Network Virtualization and Data Center Networks Introduction

Size: px
Start display at page:

Download "Network Virtualization and Data Center Networks Introduction"

Transcription

1 Network Virtualization and Data Center Networks Introduction Qin Yin Fall Semester 2013 With thanks to Jennifer Rexford 1

2 WHAT IS NETWORKING? 2

3 A Plethora of Protocol Acronyms? BGP ARP HTTP DNS PPP OSPF DHCP TCP UDP SMTP FTP SSH MAC IP RIP NAT CIDR VLAN VTP NNTP POP IMAP RED ECN SACK SNMP TFTP TLS WAP SIP IPX STUN RTP RTSP RTCP PIM IGMP ICMP MPLS LDP HIP LISP LLDP BFD 3

4 A Heap of Header Formats? 4

5 TCP/IP Header Formats in Lego 5

6 A Big Bunch of Boxes? Router Deep Packet Inspection NAT Gateway WAN accelerator Label Switched Router Firewall Intrusion Detection System DNS server Hub Load balancer Base station Bridge DHCP server Scrubber Packet sniffer Route Reflector Switch Packet shaper Proxy Repeater 6

7 A Ton of Tools? arpwatch syslog traceroute nslookup nmap rancid net-snmp dig snort whois ntop ping tcpdump ipconfig iperf trat wget bro NDT dummynet wireshark mrtg 7

8 AN APPLICATION DOMAIN? 8

9 Application Domain for Theory? Algorithms and data structures Control theory Queuing theory Optimization theory Game theory and mechanism design Formal methods Information theory Cryptography Programming languages Graph theory 9

10 Application Domain for Systems? Distributed systems Operating systems Computer architecture Software engineering 10

11 So, Why is Networking Cool? (I) Tangible, relates to reality Can measure/build things (we do love our artifacts ) Can truly effect far-reaching change in the real world Inherently interdisciplinary Well-motivated problems + rigorous solution techniques Interplay with policy, economics, and social science Widely-read papers Many of the most cited papers in CS are in networking Congestion control, distributed hash tables, resource reservation, self-similar traffic, multimedia protocols, Three of top-ten CS authors (Shenker, Jacobson, Floyd) So, somebody is interested in reading this stuff 11

12 So, Why is Networking Cool? (II) Young, relatively immature field Great if you like to make order out of chaos Tremendous intellectual progress is still needed You can help decide what networking really is Defining the problem is a big part of the challenge Recognizing a need, formulating a well-defined problem is at least as important as solving the problem Lots of platforms for building your ideas Testbeds: Emulab, PlanetLab, GENI, Grid systems: Globus Cloud computing platforms: Amazon EC2, Microsoft Azure, Programmability: OpenFlow/NOX, NetFPGA, Click Measurements: RouteViews, traceroute, Internet2, 12

13 ABOUT THIS CLASS 13

14 Goals To gain in-depth understanding of two hot topics in the field of networking research Network virtualization Data center networks To get some practice in the art of reading papers To gain some practical experience through programming assignments It is a big field, and we will focus on just a few topics 14

15 Prerequisite General knowledge of Networking System programming Relevant courses Operating Systems and Networks 15

16 Grade Lectures (English) 10% In-class participation Programming assignments 60% Exam (Oral, 15min, English) 30% 16

17 Lecture Outline (tentative) Introduction, material review Overlay networks (RON, Overcast, SON, i3) Testbeds: PlanetLab, VINI, Emulab, GENI Grid computing: Globus, VNET & Cloud computing: Amazon, Azure VNE research directions, network mapping Data center network evolution (book) Intra-data center communication: VLAN, vswitch, VRF (book) Inter-data center communication: VPN, MPLS, tunneling (book) Data center traffic measurements and characteristics Data center communication: optimization SDN: Openflow, FlowVisor Novel data center network architecture: Google, Facebook, VL2 17

18 Programming assignments Four assignments PA #1: Resource management overlay PA #2: Investigation of different virtualized platforms PA #3: Exploration of buffer bloat PA #4: Service defined networking Computing facilities PlanetLab, Amazon AWS, Microsoft Anzure Language: Python We DON T assume you know Python! 18

19 Course Material Course webpage Text book Data Center Virtualization Fundamentals: Understanding Techniques and Designs for Highly Efficient Data Centers with Cisco Nexus, UCS, MDS, and Beyond (some chapters) Many research articles referenced during the lectures 19

20 Contact With subject prefix: [virnet] Office Tuesday 1-2pm 20

21 HOW TO READ A PAPER S. KESHAV 21

22 You Spend a Lot of Time Reading Reading papers for grad classes (like this one!) Reviewing papers for conferences/journals Giving colleagues feedback on their papers Keeping up with work related to your research Staying broadly educated about the field Transitioning into a new research area Learning how to write better papers So, it is worthwhile to learn to read effectively. 22

23 Keshav s Three-Pass Approach: Step 1 A ten-minute scan to get the general idea Title, abstract, and introduction Section and subsection titles Conclusion Bibliography What to learn: the five C s Category: What type of paper is it? Context: What body of work does it relate to? Correctness: Do the assumptions seem valid? Contributions: What are the main research contributions? Clarity: Is the paper well-written? Decide whether to read further 23

24 Keshav s Three-Pass Approach: Step 2 A more careful, one-hour reading Read with greater care, but ignore details like proofs Figures, diagrams, and illustrations Mark relevant references for later reading Grasp the content of the paper Be able to summarize the main thrust to others Identify whether you can (or should) fully understand Decide whether to Abandon reading the paper in any greater depth Read background material before proceeding further Persevere and continue on to the third pass 24

25 Keshav s Three-Pass Approach: Step 3 Several-hour virtual re-implementation of the work Making the same assumptions, recreate the work Identify the paper s innovations and its failings Identify and challenge every assumption Think how you would present the ideas yourself Jot down ideas for future work When should you read this carefully? Reviewing for a conference or journal Giving colleagues feedback on a paper Understanding a paper closely related to your research Deeply understanding a classic paper in the field 25

26 Other tips for reading papers Read at the right level for what you need Work smarter, not harder Read at the right time of day When you are fresh, not sleepy Read in the right place Where you are not distracted, and have enough time Read actively With a purpose (what is your goal?) With a pen or computer to take notes Read critically Think, question, challenge, critique, 26

27 A BRIEF REVIEW 27

28 One Take on Define Networking Definition and placement of function What to do, and where to do it The division of labor Between the host, network, and management systems Across multiple concurrent protocols and mechanisms 28

29 Host-Network Division of Labor Packet switching Divide messages into a sequence of packets Headers with source and destination address Best-effort delivery Packets may be lost / corrupted /out of order Fixed end points with IP addresses host network host 29

30 Intermediate Transport Layer But, applications want efficient, accurate transfer of data in order, in a timely fashion Let the end hosts handle all of that (An example of the end-to-end argument ) Transport layer can optionally Retransmit lost packets Put packets back in order Detect and handle corrupted packets Avoid overloading the receiver 30

31 Protocol layers: Hosts vs. Routers host HTTP HTTP message host HTTP TCP TCP segment TCP router router IP IP packet IP IP packet IP IP packet IP Ethernet interface Ethernet interface SONET interface SONET interface Ethernet interface Ethernet interface 31

32 Layer Encapsulation Connection ID Source/Destination Link Address 32

33 The Narrow waist of IP FTP HTTP NV TFTP Applications TCP IP UDP Waist UDP TCP NET 1 NET 2 NET n Data Link Physical The Hourglass Model The waist facilitates interoperability 33

34 THE HOST 34

35 The Role of the End Host Network discovery and bootstrapping How does the host join the network? How does the host get an address? Interface to networked applications What interface to higher-level applications? How does the host realize that abstraction? Distributed resource sharing What roles does the host play in network resource allocation decisions? 35

36 Network discovery and bootstrapping Three kinds of identifiers Host Name IP Address MAC Address Who am I? Hard-wired: MAC address Static configuration: IP interface configuration Dynamically learned: IP address configured by DHCP Who are you? Hard-wired: IP address in a URL, or in the code Dynamically looked up: ARP or DNS 36

37 Network discovery and bootstrapping Dynamic Host Configuration Protocol (DHCP) Given a MAC address, assign a unique IP address and tell host other stuff about the Local Area Network To automate the bootstrapping process Address Resolution Protocol (ARP) Given an IP address, provide the MAC address To enable communication within the Local Area Network Domain Name System (DNS) Given a host name, provide the IP address Given an IP address, provide the host name 37

38 Interface to Applications - Sockets Applications communicate using sockets Message socket: unreliable message delivery Stream socket: reliable stream of bytes (like a file) User process socket Operating System User process socket Operating System 38

39 Two Main Transport Protocols User Datagram Protocol (UDP) Just provides demultiplexing and error detection Header fields: port numbers, checksum, and length Low overhead, good for query/response and multimedia Transmission Control Protocol (TCP) Adds support for a stream of bytes abstraction Retransmitting lost or corrupted data Putting out-of-order data back in order Preventing overflow of the receiver buffer Adapting the sending rate to alleviate congestion Higher overhead, good for most stateful applications 39

40 Resource Allocation Challenges Best-effort network easily becomes overloaded No mechanism to block excess calls Instead excess packets are simply dropped Examples Shared Ethernet medium: frame collisions Ethernet switches and IP routers: full packet buffers Quickly leads to congestion collapse Goodput Load congestion collapse Increase in load that results in a decrease in useful work done. 40

41 End Hosts Adjusting to Congestion End hosts adapt their sending rates In response to network conditions Shared Ethernet Carrier sense: wait for link to be idle Collision detection: listen while transmitting Exponential back-off: wait before retransmitting IP network Additive increase, multiplicative decrease Slow start, fast retransmit, etc. 41

42 DATA AND CONTROL PLANE 42

43 Split into Data vs. Control Plane Data plane: packets Handle individual packets as they arrive Forward, drop, or buffer Mark, shape, schedule, Control plane: events Track changes in network topology Compute paths through the network Reserve resources along a path Motivated by need for high-speed packet forwarding 43

44 Adding Management Plane (policies) Making the network run well Traffic reaches the right destination Traffic flows over short, uncongested paths Unwanted traffic is discarded Failure recovery happens quickly Routers don t run out of resources A control loop with the network Measure (sense): topology, traffic, performance, Control (actuate): configure control and data planes 44

45 Data, Control, and Management Planes Data Control Management Time-scale Packet (nsec) Event (10 msec to sec) Tasks Location Forwarding, buffering, filtering, scheduling Line-card hardware Routing, signaling Router software Human (min to hours) Analysis, configuration Humans or scripts 45

46 Data and Control Planes data plane Processor control plane Line card Line card Line card Switching Fabric Line card Line card Line card 46

47 Routing vs. Forwarding Routing: control plane Computing paths the packets will follow Routers talking amongst themselves Individual router creating a forwarding table Forwarding: data plane Directing a data packet to an outgoing link Individual router using a forwarding table 47

48 Routing Protocols I What does the protocol compute? What algorithm does the protocol run? Spanning-tree construction (Ethernet LAN) Link-state routing (OSPF and IS-IS) Distance vector routing (RIP and EIGRP) Path-vector routing (BGP) Source routing (IP source routing but always disabled) End-to-end signaling (MPLS with RSVP) 48

49 Routing Protocols II How do routers learn end-host locations? Learning/flooding Used in Ethernet LANs Injecting into the routing protocol Used in OSPF & IS-IS, especially in enterprise networks Dissemination using a different protocol Internal BGP (ibgp) used in backbone networks Directory server Used in some data centers 49

50 Routing Protocols Conclusion Routing is challenging Distributed computation Challenges with scalability and dynamics Many different solutions for different environments Ethernet LAN: spanning tree, MAC learning, flooding Enterprise: link-state routing, injecting subnet addresses Backbone: link-state routing inside, path-vector routing with neighboring domains, and ibgp dissemination Data centers: many different solutions, still in flux E.g., link-state routing or multiple spanning trees E.g., directory service or injection of subnets into routing protocol An active research area 50

51 Data Plane Streaming algorithms that act on packets Matching on some bits, taking a simple action at behest of control and management plane Wide range of functionality Forwarding Access control Mapping header fields Traffic monitoring Resource allocation: buffering, scheduling, shaping, marking Deep packet inspection 51

52 Packet Forwarding Control plane computes a forwarding table Maps destination address(es) to an output link Handling an incoming packet Match: destination address Switch: Match on Destination MAC IP routers: match on IP prefix Action: direct the packet to the chosen output link Switching fabric Directs packet from input link to output link 52

53 Packet Filtering: Access Control Five tuple for access control lists (ACLs) Source and destination IP addresses TCP/UDP source and destination ports Protocol (e.g., UDP vs. TCP) Can be more sophisticated E.g., block all TCP SYN packets from outside hosts Should arriving packet be allowed in? Departing packet let out? 53

54 Mapping Header Fields Remap IP addresses and TCP/UDP port numbers Addresses: between end-host and NAT addresses Port numbers: to ensure each connection is unique Create table entries as packets arrive Src , Sport 1024, Dest , Dport 80 Map to Src , Sport 1024, Dest , Dport 80 Src , Sport 1024, Dest , Dport 80 Map to Src , Sport 1025, Dest , Dport 80 Challenges When to remove the entries Running services behind a NAT What if both ends of a connection are behind NATs 54

55 Passive Traffic Monitoring Counting the traffic Match based on fields in the packet header and update a counter of #bytes and #packets Examples Link IP prefixes TCP/UDP ports Individual flows Challenges Dest Prefix #Packets #Bytes / / / / Identify traffic aggregates in advance vs. reactively Summarizing other information (e.g., time, TCP flags) Not knowing if you see all packets in a connection 55

56 Buffering Drop-tail FIFO queue Packets served in the order they arrive and dropped if queue is full Random Early Detection (RED) When the buffer is nearly full drop or mark some packets to signal congestion Multiple classes of traffic Separate FIFO queue for each flow or traffic class with a link scheduler to arbitrate between them 56

57 Link Scheduling Strict priority Assign an explicit rank to the queues and serve the highest-priority backlogged queue Weighted fair scheduling Interleave packets from different queues in proportion to weights 50% red, 25% blue, 25% green 57

58 Traffic Shaping Force traffic to conform with a profile To avoid congesting downstream resources To enforce a contract with the customer Leaky-bucket shaping Can send at rate r and intermittently burst Parameters: token rate r and bucket depth d Tokens arrive (rate r) Max # of tokens (d tokens) 58 packets tokens A leaky-bucket shaper for each flow or traffic class

59 Traffic Classification and Marking Mark a packet to influence handling downstream Early Congestion Notification (ECN) flag Type-of-Service (ToS) bits Ways to set the ToS bits End host sets the bits based on the application But, then the network must trust (or bill!) the end host Network sets the bits based on traffic classes But, then the network needs to know how to classify packets Identifying traffic classes Packet classification based on the five tuple Rate limits, with separate mark for out of profile traffic 59

60 Many Boxes, But Similar Functions Router Forward on destination IP address Access control on the five tuple Link scheduling and marking Monitoring traffic Deep packet inspection Switch Forward on destination MAC address Firewall Access control on five tuple (and more) NAT Mapping addresses and port numbers Shaper Classify packets Shape or schedule Packet sniffer Monitoring traffic 60

Computer Networks COSC 6377 Lecture 1

Computer Networks COSC 6377 Lecture 1 Computer Networks COSC 6377 Lecture 1 Spring 2019 January 14, 2019 Course Goals Overview of the basics Principles and Philosophies Read research papers Hands-on experience with networked systems Prerequisites

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks 1 Bassem Mokhtar, Ph.D. Assistant Professor Department of Electrical Engineering Faculty of Engineering Alexandria University 2 Agenda Course Overview Introduction 3 Overview

More information

CS 5114 Network Programming Languages Data Plane. Nate Foster Cornell University Spring 2013

CS 5114 Network Programming Languages Data Plane. Nate Foster Cornell University Spring 2013 CS 5114 Network Programming Languages Data Plane http://www.flickr.com/photos/rofi/2097239111/ Nate Foster Cornell University Spring 2013 Based on lecture notes by Jennifer Rexford and Michael Freedman

More information

Nate Foster Cornell University Spring 2013

Nate Foster Cornell University Spring 2013 CS 6114/5114 Network Programming Languages http://www.flickr.com/photos/rofi/2097239111/! Nate Foster Cornell University Spring 2013 Based on lecture notes by Jennifer Rexford and Michael Freedman Administrivia

More information

Computer Networks COSC 6377 Lecture 1

Computer Networks COSC 6377 Lecture 1 Computer Networks COSC 6377 Lecture 1 Fall 2016 August 22, 2016 Course Goals Overview of the basics Principles and Philosophies Read research papers Hands- on experience with networked systems Prerequisites

More information

Lecture 3: Packet Forwarding

Lecture 3: Packet Forwarding Lecture 3: Packet Forwarding CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Mike Freedman & Amin Vahdat Lecture 3 Overview Paper reviews Packet Forwarding IP Addressing Subnetting/CIDR

More information

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin,

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, ydlin@cs.nctu.edu.tw Chapter 1: Introduction 1. How does Internet scale to billions of hosts? (Describe what structure

More information

Arvind Krishnamurthy

Arvind Krishnamurthy Computer Networks Arvind Krishnamurthy Material based on courses at Stanford, Princeton, and MIT 1 Focus of the course??? 2 1 Focus of the course (2) Three networking topics: Communications Networking

More information

6.829 Computer Networks

6.829 Computer Networks 6.829 Computer Networks Lecture 1: Introduction & Course Overview Mohammad Alizadeh Fall 2018!1 The Internet: An Exciting Time One of the most influential inventions A research experiment that escaped

More information

Review of Important Networking Concepts TCP/IP

Review of Important Networking Concepts TCP/IP Review of Important Networking Concepts / / Protocol Suite Assignment of Protocols to Layers Addressing / Layers in the Example Encapsulation and Demultiplexing Different Layers Views of Networking / Protocol

More information

Networks Fall This exam consists of 10 problems on the following 13 pages.

Networks Fall This exam consists of 10 problems on the following 13 pages. CSCI 466 Final Networks Fall 2011 Name: This exam consists of 10 problems on the following 13 pages. You may use your two- sided hand- written 8 ½ x 11 note sheet during the exam and a calculator. No other

More information

CS 5114 Network Programming Languages Control Plane. Nate Foster Cornell University Spring 2013

CS 5114 Network Programming Languages Control Plane. Nate Foster Cornell University Spring 2013 CS 5 Network Programming Languages Control Plane http://www.flickr.com/photos/rofi/0979/ Nate Foster Cornell University Spring 0 Based on lecture notes by Jennifer Rexford and Michael Freedman Announcements

More information

EECS 589: Advanced Computer Networks" The Internet: An Exciting Time"

EECS 589: Advanced Computer Networks The Internet: An Exciting Time EECS 589: Advanced Computer Networks" Z. Morley Mao Fall 2014 (TuTh 10:30-12:00 in 1690 Beyster) Office hours: TuTh 12:00-1:00PM Email for appointment http://www.eecs.umich.edu/courses/eecs589 The Internet:

More information

Router 6000 R17 Training Programs. Catalog of Course Descriptions

Router 6000 R17 Training Programs. Catalog of Course Descriptions Router 6000 R7 Training Programs Catalog of Course Descriptions Catalog of Course Descriptions INTRODUCTION... 3 IP NETWORKING... 4 IP OVERVIEW & FUNDAMENTALS... 8 IP ROUTING OVERVIEW & FUNDAMENTALS...0

More information

cs144 Midterm Review Fall 2010

cs144 Midterm Review Fall 2010 cs144 Midterm Review Fall 2010 Administrivia Lab 3 in flight. Due: Thursday, Oct 28 Midterm is this Thursday, Oct 21 (during class) Remember Grading Policy: - Exam grade = max (final, (final + midterm)/2)

More information

Lecture 3: Packet Forwarding

Lecture 3: Packet Forwarding Lecture 3: Packet Forwarding CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Nick Feamster & Mike Freedman Lecture 3 Overview Cerf & Kahn discussion The evolution of packet forwarding

More information

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia IP - The Internet Protocol Based on the slides of Dr. Jorg Liebeherr, University of Virginia Orientation IP (Internet Protocol) is a Network Layer Protocol. IP: The waist of the hourglass IP is the waist

More information

ETSF10 Internet Protocols Transport Layer Protocols

ETSF10 Internet Protocols Transport Layer Protocols ETSF10 Internet Protocols Transport Layer Protocols 2012, Part 2, Lecture 2.2 Kaan Bür, Jens Andersson Transport Layer Protocols Special Topic: Quality of Service (QoS) [ed.4 ch.24.1+5-6] [ed.5 ch.30.1-2]

More information

Data Communications and Networks Spring Syllabus and Reading Assignments

Data Communications and Networks Spring Syllabus and Reading Assignments Data Communications and Networks Spring 2018 Syllabus and Assignments Revision Date: January 24, 2018 Course : This course teaches the design and implementation techniques essential for engineering robust

More information

CE 443: Computer Networks

CE 443: Computer Networks CE 443: Computer Networks Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained from other sources, a a reference

More information

COMP211 Chapter 4 Network Layer: The Data Plane

COMP211 Chapter 4 Network Layer: The Data Plane COMP211 Chapter 4 Network Layer: The Data Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross

More information

Lecture 2: Layering & End-to-End

Lecture 2: Layering & End-to-End Lecture 2: Layering & End-to-End CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Mike Freedman & Amin Vahdat Lecture 2 Overview Layering Application interface Transport services Discussion

More information

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview Chapter 4: chapter goals: understand principles behind services service models forwarding versus routing how a router works generalized forwarding instantiation, implementation in the Internet 4- Network

More information

Lecture 8. Network Layer (cont d) Network Layer 1-1

Lecture 8. Network Layer (cont d) Network Layer 1-1 Lecture 8 Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets Network

More information

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane This presentation is adapted from slides produced by Jim Kurose and Keith Ross for their book, Computer Networking:

More information

Introduction to Networking

Introduction to Networking Introduction to Networking Chapters 1 and 2 Outline Computer Network Fundamentals Defining a Network Networks Defined by Geography Networks Defined by Topology Networks Defined by Resource Location OSI

More information

CSC358 Week 6. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

CSC358 Week 6. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved CSC358 Week 6 Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Logistics Assignment 2 posted, due Feb 24, 10pm Next week

More information

CS 640: Introduction to Computer Networks. Today s Lecture. Page 1

CS 640: Introduction to Computer Networks. Today s Lecture. Page 1 CS 640: Introduction to Computer Networks Aditya Akella Lecture 2 Layering, Protocol Stacks, and Standards 1 Today s Lecture Layers and Protocols A bit about s 2 Network Communication: Lots of Functions

More information

5105: BHARATHIDASAN ENGINEERING COLLEGE NATTARMPALLI UNIT I FUNDAMENTALS AND LINK LAYER PART A

5105: BHARATHIDASAN ENGINEERING COLLEGE NATTARMPALLI UNIT I FUNDAMENTALS AND LINK LAYER PART A 5105: BHARATHIDASAN ENGINEERING COLLEGE NATTARMPALLI 635 854. NAME OF THE STAFF : R.ANBARASAN DESIGNATION & DEPARTMENT : AP/CSE SUBJECT CODE : CS 6551 SUBJECT NAME : COMPUTER NETWORKS UNIT I FUNDAMENTALS

More information

THE OSI MODEL. Application Presentation Session Transport Network Data-Link Physical. OSI Model. Chapter 1 Review.

THE OSI MODEL. Application Presentation Session Transport Network Data-Link Physical. OSI Model. Chapter 1 Review. THE OSI MODEL Application Presentation Session Transport Network Data-Link Physical OSI Model Chapter 1 Review By: Allan Johnson Table of Contents Go There! Go There! Go There! Go There! Go There! Go There!

More information

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964 The requirements for a future all-digital-data distributed network which provides common user service for a wide range of users having different requirements is considered. The use of a standard format

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11 1 Midterm exam Midterm this Thursday Close book but one-side 8.5"x11" note is allowed (must

More information

CCNA. Murlisona App. Hiralal Lane, Ravivar Karanja, Near Pethe High-School, ,

CCNA. Murlisona App. Hiralal Lane, Ravivar Karanja, Near Pethe High-School, , CCNA Cisco Certified Network Associate (200-125) Exam DescrIPtion: The Cisco Certified Network Associate (CCNA) Routing and Switching composite exam (200-125) is a 90-minute, 50 60 question assessment

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Chapter 4: Network Layer 4. 1 Introduction 4.2 What s inside a router 4.3 IP: Internet Protocol Datagram format 4.4 Generalized

More information

Cisco Certified Network Associate ( )

Cisco Certified Network Associate ( ) Cisco Certified Network Associate (200-125) Exam Description: The Cisco Certified Network Associate (CCNA) Routing and Switching composite exam (200-125) is a 90-minute, 50 60 question assessment that

More information

Introduction to Networks

Introduction to Networks Introduction to Networks Khaled Harras School of Computer Science Carnegie Mellon University 15-349 Computer and Network Security Fall 2012 Some material borrowed from Hui Zhang and Adrian Perrig 1 Early

More information

COMS3200/7201 Computer Networks 1 (Version 1.0)

COMS3200/7201 Computer Networks 1 (Version 1.0) COMS3200/7201 Computer Networks 1 (Version 1.0) Assignment 3 Due 8pm Monday 29 th May 2017. V1 draft (hopefully final) Note that the assignment has three parts Part A, B & C, each worth 50 marks. Total

More information

"Charting the Course... Interconnecting Cisco Networking Devices Accelerated 3.0 (CCNAX) Course Summary

Charting the Course... Interconnecting Cisco Networking Devices Accelerated 3.0 (CCNAX) Course Summary Description Course Summary The Cisco CCNA curriculum includes a third course, Interconnecting Cisco Networking Devices: Accelerated (CCNAX), consisting of Interconnecting Cisco Networking Devices, Part

More information

CCNA Routing and Switching (NI )

CCNA Routing and Switching (NI ) CCNA Routing and Switching (NI400+401) 150 Hours ` Outline The Cisco Certified Network Associate (CCNA) Routing and Switching composite exam (200-125) is a 90-minute, 50 60 question assessment that is

More information

GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Department of Computer Science and Engineering COURSE PLAN

GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Department of Computer Science and Engineering COURSE PLAN Appendix - C GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Department of Computer Science and Engineering Academic Year: 2016-17 Semester: EVEN COURSE PLAN Semester: VI Subject Code& Name: 10CS64 & Computer

More information

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: IPv6 Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: header format helps speed processing/forwarding header changes to facilitate QoS IPv6 datagram format:

More information

CCNA Exploration Network Fundamentals

CCNA Exploration Network Fundamentals CCNA Exploration 4.0 1. Network Fundamentals The goal of this course is to introduce you to fundamental networking concepts and technologies. These online course materials will assist you in developing

More information

Internet. Organization Addresses TCP/IP Protocol stack Forwarding. 1. Use of a globally unique address space based on Internet Addresses

Internet. Organization Addresses TCP/IP Protocol stack Forwarding. 1. Use of a globally unique address space based on Internet Addresses Internet Organization Addresses TCP/IP Protocol stack Forwarding Jörg Liebeherr, 1998-2003 1 What defines the Internet? 1. Use of a globally unique address space based on Internet Addresses 2. Support

More information

Lecture 3. The Network Layer (cont d) Network Layer 1-1

Lecture 3. The Network Layer (cont d) Network Layer 1-1 Lecture 3 The Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router? Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets

More information

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen Lecture 4 - Network Layer Networks and Security Jacob Aae Mikkelsen IMADA September 23, 2013 September 23, 2013 1 / 67 Transport Layer Goals understand principles behind network layer services: network

More information

CS 204: Advanced Computer Networks

CS 204: Advanced Computer Networks CS 204: Advanced Computer Networks Jiasi Chen Lectures: MWF 12:10-1pm Humanities and Social Sciences 1403 http://www.cs.ucr.edu/~jiasi/teaching/cs204_spring17/ 1 Why Networks? Supports the applications

More information

Virtual Link Layer : Fundamentals of Computer Networks Bill Nace

Virtual Link Layer : Fundamentals of Computer Networks Bill Nace Virtual Link Layer 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia 3 Lectures left HW #2

More information

Lecture-4. TCP/IP-Overview:

Lecture-4. TCP/IP-Overview: Lecture-4 TCP/IP-Overview: The history goes back to ARPANET a research network sponsored by DoD US Govt. It eventually connected hundreds of universities and govt installations, using leased telephone

More information

Fundamentals of IP Networking 2017 Webinar Series Part 4 Building a Segmented IP Network Focused On Performance & Security

Fundamentals of IP Networking 2017 Webinar Series Part 4 Building a Segmented IP Network Focused On Performance & Security Fundamentals of IP Networking 2017 Webinar Series Part 4 Building a Segmented IP Network Focused On Performance & Security Wayne M. Pecena, CPBE, CBNE Texas A&M University Educational Broadcast Services

More information

TestOut Routing and Switching Pro - English 6.0.x COURSE OUTLINE. Modified

TestOut Routing and Switching Pro - English 6.0.x COURSE OUTLINE. Modified TestOut Routing and Switching Pro - English 6.0.x COURSE OUTLINE Modified 2017-07-10 TestOut Routing and Switching Pro Outline- English 6.0.x Videos: 133 (15:42:34) Demonstrations: 78 (7:22:19) Simulations:

More information

Internet protocol stack

Internet protocol stack Internet protocol stack application: supporting network applications FTP, SMTP, HTTP transport: process-process data transfer TCP, UDP network: routing of datagrams from source to destination IP, routing

More information

521262S Computer Networks 2 (fall 2007) Laboratory exercise #4: Multimedia, QoS and testing

521262S Computer Networks 2 (fall 2007) Laboratory exercise #4: Multimedia, QoS and testing 521262S Computer Networks 2 (fall 2007) Laboratory exercise #4: Multimedia, QoS and testing Name Student ID Signature In this exercise we will take a little look at the multimedia and Quality of Service

More information

Router Architecture Overview

Router Architecture Overview Chapter 4: r Introduction (forwarding and routing) r Review of queueing theory r Router design and operation r IP: Internet Protocol m IPv4 (datagram format, addressing, ICMP, NAT) m Ipv6 r Generalized

More information

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet Chapter 2 - Part 1 The TCP/IP Protocol: The Language of the Internet Protocols A protocol is a language or set of rules that two or more computers use to communicate 2 Protocol Analogy: Phone Call Parties

More information

Question Score 1 / 19 2 / 19 3 / 16 4 / 29 5 / 17 Total / 100

Question Score 1 / 19 2 / 19 3 / 16 4 / 29 5 / 17 Total / 100 NAME: Login name: Computer Science 461 Midterm Exam March 10, 2010 3:00-4:20pm This test has five (5) questions. Put your name on every page, and write out and sign the Honor Code pledge before turning

More information

CompSci 356: Computer Network Architectures. Lecture 8: Spanning Tree Algorithm and Basic Internetworking Ch & 3.2. Xiaowei Yang

CompSci 356: Computer Network Architectures. Lecture 8: Spanning Tree Algorithm and Basic Internetworking Ch & 3.2. Xiaowei Yang CompSci 356: Computer Network Architectures Lecture 8: Spanning Tree Algorithm and Basic Internetworking Ch 3.1.5 & 3.2 Xiaowei Yang xwy@cs.duke.edu Review Past lectures Single link networks Point-to-point,

More information

416 Distributed Systems. Networks review; Day 1 of 2 Jan 5 + 8, 2018

416 Distributed Systems. Networks review; Day 1 of 2 Jan 5 + 8, 2018 416 Distributed Systems Networks review; Day 1 of 2 Jan 5 + 8, 2018 1 Distributed Systems vs. Networks Low level (c/go) Run forever Support others Adversarial environment Distributed & concurrent Resources

More information

Announcements. IP Forwarding & Transport Protocols. Goals of Today s Lecture. Are 32-bit Addresses Enough? Summary of IP Addressing.

Announcements. IP Forwarding & Transport Protocols. Goals of Today s Lecture. Are 32-bit Addresses Enough? Summary of IP Addressing. IP Forwarding & Transport Protocols EE 122: Intro to Communication Networks Fall 2007 (WF 4-5:30 in Cory 277) Vern Paxson TAs: Lisa Fowler, Daniel Killebrew & Jorge Ortiz http://inst.eecs.berkeley.edu/~ee122/

More information

IP Packet Switching. Goals of Todayʼs Lecture. Simple Network: Nodes and a Link. Connectivity Links and nodes Circuit switching Packet switching

IP Packet Switching. Goals of Todayʼs Lecture. Simple Network: Nodes and a Link. Connectivity Links and nodes Circuit switching Packet switching IP Packet Switching CS 375: Computer Networks Dr. Thomas C. Bressoud Goals of Todayʼs Lecture Connectivity Links and nodes Circuit switching Packet switching IP service model Best-effort packet delivery

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2017 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński Network Layer The majority of slides presented in

More information

Patrick Stuedi, Qin Yin, Timothy Roscoe Spring Semester 2015

Patrick Stuedi, Qin Yin, Timothy Roscoe Spring Semester 2015 Oriana Riva, Department of Computer Science ETH Zürich Advanced Computer Networks 263-3501-00 Principles Patrick Stuedi, Qin Yin, Timothy Roscoe Spring Semester 2015 Last time Course introduction Principles

More information

( A ) 1. WAP is a (A) protocol (B) hardware (C) software (D) network architecture

( A ) 1. WAP is a (A) protocol (B) hardware (C) software (D) network architecture CS 742 Computer Communication Networks Final Exam - Name: Fall 2003 Part 1: (75 points - 3 points for each problem) ( A ) 1. WAP is a (A) protocol (B) hardware (C) software (D) network architecture ( C

More information

Modern Internet architecture, technology & philosophy Advanced Internet Services Dept. of Computer Science Columbia University

Modern Internet architecture, technology & philosophy Advanced Internet Services Dept. of Computer Science Columbia University 1 Modern Internet architecture, technology & philosophy Advanced Internet Services Dept. of Computer Science Columbia University Henning Schulzrinne Spring 2015 02/09/2015 2 Key concepts The concept of

More information

Modular Policy Framework. Class Maps SECTION 4. Advanced Configuration

Modular Policy Framework. Class Maps SECTION 4. Advanced Configuration [ 59 ] Section 4: We have now covered the basic configuration and delved into AAA services on the ASA. In this section, we cover some of the more advanced features of the ASA that break it away from a

More information

Networks Fall This exam consists of 10 problems on the following 13 pages.

Networks Fall This exam consists of 10 problems on the following 13 pages. CSCI 466 Final Networks Fall 2011 Name: This exam consists of 10 problems on the following 13 pages. You may use your two- sided hand- written 8 ½ x 11 note sheet during the exam and a calculator. No other

More information

Introduction to Routers and LAN Switches

Introduction to Routers and LAN Switches Introduction to Routers and LAN Switches Session 3048_05_2001_c1 2001, Cisco Systems, Inc. All rights reserved. 3 Prerequisites OSI Model Networking Fundamentals 3048_05_2001_c1 2001, Cisco Systems, Inc.

More information

15-744: Computer Networking. L-1 Intro to Computer Networks

15-744: Computer Networking. L-1 Intro to Computer Networks 15-744: Computer Networking L-1 Intro to Computer Networks Outline Administrivia Layering 2 Who s Who? Professor: Srinivasan Seshan http://www.cs.cmu.edu/~srini srini@cmu.edu Office hours: Friday 4:00-5:00

More information

Computer Networks. Fall 2012 (M 6:15-9:00 in Jbarry 201B) Mirela Damian.

Computer Networks. Fall 2012 (M 6:15-9:00 in Jbarry 201B) Mirela Damian. Computer Networks Fall 2012 (M 6:15-9:00 in Jbarry 201B) Mirela Damian http://www.csc.villanova.edu/~mdamian/csc8400.html/ Slides by Rexford @ Princeton & Slides accompanying the Internet Lab Manual, slightly

More information

10 Gigabit Ethernet XM LAN Services Modules

10 Gigabit Ethernet XM LAN Services Modules 10 Gigabit Ethernet XM LAN Services Modules Ixia s 10 Gigabit Ethernet XM LAN Services Modules (LSMs) offer unprecedented scalability, performance, and service testing flexibility as part of the Optixia

More information

Networking: Network layer

Networking: Network layer control Networking: Network layer Comp Sci 3600 Security Outline control 1 2 control 3 4 5 Network layer control Outline control 1 2 control 3 4 5 Network layer purpose: control Role of the network layer

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane Chapter 4: outline 4.1 Overview of Network layer data plane control plane 4.2 What s inside a router 4.3 IP: Internet Protocol datagram format fragmentation IPv4

More information

Lecture 16: Network Layer Overview, Internet Protocol

Lecture 16: Network Layer Overview, Internet Protocol Lecture 16: Network Layer Overview, Internet Protocol COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information

Interconnecting Cisco Networking Devices: Accelerated

Interconnecting Cisco Networking Devices: Accelerated Interconnecting Cisco Networking Devices: Accelerated CCNAX v3.0; 5 days, Instructor-led Course Description The Cisco CCNA curriculum includes a third course, Interconnecting Cisco Networking Devices:

More information

Modular Quality of Service Overview on Cisco IOS XR Software

Modular Quality of Service Overview on Cisco IOS XR Software Modular Quality of Service Overview on Cisco IOS XR Software Quality of Service (QoS) is the technique of prioritizing traffic flows and providing preferential forwarding for higher-priority packets. The

More information

Lecture 19: Network Layer Routing in the Internet

Lecture 19: Network Layer Routing in the Internet Lecture 19: Network Layer Routing in the Internet COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

Table of Contents. Computer Networks and the Internet

Table of Contents. Computer Networks and the Internet Table of Contents Chapter 1 Computer Networks and the Internet 1.1 What Is the Internet? 1.1.1 A Nuts-and-Bolts Description 1.1.2 A Services Description 1.1.3 What Is a Protocol? 1.2 The Network Edge 1.2.1

More information

ETSF05/ETSF10 Internet Protocols Network Layer Protocols

ETSF05/ETSF10 Internet Protocols Network Layer Protocols ETSF05/ETSF10 Internet Protocols Network Layer Protocols 2016 Jens Andersson Agenda Internetworking IPv4/IPv6 Framentation/Reassembly ICMPv4/ICMPv6 IPv4 to IPv6 transition VPN/Ipsec NAT (Network Address

More information

TEXTBOOK MAPPING CISCO COMPANION GUIDES

TEXTBOOK MAPPING CISCO COMPANION GUIDES TestOut Routing and Switching Pro - English 6.0.x TEXTBOOK MAPPING CISCO COMPANION GUIDES Modified 2018-08-20 Objective Mapping: Cisco 100-105 ICND1 Objective to LabSim Section # Exam Objective TestOut

More information

CS 356: Computer Network Architectures. Lecture 14: Switching hardware, IP auxiliary functions, and midterm review. [PD] chapter 3.4.1, 3.2.

CS 356: Computer Network Architectures. Lecture 14: Switching hardware, IP auxiliary functions, and midterm review. [PD] chapter 3.4.1, 3.2. CS 356: Computer Network Architectures Lecture 14: Switching hardware, IP auxiliary functions, and midterm review [PD] chapter 3.4.1, 3.2.7 Xiaowei Yang xwy@cs.duke.edu Switching hardware Software switch

More information

Internet Architecture and Experimentation

Internet Architecture and Experimentation Internet Architecture and Experimentation Today l Internet architecture l Principles l Experimentation A packet switched network Modern comm. networks are packet switched Data broken into packets, packet

More information

Networking and Internetworking 1

Networking and Internetworking 1 Networking and Internetworking 1 To do q q Networks and distributed systems Internet architecture xkcd Internet history Early days ~1960 ARPA sponsored research on computer networking to enable remote

More information

Outline : Computer Networking. Objectives. Who s Who? Administrivia. Layering. L-1 Intro to Computer Networks

Outline : Computer Networking. Objectives. Who s Who? Administrivia. Layering. L-1 Intro to Computer Networks Outline 15-744: Computer Networking Administrivia Layering L-1 Intro to Computer Networks 2 Who s Who? Professor: Srinivasan Seshan http://www.cs.cmu.edu/~srini srini@cmu.edu Office hours: Friday 4:00-5:00

More information

EEC-684/584 Computer Networks

EEC-684/584 Computer Networks EEC-684/584 Computer Networks Lecture 14 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of last lecture Internetworking

More information

Overview Computer Networking What is QoS? Queuing discipline and scheduling. Traffic Enforcement. Integrated services

Overview Computer Networking What is QoS? Queuing discipline and scheduling. Traffic Enforcement. Integrated services Overview 15-441 15-441 Computer Networking 15-641 Lecture 19 Queue Management and Quality of Service Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 What is QoS? Queuing discipline and scheduling

More information

The Network Layer and Routers

The Network Layer and Routers The Network Layer and Routers Daniel Zappala CS 460 Computer Networking Brigham Young University 2/18 Network Layer deliver packets from sending host to receiving host must be on every host, router in

More information

Computer Networks (Unit wise Questions)

Computer Networks (Unit wise Questions) Unit I Unit II 1. What are different transmission modes?[4] 2. Encode the following binary data stream into Manchester and differential Manchester codes 1 1 0 0 1 0 1 0 [8] 3. What are different topologies

More information

CSCI-1680 Network Layer:

CSCI-1680 Network Layer: CSCI-1680 Network Layer: Wrapup Rodrigo Fonseca Based partly on lecture notes by Jennifer Rexford, Rob Sherwood, David Mazières, Phil Levis, John JannoA Administrivia Homework 2 is due tomorrow So we can

More information

IP Generic Training Programs. Catalog of Course Descriptions

IP Generic Training Programs. Catalog of Course Descriptions IP Generic Training Programs Catalog of Course Descriptions Catalog of Course Descriptions INTRODUCTION... 4 BGP OVERVIEW & FUNDAMENTALS... 5 BNG FUNDAMENTALS... 8 BNG OVERVIEW... 10 DHCP-CLIPS FUNDAMENTALS...

More information

CCNA. Course Catalog

CCNA. Course Catalog CCNA Course Catalog 2012-2013 This course is intended for the following audience: Network Administrator Network Engineer Systems Engineer CCNA Exam Candidates Cisco Certified Network Associate (CCNA 640-802)

More information

Hands-On TCP/IP Networking

Hands-On TCP/IP Networking Hands-On Course Description In this Hands-On TCP/IP course, the student will work on a live TCP/IP network, reinforcing the discussed subject material. TCP/IP is the communications protocol suite on which

More information

Scope and Sequence: CCNA Exploration v4.0

Scope and Sequence: CCNA Exploration v4.0 Scope and Sequence: CCNA Exploration v4.0 Last Updated August 30, 2007 The course objectives and outline for the final two CCNA Exploration courses, LAN Switching and Wireless and Accessing the WAN, are

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Introduction (forwarding and routing) Review of queueing theory Routing algorithms Link state, Distance Vector Router design and operation IP: Internet Protocol IPv4 (datagram format, addressing,

More information

Cisco CCNA (ICND1, ICND2) Bootcamp

Cisco CCNA (ICND1, ICND2) Bootcamp Cisco CCNA (ICND1, ICND2) Bootcamp Course Duration: 5 Days Course Overview This five-day course covers the essential topics of ICND1 and ICND2 in an intensive Bootcamp format. It teaches students the skills

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Villanova University Department of Computing Sciences Review What is AIMD? When do we use it? What is the steady state profile

More information

CSCI-GA Operating Systems. Networking. Hubertus Franke

CSCI-GA Operating Systems. Networking. Hubertus Franke CSCI-GA.2250-001 Operating Systems Networking Hubertus Franke frankeh@cs.nyu.edu Source: Ganesh Sittampalam NYU TCP/IP protocol family IP : Internet Protocol UDP : User Datagram Protocol RTP, traceroute

More information

Network Security Fundamentals. Network Security Fundamentals. Roadmap. Security Training Course. Module 2 Network Fundamentals

Network Security Fundamentals. Network Security Fundamentals. Roadmap. Security Training Course. Module 2 Network Fundamentals Network Security Fundamentals Security Training Course Dr. Charles J. Antonelli The University of Michigan 2013 Network Security Fundamentals Module 2 Network Fundamentals Roadmap Network Fundamentals

More information

Date: June 4 th a t 1 4:00 1 7:00

Date: June 4 th a t 1 4:00 1 7:00 Kommunika tionssyste m FK, Examina tion G 5 0 7 Date: June 4 th 0 0 3 a t 4:00 7:00 KTH/IMIT/LCN No help material is allowed. You may answer questions in English or Swedish. Please answer each question

More information

Virtual Link Layer : Fundamentals of Computer Networks Bill Nace

Virtual Link Layer : Fundamentals of Computer Networks Bill Nace Virtual Link Layer 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia 3 Lectures left HW #2

More information