EE/CSCI 451: Parallel and Distributed Computation

Size: px
Start display at page:

Download "EE/CSCI 451: Parallel and Distributed Computation"

Transcription

1 EE/CSCI 451: Parallel and Distributed Computation Lecture #4 1/24/2018 Xuehai Qian University of Southern California 1

2 Announcements PA #1 due on Jan 26 th (Friday) HW #1 out Today, due on Feb 7 th 2

3 From last class Memory Systems Today Outline Latency, bandwidth Impact of cache on program performance Control structure Programming models Shared memory Message passing Interconnection networks (Chap ) 3

4 Control structure of parallel platforms (1) SIMD (single instruction multiple data) instructions 1. for i = 0 to n 1 do 2. C i A i + B(i) control 3. end Lockstep operation PE 0 PE 1 PE n-1 Low synchronization overhead Execute instruction j (on all data) Execute instruction j + 1 Interconnection network Example: Memory GPU execution model 4

5 Control structure of parallel platforms (2) MIMD (multiple instruction multiple data) Interconnection network T 0 Task (serial code) M M M M T 1 T 2 P P P P P 0 P 1 P 2 P 3 T 3 Example mapping: T i P i Processors need not operate in lockstep; each processor can have its own clock Synchronization overhead can be high 5

6 Data exchange (communication) model (1) Shared address space Variables shared across the programs running on various processors Communication between processors: use shared variables Shared address space Logical space P 0 P 1 P 2 P 3 6

7 Data exchange (communication) model (2) Example Read 1000 values and output sum Host: read A i, 0 i < 1000; Flag 0 P 0 1. x 0 2. for i = 0 to x x + A(i) 4. end for 5. If Flag = 0 6. wait 7. output x + y 1. y 0 P 1 2. for i = 500 to y y + A(i) 4. end for 5. Flag 1 Example programming models: Pthreads, OpenMP A is shared; Flag is shared; x, y are shared M Interconnection network P 0 P 1 7

8 Data exchange (communication) model (3) Realizing shared address space Global memory + interconnection network Uniform Memory Access Distribute the shared address space across the processors Memory Interconnect. network Interconnection network M M M M P 0 P n-1 P P P P NUMA (Non-Uniform Memory Access) 8

9 Data exchange (communication) model (4) Message passing model Interconnection All data local to each processor P 1 P 0 P n-1 Var x Var x Interaction via explicit message passing 9

10 Data exchange (communication) model (5) Example: Read 1000 values and output sum P 0 1. Read A i, 0 i < x 0 3. for i = 0 to x x + A(i) 5. end for 6. Receive y from P 1 7. Output x + y message P 1 1. Read A i, 500 i < x 0 3. for i = 500 to x x + A(i) 5. end for 6. Send x to P 0 Two different variables M Interconnection network P 0 P 1 Data is explicitly partitioned, allocated to programs (processors) Explicit communication and synchronization (P 0 has to wait for P 1 in Step 6) Example: MPI (Message Passing Interface) 10

11 Interconnection Networks Data communication among processors and memory Static (direct) networks Dynamic (indirect) networks 0/1 P 0 P 1 P 0 m 0 P 3 P 2 P 1 m 1 Direct connections (fixed) P 2 P 3 m 2 m 3 11

12 Network Topologies Examples: A static network of four processing elements or nodes A dynamic network of four nodes connected via a network of switches to other nodes 12

13 Bus-based Network Memory P 0 P 1 P n 1 Distance: O(1) Low cost Scalable? One transaction at any time Bandwidth = bus width (bits) clock rate (independent of n) Traffic on the bus can be reduced by using a cache in each node 13

14 Crossbar Network P 0 M 0 M 1 M i A switching element P 1 P i p p crossbar: cost ~ O(p 2 ) Number of switches To make a connection from P i to M j (permutation on p items): P i broadcast j switch (i, j) close connection 14

15 Shuffle Network Perfect shuffle (PS) connection A link exists between input i and output j if: j = 2i, 0 i < p 2 p 2i + 1 p, i < p 2 Left rotation (circular left shift) of binary representation of i p = power of = left_rotate(000) 001 = left_rotate(100) 010 = left_rotate(001) = left_rotate(101) = left_rotate(010) 101 = left_rotate(110) 110 = left_rotate(011) = left_rotate(111) 15

16 Shuffle for n = 8 Shuffle Exchange Network ii 2i2 i mod modnn ii (2i i + 1) mod mod nn 2i 2i 2i 2i+ 1 Exchange 0 i n 1 2 n i n i n

17 Example: n=8 3 bit index Shuffle Connection Circular left shift ( 4 1 ) Exchange connection 2i 2i + 1 Complement lsb 1 Diameter: (discussed later) O(log n) k n 2 17

18 Routing in Shuffle Exchange Network (1) Source x = x k 1 x 0 Destination d = d k 1 d 0 y x {current location} i 1 While i k End Shuffle y {Rotate left} Source x Compare LSB of y with bit (k i) of destination (d) If bits are the same, then do not Exchange; else Exchange {Complement y 0 } i i + 1 Total # of hops 2k (2log 2 n) Intermediate nodes Destination d 18

19 Routing in Shuffle Exchange Network (2) Source x2x1x0 ( 000) Destination d2d1d0 (110) k 3 Example: i = 1 Shuffle Compare LSB of y with bit 2 of destination y 0 = d 2? Same as x 2 = d 2? x = 000 d = 110 i = 1 i = 2 i = S 001 E 010 S 011 E 110 S 110 No E Position at the end of first iteration: 001 End of i th iteration: y = x k 1 i x 0 d k 1 d k i 19

20 Routing in Shuffle Exchange Network (3) Source x2x1x0 ( 000) Destination d2d1d0 (110) k 3 20

21 Routing in Shuffle Exchange Network (4) Theorem: In a shuffle exchange network with n = 2 k nodes, data from any source to any destination can be routed in at most 2log 2 n steps. 21

22 Multistage Network (1) Can realize rich set of connecting patterns from input to output Connections 22

23 Multistage Network (2) Connecting Pattern n inputs / n outputs For each i, 0 i < n, output j to be routed to (or data to be routed to) Permutation Given n inputs and n outputs, total # of connection patterns = n! Example 23

24 Multistage Network (3) Cost of a network Control Bit 2 1 MUX 2 2 switch Cost of a network: Total no. of 2 2 switches Note: wiring cost ignored

25 Multistage Network (4) CROSS BAR Switch Control Example implementation using MUX Control Bits 0 nlog n bits 0 Input Ports 0 1 MUX Output Ports 0 1 n 1 n 1 All n! permutations can be realized COST # of logic gates # of 2 1 MUX = O(n [n ]) 2 3 expensive MUX MUX

26 Routing (1) Example of Multistage Network No. of stages delay 3 stages No. of switches n (number of stages) 2 k combinations All 4! Permutations can be realized 27

27 k stage, n - input network Routing (2) k stage, n input network Total number of switches: n k 2 Total number of control bits: n k 2 Control bits specify a configuration of the network» Configuration permutation from input to output Total number of permutations that can be realized: 2 nk/2 If we want all n! permutations to be realized: 2 nk/2 n! k = no. of stages = Ω(log n) 28

28 ... Permutation n Switches 2 Permutation n Switches 2... k stages n switches in each stage 2 Routing (3) Multistage network Switch: delay = k 1 0 Stage 0 Stage k 1 0 n 1... n 2 bit control input 29

29 Omega Network (1) p input, p output log 2 p stages, each stage having p switches Switch: 0 Shuffle Exchange

30 Omega Network (2) Omega network properties Multistage network Cost ~ P log 2 2p (number of switches) Note: in actual hardware design, routing cost dominates! Omega network can do 2 (p 2 log 2p) < p! Permutations All p! Permutations can not be realized Unique (only one) path from any input to any output 31

31 Omega Network (3) Example of Blocking one of the messages (010 to 111 or 110 to 100) is blocked at link AB B A

32 Congestion in a Network (1) Given a routing protocol and data communication pattern (ex. permutation) Congestion = Max. { # of paths passing through the node } Congestion =

33 Congestion in a Network (2) Interconnection Network = Graph + Routing algorithm Assume routing algorithm provides unique (exactly one path) communication from i to j for all i, j For a given permutation: Congestion at node k = # of paths that pass through k Congestion in the network = Max {# of paths that pass through k} over nodes K Max {congestion in the network} all permutations 35

34 Summary Control structure Programming models Shared memory Message passing Interconnection networks Shuffle exchange network Multistage network 36

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #11 2/21/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Outline Midterm 1:

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #5 1/29/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 From last class Outline

More information

Outline. Distributed Shared Memory. Shared Memory. ECE574 Cluster Computing. Dichotomy of Parallel Computing Platforms (Continued)

Outline. Distributed Shared Memory. Shared Memory. ECE574 Cluster Computing. Dichotomy of Parallel Computing Platforms (Continued) Cluster Computing Dichotomy of Parallel Computing Platforms (Continued) Lecturer: Dr Yifeng Zhu Class Review Interconnections Crossbar» Example: myrinet Multistage» Example: Omega network Outline Flynn

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #15 3/7/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 From last class Outline

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #7 2/5/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Outline From last class

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #12 2/21/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Last class Outline

More information

Physical Organization of Parallel Platforms. Alexandre David

Physical Organization of Parallel Platforms. Alexandre David Physical Organization of Parallel Platforms Alexandre David 1.2.05 1 Static vs. Dynamic Networks 13-02-2008 Alexandre David, MVP'08 2 Interconnection networks built using links and switches. How to connect:

More information

Parallel Systems Prof. James L. Frankel Harvard University. Version of 6:50 PM 4-Dec-2018 Copyright 2018, 2017 James L. Frankel. All rights reserved.

Parallel Systems Prof. James L. Frankel Harvard University. Version of 6:50 PM 4-Dec-2018 Copyright 2018, 2017 James L. Frankel. All rights reserved. Parallel Systems Prof. James L. Frankel Harvard University Version of 6:50 PM 4-Dec-2018 Copyright 2018, 2017 James L. Frankel. All rights reserved. Architectures SISD (Single Instruction, Single Data)

More information

4. Networks. in parallel computers. Advances in Computer Architecture

4. Networks. in parallel computers. Advances in Computer Architecture 4. Networks in parallel computers Advances in Computer Architecture System architectures for parallel computers Control organization Single Instruction stream Multiple Data stream (SIMD) All processors

More information

EE/CSCI 451 Midterm 1

EE/CSCI 451 Midterm 1 EE/CSCI 451 Midterm 1 Spring 2018 Instructor: Xuehai Qian Friday: 02/26/2018 Problem # Topic Points Score 1 Definitions 20 2 Memory System Performance 10 3 Cache Performance 10 4 Shared Memory Programming

More information

CSC630/CSC730: Parallel Computing

CSC630/CSC730: Parallel Computing CSC630/CSC730: Parallel Computing Parallel Computing Platforms Chapter 2 (2.4.1 2.4.4) Dr. Joe Zhang PDC-4: Topology 1 Content Parallel computing platforms Logical organization (a programmer s view) Control

More information

Interconnection networks

Interconnection networks Interconnection networks When more than one processor needs to access a memory structure, interconnection networks are needed to route data from processors to memories (concurrent access to a shared memory

More information

INTERCONNECTION NETWORKS LECTURE 4

INTERCONNECTION NETWORKS LECTURE 4 INTERCONNECTION NETWORKS LECTURE 4 DR. SAMMAN H. AMEEN 1 Topology Specifies way switches are wired Affects routing, reliability, throughput, latency, building ease Routing How does a message get from source

More information

Advanced Parallel Architecture. Annalisa Massini /2017

Advanced Parallel Architecture. Annalisa Massini /2017 Advanced Parallel Architecture Annalisa Massini - 2016/2017 References Advanced Computer Architecture and Parallel Processing H. El-Rewini, M. Abd-El-Barr, John Wiley and Sons, 2005 Parallel computing

More information

Computer parallelism Flynn s categories

Computer parallelism Flynn s categories 04 Multi-processors 04.01-04.02 Taxonomy and communication Parallelism Taxonomy Communication alessandro bogliolo isti information science and technology institute 1/9 Computer parallelism Flynn s categories

More information

Interconnection Network

Interconnection Network Interconnection Network Recap: Generic Parallel Architecture A generic modern multiprocessor Network Mem Communication assist (CA) $ P Node: processor(s), memory system, plus communication assist Network

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #8 2/7/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Outline From last class

More information

Overview. Processor organizations Types of parallel machines. Real machines

Overview. Processor organizations Types of parallel machines. Real machines Course Outline Introduction in algorithms and applications Parallel machines and architectures Overview of parallel machines, trends in top-500, clusters, DAS Programming methods, languages, and environments

More information

Introduction to Multiprocessors (Part I) Prof. Cristina Silvano Politecnico di Milano

Introduction to Multiprocessors (Part I) Prof. Cristina Silvano Politecnico di Milano Introduction to Multiprocessors (Part I) Prof. Cristina Silvano Politecnico di Milano Outline Key issues to design multiprocessors Interconnection network Centralized shared-memory architectures Distributed

More information

Dr e v prasad Dt

Dr e v prasad Dt Dr e v prasad Dt. 12.10.17 Contents Characteristics of Multiprocessors Interconnection Structures Inter Processor Arbitration Inter Processor communication and synchronization Cache Coherence Introduction

More information

EE382 Processor Design. Illinois

EE382 Processor Design. Illinois EE382 Processor Design Winter 1998 Chapter 8 Lectures Multiprocessors Part II EE 382 Processor Design Winter 98/99 Michael Flynn 1 Illinois EE 382 Processor Design Winter 98/99 Michael Flynn 2 1 Write-invalidate

More information

Lecture 26: Interconnects. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 26: Interconnects. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 26: Interconnects James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L26 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Housekeeping Your goal today get an overview of parallel

More information

Types of Parallel Computers

Types of Parallel Computers slides1-22 Two principal types: Types of Parallel Computers Shared memory multiprocessor Distributed memory multicomputer slides1-23 Shared Memory Multiprocessor Conventional Computer slides1-24 Consists

More information

CS 770G - Parallel Algorithms in Scientific Computing Parallel Architectures. May 7, 2001 Lecture 2

CS 770G - Parallel Algorithms in Scientific Computing Parallel Architectures. May 7, 2001 Lecture 2 CS 770G - arallel Algorithms in Scientific Computing arallel Architectures May 7, 2001 Lecture 2 References arallel Computer Architecture: A Hardware / Software Approach Culler, Singh, Gupta, Morgan Kaufmann

More information

Chapter 9 Multiprocessors

Chapter 9 Multiprocessors ECE200 Computer Organization Chapter 9 Multiprocessors David H. lbonesi and the University of Rochester Henk Corporaal, TU Eindhoven, Netherlands Jari Nurmi, Tampere University of Technology, Finland University

More information

Interconnection Network. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Interconnection Network. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Interconnection Network Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Topics Taxonomy Metric Topologies Characteristics Cost Performance 2 Interconnection

More information

Parallel Architectures

Parallel Architectures Parallel Architectures Part 1: The rise of parallel machines Intel Core i7 4 CPU cores 2 hardware thread per core (8 cores ) Lab Cluster Intel Xeon 4/10/16/18 CPU cores 2 hardware thread per core (8/20/32/36

More information

Scalability and Classifications

Scalability and Classifications Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static

More information

Interconnection Networks: Topology. Prof. Natalie Enright Jerger

Interconnection Networks: Topology. Prof. Natalie Enright Jerger Interconnection Networks: Topology Prof. Natalie Enright Jerger Topology Overview Definition: determines arrangement of channels and nodes in network Analogous to road map Often first step in network design

More information

Interconnection Network

Interconnection Network Interconnection Network Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3054: Multicore Systems, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu) Topics

More information

EE/CSCI 451 Spring 2018 Homework 2 Assigned: February 7, 2018 Due: February 14, 2018, before 11:59 pm Total Points: 100

EE/CSCI 451 Spring 2018 Homework 2 Assigned: February 7, 2018 Due: February 14, 2018, before 11:59 pm Total Points: 100 EE/CSCI 45 Spring 08 Homework Assigned: February 7, 08 Due: February 4, 08, before :59 pm Total Points: 00 [0 points] Explain the following terms:. Diameter of a network. Bisection width of a network.

More information

Lecture 2 Parallel Programming Platforms

Lecture 2 Parallel Programming Platforms Lecture 2 Parallel Programming Platforms Flynn s Taxonomy In 1966, Michael Flynn classified systems according to numbers of instruction streams and the number of data stream. Data stream Single Multiple

More information

CS Parallel Algorithms in Scientific Computing

CS Parallel Algorithms in Scientific Computing CS 775 - arallel Algorithms in Scientific Computing arallel Architectures January 2, 2004 Lecture 2 References arallel Computer Architecture: A Hardware / Software Approach Culler, Singh, Gupta, Morgan

More information

CSE Introduction to Parallel Processing. Chapter 4. Models of Parallel Processing

CSE Introduction to Parallel Processing. Chapter 4. Models of Parallel Processing Dr Izadi CSE-4533 Introduction to Parallel Processing Chapter 4 Models of Parallel Processing Elaborate on the taxonomy of parallel processing from chapter Introduce abstract models of shared and distributed

More information

Interconnection Networks. Issues for Networks

Interconnection Networks. Issues for Networks Interconnection Networks Communications Among Processors Chris Nevison, Colgate University Issues for Networks Total Bandwidth amount of data which can be moved from somewhere to somewhere per unit time

More information

PARALLEL MEMORY ARCHITECTURE

PARALLEL MEMORY ARCHITECTURE PARALLEL MEMORY ARCHITECTURE Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Homework 6 is due tonight n The last

More information

CS 475: Parallel Programming Introduction

CS 475: Parallel Programming Introduction CS 475: Parallel Programming Introduction Wim Bohm, Sanjay Rajopadhye Colorado State University Fall 2014 Course Organization n Let s make a tour of the course website. n Main pages Home, front page. Syllabus.

More information

CPS 303 High Performance Computing. Wensheng Shen Department of Computational Science SUNY Brockport

CPS 303 High Performance Computing. Wensheng Shen Department of Computational Science SUNY Brockport CPS 303 High Performance Computing Wensheng Shen Department of Computational Science SUNY Brockport Chapter 2: Architecture of Parallel Computers Hardware Software 2.1.1 Flynn s taxonomy Single-instruction

More information

COSC 6374 Parallel Computation. Parallel Computer Architectures

COSC 6374 Parallel Computation. Parallel Computer Architectures OS 6374 Parallel omputation Parallel omputer Architectures Some slides on network topologies based on a similar presentation by Michael Resch, University of Stuttgart Spring 2010 Flynn s Taxonomy SISD:

More information

CS575 Parallel Processing

CS575 Parallel Processing CS575 Parallel Processing Lecture three: Interconnection Networks Wim Bohm, CSU Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 license.

More information

COSC 6374 Parallel Computation. Parallel Computer Architectures

COSC 6374 Parallel Computation. Parallel Computer Architectures OS 6374 Parallel omputation Parallel omputer Architectures Some slides on network topologies based on a similar presentation by Michael Resch, University of Stuttgart Edgar Gabriel Fall 2015 Flynn s Taxonomy

More information

Lecture 7: Parallel Processing

Lecture 7: Parallel Processing Lecture 7: Parallel Processing Introduction and motivation Architecture classification Performance evaluation Interconnection network Zebo Peng, IDA, LiTH 1 Performance Improvement Reduction of instruction

More information

CS4961 Parallel Programming. Lecture 4: Memory Systems and Interconnects 9/1/11. Administrative. Mary Hall September 1, Homework 2, cont.

CS4961 Parallel Programming. Lecture 4: Memory Systems and Interconnects 9/1/11. Administrative. Mary Hall September 1, Homework 2, cont. CS4961 Parallel Programming Lecture 4: Memory Systems and Interconnects Administrative Nikhil office hours: - Monday, 2-3PM - Lab hours on Tuesday afternoons during programming assignments First homework

More information

Parallel Architectures

Parallel Architectures Parallel Architectures CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Parallel Architectures Spring 2018 1 / 36 Outline 1 Parallel Computer Classification Flynn s

More information

Parallel Architecture. Sathish Vadhiyar

Parallel Architecture. Sathish Vadhiyar Parallel Architecture Sathish Vadhiyar Motivations of Parallel Computing Faster execution times From days or months to hours or seconds E.g., climate modelling, bioinformatics Large amount of data dictate

More information

Design of Parallel Algorithms. The Architecture of a Parallel Computer

Design of Parallel Algorithms. The Architecture of a Parallel Computer + Design of Parallel Algorithms The Architecture of a Parallel Computer + Trends in Microprocessor Architectures n Microprocessor clock speeds are no longer increasing and have reached a limit of 3-4 Ghz

More information

Parallel Computing. Hwansoo Han (SKKU)

Parallel Computing. Hwansoo Han (SKKU) Parallel Computing Hwansoo Han (SKKU) Unicore Limitations Performance scaling stopped due to Power consumption Wire delay DRAM latency Limitation in ILP 10000 SPEC CINT2000 2 cores/chip Xeon 3.0GHz Core2duo

More information

SMP and ccnuma Multiprocessor Systems. Sharing of Resources in Parallel and Distributed Computing Systems

SMP and ccnuma Multiprocessor Systems. Sharing of Resources in Parallel and Distributed Computing Systems Reference Papers on SMP/NUMA Systems: EE 657, Lecture 5 September 14, 2007 SMP and ccnuma Multiprocessor Systems Professor Kai Hwang USC Internet and Grid Computing Laboratory Email: kaihwang@usc.edu [1]

More information

Multiprocessor Interconnection Networks

Multiprocessor Interconnection Networks Multiprocessor Interconnection Networks Todd C. Mowry CS 740 November 19, 1998 Topics Network design space Contention Active messages Networks Design Options: Topology Routing Direct vs. Indirect Physical

More information

Network Properties, Scalability and Requirements For Parallel Processing. Communication assist (CA)

Network Properties, Scalability and Requirements For Parallel Processing. Communication assist (CA) Network Properties, Scalability and Requirements For Parallel Processing Scalable Parallel Performance: Continue to achieve good parallel performance "speedup"as the sizes of the system/problem are increased.

More information

Lecture 3: Topology - II

Lecture 3: Topology - II ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017 http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/ Lecture 3: Topology - II Tushar Krishna Assistant Professor School of Electrical and

More information

Introduction to Parallel and Distributed Systems - INZ0277Wcl 5 ECTS. Teacher: Jan Kwiatkowski, Office 201/15, D-2

Introduction to Parallel and Distributed Systems - INZ0277Wcl 5 ECTS. Teacher: Jan Kwiatkowski, Office 201/15, D-2 Introduction to Parallel and Distributed Systems - INZ0277Wcl 5 ECTS Teacher: Jan Kwiatkowski, Office 201/15, D-2 COMMUNICATION For questions, email to jan.kwiatkowski@pwr.edu.pl with 'Subject=your name.

More information

TDT Appendix E Interconnection Networks

TDT Appendix E Interconnection Networks TDT 4260 Appendix E Interconnection Networks Review Advantages of a snooping coherency protocol? Disadvantages of a snooping coherency protocol? Advantages of a directory coherency protocol? Disadvantages

More information

Module 17: "Interconnection Networks" Lecture 37: "Introduction to Routers" Interconnection Networks. Fundamentals. Latency and bandwidth

Module 17: Interconnection Networks Lecture 37: Introduction to Routers Interconnection Networks. Fundamentals. Latency and bandwidth Interconnection Networks Fundamentals Latency and bandwidth Router architecture Coherence protocol and routing [From Chapter 10 of Culler, Singh, Gupta] file:///e /parallel_com_arch/lecture37/37_1.htm[6/13/2012

More information

Parallel Architectures

Parallel Architectures Parallel Architectures Instructor: Tsung-Che Chiang tcchiang@ieee.org Department of Science and Information Engineering National Taiwan Normal University Introduction In the roughly three decades between

More information

Recall: The Routing problem: Local decisions. Recall: Multidimensional Meshes and Tori. Properties of Routing Algorithms

Recall: The Routing problem: Local decisions. Recall: Multidimensional Meshes and Tori. Properties of Routing Algorithms CS252 Graduate Computer Architecture Lecture 16 Multiprocessor Networks (con t) March 14 th, 212 John Kubiatowicz Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~kubitron/cs252

More information

Lecture 7: Parallel Processing

Lecture 7: Parallel Processing Lecture 7: Parallel Processing Introduction and motivation Architecture classification Performance evaluation Interconnection network Zebo Peng, IDA, LiTH 1 Performance Improvement Reduction of instruction

More information

Chapter 2: Parallel Programming Platforms

Chapter 2: Parallel Programming Platforms Chapter 2: Parallel Programming Platforms Introduction to Parallel Computing, Second Edition By Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar Contents Implicit Parallelism: Trends in Microprocessor

More information

Chapter 11. Introduction to Multiprocessors

Chapter 11. Introduction to Multiprocessors Chapter 11 Introduction to Multiprocessors 11.1 Introduction A multiple processor system consists of two or more processors that are connected in a manner that allows them to share the simultaneous (parallel)

More information

Parallel Algorithms. COMP 215 Lecture 22

Parallel Algorithms. COMP 215 Lecture 22 Parallel Algorithms COMP 215 Lecture 22 Terminology SIMD single instruction, multiple data stream. Each processor must perform exactly the same operation at each time step, only the data differs. MIMD

More information

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E)

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) Lecture 12: Interconnection Networks Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) 1 Topologies Internet topologies are not very regular they grew

More information

SHARED MEMORY VS DISTRIBUTED MEMORY

SHARED MEMORY VS DISTRIBUTED MEMORY OVERVIEW Important Processor Organizations 3 SHARED MEMORY VS DISTRIBUTED MEMORY Classical parallel algorithms were discussed using the shared memory paradigm. In shared memory parallel platform processors

More information

Multiprocessors - Flynn s Taxonomy (1966)

Multiprocessors - Flynn s Taxonomy (1966) Multiprocessors - Flynn s Taxonomy (1966) Single Instruction stream, Single Data stream (SISD) Conventional uniprocessor Although ILP is exploited Single Program Counter -> Single Instruction stream The

More information

Network Properties, Scalability and Requirements For Parallel Processing. Communication assist (CA)

Network Properties, Scalability and Requirements For Parallel Processing. Communication assist (CA) Network Properties, Scalability and Requirements For Parallel Processing Scalable Parallel Performance: Continue to achieve good parallel performance "speedup"as the sizes of the system/problem are increased.

More information

Chap. 4 Multiprocessors and Thread-Level Parallelism

Chap. 4 Multiprocessors and Thread-Level Parallelism Chap. 4 Multiprocessors and Thread-Level Parallelism Uniprocessor performance Performance (vs. VAX-11/780) 10000 1000 100 10 From Hennessy and Patterson, Computer Architecture: A Quantitative Approach,

More information

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems.

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. Cluster Networks Introduction Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. As usual, the driver is performance

More information

Interconnection Networks

Interconnection Networks Lecture 17: Interconnection Networks Parallel Computer Architecture and Programming A comment on web site comments It is okay to make a comment on a slide/topic that has already been commented on. In fact

More information

Non-Uniform Memory Access (NUMA) Architecture and Multicomputers

Non-Uniform Memory Access (NUMA) Architecture and Multicomputers Non-Uniform Memory Access (NUMA) Architecture and Multicomputers Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico February 29, 2016 CPD

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #2 1/17/2017 Xuehai Qian xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Outline Opportunities

More information

Model Questions and Answers on

Model Questions and Answers on BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ODISHA Model Questions and Answers on PARALLEL COMPUTING Prepared by, Dr. Subhendu Kumar Rath, BPUT, Odisha. Model Questions and Answers Subject Parallel Computing

More information

Why Multiprocessors?

Why Multiprocessors? Why Multiprocessors? Motivation: Go beyond the performance offered by a single processor Without requiring specialized processors Without the complexity of too much multiple issue Opportunity: Software

More information

REGISTER TRANSFER LANGUAGE

REGISTER TRANSFER LANGUAGE REGISTER TRANSFER LANGUAGE The operations executed on the data stored in the registers are called micro operations. Classifications of micro operations Register transfer micro operations Arithmetic micro

More information

Lecture 24: Virtual Memory, Multiprocessors

Lecture 24: Virtual Memory, Multiprocessors Lecture 24: Virtual Memory, Multiprocessors Today s topics: Virtual memory Multiprocessors, cache coherence 1 Virtual Memory Processes deal with virtual memory they have the illusion that a very large

More information

Non-Uniform Memory Access (NUMA) Architecture and Multicomputers

Non-Uniform Memory Access (NUMA) Architecture and Multicomputers Non-Uniform Memory Access (NUMA) Architecture and Multicomputers Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico September 26, 2011 CPD

More information

MIMD Overview. Intel Paragon XP/S Overview. XP/S Usage. XP/S Nodes and Interconnection. ! Distributed-memory MIMD multicomputer

MIMD Overview. Intel Paragon XP/S Overview. XP/S Usage. XP/S Nodes and Interconnection. ! Distributed-memory MIMD multicomputer MIMD Overview Intel Paragon XP/S Overview! MIMDs in the 1980s and 1990s! Distributed-memory multicomputers! Intel Paragon XP/S! Thinking Machines CM-5! IBM SP2! Distributed-memory multicomputers with hardware

More information

Multi-Processor / Parallel Processing

Multi-Processor / Parallel Processing Parallel Processing: Multi-Processor / Parallel Processing Originally, the computer has been viewed as a sequential machine. Most computer programming languages require the programmer to specify algorithms

More information

Introduction to Parallel Programming

Introduction to Parallel Programming Introduction to Parallel Programming Linda Woodard CAC 19 May 2010 Introduction to Parallel Computing on Ranger 5/18/2010 www.cac.cornell.edu 1 y What is Parallel Programming? Using more than one processor

More information

Dr. Joe Zhang PDC-3: Parallel Platforms

Dr. Joe Zhang PDC-3: Parallel Platforms CSC630/CSC730: arallel & Distributed Computing arallel Computing latforms Chapter 2 (2.3) 1 Content Communication models of Logical organization (a programmer s view) Control structure Communication model

More information

Introduction to ATM Technology

Introduction to ATM Technology Introduction to ATM Technology ATM Switch Design Switching network (N x N) Switching network (N x N) SP CP SP CP Presentation Outline Generic Switch Architecture Specific examples Shared Buffer Switch

More information

ECE 4750 Computer Architecture, Fall 2017 T06 Fundamental Network Concepts

ECE 4750 Computer Architecture, Fall 2017 T06 Fundamental Network Concepts ECE 4750 Computer Architecture, Fall 2017 T06 Fundamental Network Concepts School of Electrical and Computer Engineering Cornell University revision: 2017-10-17-12-26 1 Network/Roadway Analogy 3 1.1. Running

More information

MULTIPROCESSORS. Characteristics of Multiprocessors. Interconnection Structures. Interprocessor Arbitration

MULTIPROCESSORS. Characteristics of Multiprocessors. Interconnection Structures. Interprocessor Arbitration MULTIPROCESSORS Characteristics of Multiprocessors Interconnection Structures Interprocessor Arbitration Interprocessor Communication and Synchronization Cache Coherence 2 Characteristics of Multiprocessors

More information

Parallel Computer Architectures. Lectured by: Phạm Trần Vũ Prepared by: Thoại Nam

Parallel Computer Architectures. Lectured by: Phạm Trần Vũ Prepared by: Thoại Nam Parallel Computer Architectures Lectured by: Phạm Trần Vũ Prepared by: Thoại Nam Outline Flynn s Taxonomy Classification of Parallel Computers Based on Architectures Flynn s Taxonomy Based on notions of

More information

Multiprocessing and Scalability. A.R. Hurson Computer Science and Engineering The Pennsylvania State University

Multiprocessing and Scalability. A.R. Hurson Computer Science and Engineering The Pennsylvania State University A.R. Hurson Computer Science and Engineering The Pennsylvania State University 1 Large-scale multiprocessor systems have long held the promise of substantially higher performance than traditional uniprocessor

More information

Interconnect Technology and Computational Speed

Interconnect Technology and Computational Speed Interconnect Technology and Computational Speed From Chapter 1 of B. Wilkinson et al., PARAL- LEL PROGRAMMING. Techniques and Applications Using Networked Workstations and Parallel Computers, augmented

More information

Non-Uniform Memory Access (NUMA) Architecture and Multicomputers

Non-Uniform Memory Access (NUMA) Architecture and Multicomputers Non-Uniform Memory Access (NUMA) Architecture and Multicomputers Parallel and Distributed Computing MSc in Information Systems and Computer Engineering DEA in Computational Engineering Department of Computer

More information

Network-on-Chip Architecture

Network-on-Chip Architecture Multiple Processor Systems(CMPE-655) Network-on-Chip Architecture Performance aspect and Firefly network architecture By Siva Shankar Chandrasekaran and SreeGowri Shankar Agenda (Enhancing performance)

More information

COMP4300/8300: Overview of Parallel Hardware. Alistair Rendell. COMP4300/8300 Lecture 2-1 Copyright c 2015 The Australian National University

COMP4300/8300: Overview of Parallel Hardware. Alistair Rendell. COMP4300/8300 Lecture 2-1 Copyright c 2015 The Australian National University COMP4300/8300: Overview of Parallel Hardware Alistair Rendell COMP4300/8300 Lecture 2-1 Copyright c 2015 The Australian National University 2.1 Lecture Outline Review of Single Processor Design So we talk

More information

Lect. 2: Types of Parallelism

Lect. 2: Types of Parallelism Lect. 2: Types of Parallelism Parallelism in Hardware (Uniprocessor) Parallelism in a Uniprocessor Pipelining Superscalar, VLIW etc. SIMD instructions, Vector processors, GPUs Multiprocessor Symmetric

More information

Multiprocessors & Thread Level Parallelism

Multiprocessors & Thread Level Parallelism Multiprocessors & Thread Level Parallelism COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Introduction

More information

COSC 6385 Computer Architecture - Multi Processor Systems

COSC 6385 Computer Architecture - Multi Processor Systems COSC 6385 Computer Architecture - Multi Processor Systems Fall 2006 Classification of Parallel Architectures Flynn s Taxonomy SISD: Single instruction single data Classical von Neumann architecture SIMD:

More information

High Performance Computing in C and C++

High Performance Computing in C and C++ High Performance Computing in C and C++ Rita Borgo Computer Science Department, Swansea University Announcement No change in lecture schedule: Timetable remains the same: Monday 1 to 2 Glyndwr C Friday

More information

Topology basics. Constraints and measures. Butterfly networks.

Topology basics. Constraints and measures. Butterfly networks. EE48: Advanced Computer Organization Lecture # Interconnection Networks Architecture and Design Stanford University Topology basics. Constraints and measures. Butterfly networks. Lecture #: Monday, 7 April

More information

A Simple and Asymptotically Accurate Model for Parallel Computation

A Simple and Asymptotically Accurate Model for Parallel Computation A Simple and Asymptotically Accurate Model for Parallel Computation Ananth Grama, Vipin Kumar, Sanjay Ranka, Vineet Singh Department of Computer Science Paramark Corp. and Purdue University University

More information

Lecture 18: Communication Models and Architectures: Interconnection Networks

Lecture 18: Communication Models and Architectures: Interconnection Networks Design & Co-design of Embedded Systems Lecture 18: Communication Models and Architectures: Interconnection Networks Sharif University of Technology Computer Engineering g Dept. Winter-Spring 2008 Mehdi

More information

Chapter 5. Multiprocessors and Thread-Level Parallelism

Chapter 5. Multiprocessors and Thread-Level Parallelism Computer Architecture A Quantitative Approach, Fifth Edition Chapter 5 Multiprocessors and Thread-Level Parallelism 1 Introduction Thread-Level parallelism Have multiple program counters Uses MIMD model

More information

Introduction to parallel computing. Seminar Organization

Introduction to parallel computing. Seminar Organization Introduction to parallel computing Rami Melhem Department of Computer Science 1 Seminar Organization 1) Introductory lectures (probably 4) 2) aper presentations by students (2/3 per short/long class) -

More information

CMSC 611: Advanced. Parallel Systems

CMSC 611: Advanced. Parallel Systems CMSC 611: Advanced Computer Architecture Parallel Systems Parallel Computers Definition: A parallel computer is a collection of processing elements that cooperate and communicate to solve large problems

More information

Lecture 2: Topology - I

Lecture 2: Topology - I ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017 http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/ Lecture 2: Topology - I Tushar Krishna Assistant Professor School of Electrical and

More information

What is Parallel Computing?

What is Parallel Computing? What is Parallel Computing? Parallel Computing is several processing elements working simultaneously to solve a problem faster. 1/33 What is Parallel Computing? Parallel Computing is several processing

More information

Lecture 24: Interconnection Networks. Topics: topologies, routing, deadlocks, flow control

Lecture 24: Interconnection Networks. Topics: topologies, routing, deadlocks, flow control Lecture 24: Interconnection Networks Topics: topologies, routing, deadlocks, flow control 1 Topology Examples Grid Torus Hypercube Criteria Bus Ring 2Dtorus 6-cube Fully connected Performance Bisection

More information