflow prevention, and other attacks

Buffer overflow prevention, and other attacks Buffer prevention, and other attacks Comp Sci 3600 Security Outline 1 2 Two approaches to buffer defense Aim to harden programs to resist attacks in new programs Run time Aim to detect and abort attacks

More information

Honours/Master/PhD Thesis Projects Supervised by Dr. Yulei Sui

Honours/Master/PhD Thesis Projects Supervised by Dr. Yulei Sui Honours/Master/PhD Thesis Projects Supervised by Dr. Yulei Sui Projects 1 Information flow analysis for mobile applications 2 2 Machine-learning-guide typestate analysis for UAF vulnerabilities 3 3 Preventing

More information

On the Effectiveness of Type-based Control Flow Integrity

On the Effectiveness of Type-based Control Flow Integrity On the Effectiveness of Type-based Control Flow Integrity Reza Mirzazade farkhani, Saman Jafari, Sajjad Arshad, William Robertson, Engin Kirda, Hamed Okhravi DISTRIBUTION STATEMENT A. Approved for public

More information

TABLE OF CONTENT 1. Abstract: Terminology Introduction Basic Shellcoding Solving The Addressing Problem Hash API

TABLE OF CONTENT 1. Abstract: Terminology Introduction Basic Shellcoding Solving The Addressing Problem Hash API SECURITY PAPER Preparation Date: 11 Dec 2016 Art of Anti Detection 3 Shellcode Alchemy Prepared by: Ege BALCI Penetration Tester ege.balciinvictuseurope.com TABLE OF CONTENT 1. Abstract:...3 2. Terminology...

More information

Abstraction Recovery for Scalable Static Binary Analysis

Abstraction Recovery for Scalable Static Binary Analysis Abstraction Recovery for Scalable Static Binary Analysis Edward J. Schwartz Software Engineering Institute Carnegie Mellon University 1 The Gap Between Binary and Source Code push mov sub movl jmp mov

More information

CSE 509: Computer Security

CSE 509: Computer Security CSE 509: Computer Security Date: 2.16.2009 BUFFER OVERFLOWS: input data Server running a daemon Attacker Code The attacker sends data to the daemon process running at the server side and could thus trigger

More information

Hacking Blind. Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, Dan Boneh. Stanford University

Hacking Blind. Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, Dan Boneh. Stanford University Hacking Blind Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, Dan Boneh Stanford University Hacking 101 Exploit GET /0xDEAD HTTP/1.0 shell $ cat /etc/passwd root:x:0:0:::/bin/sh sorbo:x:6:9:pac:/bin/sh

More information

CMPSC 497 Buffer Overflow Vulnerabilities

CMPSC 497 Buffer Overflow Vulnerabilities Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA CMPSC 497 Buffer Overflow

More information

Exploiting Stack Buffer Overflows Learning how blackhats smash the stack for fun and profit so we can prevent it

Exploiting Stack Buffer Overflows Learning how blackhats smash the stack for fun and profit so we can prevent it Exploiting Stack Buffer Overflows Learning how blackhats smash the stack for fun and profit so we can prevent it 29.11.2012 Secure Software Engineering Andreas Follner 1 Andreas Follner Graduated earlier

More information

Securing Untrusted Code

Securing Untrusted Code Securing Untrusted Code Untrusted Code May be untrustworthy Intended to be benign, but may be full of vulnerabilities These vulnerabilities may be exploited by attackers (or other malicious processes)

More information

Secure Programming Lecture 6: Memory Corruption IV (Countermeasures)

Secure Programming Lecture 6: Memory Corruption IV (Countermeasures) Secure Programming Lecture 6: Memory Corruption IV (Countermeasures) David Aspinall, Informatics @ Edinburgh 2nd February 2016 Outline Announcement Recap Containment and curtailment Tamper detection Memory

More information

Defeat Exploit Mitigation Heap Attacks. compass-security.com 1

Defeat Exploit Mitigation Heap Attacks. compass-security.com 1 Defeat Exploit Mitigation Heap Attacks compass-security.com 1 ASCII Armor Arbitrary Write Overflow Local Vars Exploit Mitigations Stack Canary ASLR PIE Heap Overflows Brute Force Partial RIP Overwrite

More information

Never Let Your Guard Down: Finding Unguarded Gates to Bypass Control Flow Guard with Big Data

Never Let Your Guard Down: Finding Unguarded Gates to Bypass Control Flow Guard with Big Data Never Let Your Guard Down: Finding Unguarded Gates to Bypass Control Flow Guard with Big Data Ke Sun Ya Ou Yanhui Zhao Xiaomin Song Xiaoning Li wildsator@gmail.com perfectno2015@gmail.com wildyz.yky@gmail.com

More information

CSE 227 Computer Security Spring 2010 S f o t ftware D f e enses I Ste St f e an f Sa v Sa a v g a e g

CSE 227 Computer Security Spring 2010 S f o t ftware D f e enses I Ste St f e an f Sa v Sa a v g a e g CSE 227 Computer Security Spring 2010 Software Df Defenses I Stefan Savage Kinds of defenses Eliminate violation of runtime model Better languages, code analysis Don t allow bad input Input validation

More information

CS161 Midterm 1 Review

CS161 Midterm 1 Review CS161 Midterm 1 Review Midterm 1: March 4, 18:3020:00 Same room as lecture Security Analysis and Threat Model Basic security properties CIA Threat model A. We want perfect security B. Security is about

More information

secubt Hacking the Hackers with User Space Virtualization

secubt Hacking the Hackers with User Space Virtualization secubt Hacking the Hackers with User Space Virtualization Mathias Payer Mathias Payer: secubt User Space Virtualization 1 Motivation Virtualizing and encapsulating running programs

More information

CSE 127 Computer Security

CSE 127 Computer Security CSE 127 Computer Security Alex Gantman, Spring 2018, Lecture 4 Low Level Software Security II: Format Strings, Shellcode, & Stack Protection Review Function arguments and local variables are stored on

More information

The Geometry of Innocent Flesh on the Bone

The Geometry of Innocent Flesh on the Bone The Geometry of Innocent Flesh on the Bone Return-into-libc without Function Calls (on the x86) Hovav Shacham hovav@cs.ucsd.edu CCS 07 Technical Background Gadget: a short instructions sequence (e.x. pop

More information

Secure Software Development: Theory and Practice

Secure Software Development: Theory and Practice Secure Software Development: Theory and Practice Suman Jana MW 2:40-3:55pm 415 Schapiro [SCEP] *Some slides are borrowed from Dan Boneh and John Mitchell Software Security is a major problem! Why writing

More information