The Role of InfiniBand Technologies in High Performance Computing. 1 Managed by UT-Battelle for the Department of Energy

Size: px
Start display at page:

Download "The Role of InfiniBand Technologies in High Performance Computing. 1 Managed by UT-Battelle for the Department of Energy"

Transcription

1 The Role of InfiniBand Technologies in High Performance Computing 1 Managed by UT-Battelle

2 Contributors Gil Bloch Noam Bloch Hillel Chapman Manjunath Gorentla- Venkata Richard Graham Michael Kagan Vasily Philipov Steve Poole Ishai Rabinovich Ariel Shahar Gilad Shainer Pavel Shamis Josh Ladd 2 Managed by UT-Battelle

3 Outline Spider file system CORE-Direct InfiniBand overview New InfiniBand capabilities Software design for collective operations Results 3 Managed by UT-Battelle

4 Spider File System at the Oak Ridge Leadership Computing Facility 4 Managed by UT-Battelle

5 Motivation for Spider File System Building dedicated file systems for each platforms does not scale operationally Storage often 10% or more of new system cost Bundled storage often not poised to grow independently of attached machine Different curves for storage and compute technology Data needs to be moved between different compute islands For example: Simulation platform to visualization platform Dedicated storage is only accessible when its machine is available Managing multiple file systems requires more manpower Lens Jaguar XT4 Smoky Jaguar XT5 Ewok Jaguar XT4 SION Network & Spider System Smoky Jaguar XT5 Ewok Lens data sharing path 5 Managed by UT-Battelle

6 Spider: A System At Scale Over 10.7 PB of RAID 6 Capacity 13,440 1TB drives 192 storage servers Over 3 TB of memory (Lustre OSS) Available to many compute systems through high-speed network: Over 3,000 IB ports Over 5 kilometer cables Over 26,000 client mounts for I/O Demonstrated I/O performance: 240 GB/s Current Status in production use on all major OLCF computing platforms 6 Managed by UT-Battelle

7 Spider: Couplet and Scalable Cluster 280 1TB Disks in 5 Disks disk trays 280 in Disks 5 trays 280 in 5 trays DDN Couplet (2 controllers) DDN Couplet (2 DDN controllers) Couplet (2 controllers) 16 SC Units on the floor 2 racks for each SC 24 IB ports Flextronics 24 IB Switch ports OSS (4 Dell nodes) Flextronics 24 IB Switch ports OSS (4 Dell nodes) Flextronics Switch OSS (4 Dell nodes) IB Ports IB Ports IB Ports Uplink Uplink to to Cisco Cisco Core Core Uplink Switch Switch to Cisco Core Switch SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC A Scalable Cluster (SC) 7 Managed by UT-Battelle

8 ! "#$%&'()# Snapshot of Technical Challenges Solved Performance Asynchronous journaling Network congestion avoidance (topology aware I/O) Scalability 26,000 clients 7 OST per OSS Lesson from server side client statistics Fault Tolerance and Reliability Network, I/O server, Storage Array! - + /.4#0//(5.'&(#/&#6 77# $'!!! " $( $#) " $#!!! " $! +( &" $!!!! " %&)! " %!!! " *!!! " *) *#" '!!! " ' ( &) " #!!! " #$%&"! "! "! " )!!! " $!!!! " $)!!! " #!!!! " #)!!! " (!!!! " * %+, -.#/0#12'- &(3# SeaStar Torus Congestion 8 Managed by UT-Battelle

9 Spider - How Did We Get Here? 4 years project We didn t just pick up phone and order a center-wide file system No single vendor could deliver this system Trail blazing was required Collaborative effort was key to success ORNL Cray DDN Cisco CFS, SUN, Oracle, and now Whamcloud 9 Managed by UT-Battelle

10 CORE-Direct Technology 10 Managed by UT-Battelle

11 Problems Being Addressed Collective Operations Collective communication characteristics at scale Overlapping computation with communication true asynchronous communications System noise Performance Scalability Goal: Avoid using the CPU for communication processing Offload Communication management to the network 11 Managed by UT-Battelle

12 Collective Communications Communication pattern involving multiple processes (in MPI, all ranks in the communicator are involved) Optimized collectives involve a communicator-wide data-dependent communication pattern Data needs to be manipulated at intermediate stages of a collective operation Collective operations limit application scalability Collective operations magnify the effects of systemnoise 12 Managed by UT-Battelle

13 Scalability of Collective Operations Ideal Algorithm Impact of System Noise Managed by UT-Battelle

14 Scalability of Collective Operations - II Offloaded Algorithm Nonblocking Algorithm 14 Managed by UT-Battelle - Communication processing

15 Approach to solving the problem Co-design Network stack design (Mellanox) Hardware development (Mellanox) Application level requirement (ORNL) MPI/Shmem level implementation (Joint) 15 Managed by UT-Battelle

16 InfiniBand Collective Offload Key idea Create local description of the communication patterns Hand the description to the HCA Manage collective communications at the network level Poll for collective completion Add new support for Synchronization primitives (hardware) Send Enable task Receive Enable task Wait task Multiple Work Request A sequence of network tasks Management Queue 16 Managed by UT-Battelle

17 InfiniBand Hardware Changes Tasks defined in the current standard Send Receive Read Write Atomic New support Synchronization primitives (hardware) Send Enable task Receive Enable task Wait task Multiple Work Request A sequence of network tasks Management Queue 17 Managed by UT-Battelle

18 Standard InfiniBand Connected Queue Design 18 Managed by UT-Battelle

19 Queue Structure Send CQ Per Communicator Resources Collective MQ MQ CQ Service MQ All send Queues Small data Resource recycling Large data Credit QP Send Recv Send Recv Send Recv Send Recv Per Peer Resources 19 Managed by UT-Battelle Recv CQ Recv CQ Recv CQ Recv CQ

20 Collectives Software Layers OMPI Module Component Architecture Collective Framework Basic Collectives Framework Subgroup Framework ML Hierarchical Collectives Comp. Tuned (pt2pt) Collectives Comp. IB IB OFFLOAD Pt2Pt SM Socket Shared IBNET Memory MLNX OFED MLNX OFED 20 Managed by UT-Battelle

21 Example 4 Process Recursive Doubling Step Step Managed by UT-Battelle

22 4 Process Barrier Example Algorithm Proc 0 Proc 1 Proc 2 Proc 3 Exchange With proc 1 Exchange With proc 0 Exchange With proc 3 Exchange With proc 2 Exchange With proc 2 Exchange With proc 3 Exchange With proc 0 Exchange With proc 1 MWR Proc 0 Proc 1 Proc 2 Proc 3 Send to proc 1 Wait on recv from 1 Send to proc 2 Wait on recv from 2 Send to proc 0 Wait on recv From 0 Send to proc 3 Wait on recv From 3 Send to proc 3 Wait on recv From 3 Send to proc 0 Wait on recv From 0 Send to proc 2 Wait on recv From 2 Send to proc 1 Wait on recv From 1 22 Managed by UT-Battelle

23 4 Process Barrier Example Queue view Send QP Proc 0 Proc 1 Proc 2 Proc 3 Send to proc 1 - enabled Send to 2 not enabled Send to proc 0 enabled Send to 3 not enabled Send to proc 3 - enabled Send to 0 not enabled Send to proc 2 - enabled Send to 1 not enabled MQ Completion Proc 0 Proc 1 Proc 2 Proc 3 Recv wait from 1 Send enable 1 Recv wait from 2 Recv wait from 0 Send enable 0 Recv wait from 3 Recv wait from 3 Send enable 3 Recv wait from 0 Recv wait from 2 Send enable 2 Recv wait from 1 23 Managed by UT-Battelle

24 8 Process Barrier Example Queue view no MQ, View at rank 0 QP 1 QP 2 QP 4 Send QP 1 Wait QP 1 Wait QP 1 Send QP 2 Wait QP 2 Send QP 4 Wait QP 4 24 Managed by UT-Battelle

25 etwork System Hierarchy Nod e Socket System 25 Managed by UT-Battelle Unused core Occupied core

26 Benchmarks 26 Managed by UT-Battelle

27 System setup 8 node cluster Node Architecture 3 GHz Intel Xeon Dual socket Quad core Network ConnextX-2 HCA 36 port QDR switch running pre-release firmware 27 Managed by UT-Battelle

28 Barrier Data 28 Managed by UT-Battelle

29 8 Node Blocking MPI Barrier 29 Managed by UT-Battelle

30 MPI Barrier - Offloaded 30 Managed by UT-Battelle

31 MPI Barrier Comparison with PtP 31 Managed by UT-Battelle

32 MPIX_Ibarrier Performance 32 Managed by UT-Battelle

33 Nonblocking Barrier Overlap Multiple Work Quanta 33 Managed by UT-Battelle

34 Nonblocking Barrier Overlap 1 Work Quanta 34 Managed by UT-Battelle

35 Barrier Data Hierarchy 35 Managed by UT-Battelle

36 Flat Barrier Algorithm Host 1 Host Step Inter Host Communication Step Managed by UT-Battelle

37 Hierarchical Barrier Algorithm Host 1 Host Step Inter Host Communication Step Step Managed by UT-Battelle

38 MPI Barrier timings 38 Managed by UT-Battelle

39 Barrier timings blocking vs. nonblocking 39 Managed by UT-Battelle

40 Nonblocking Barrier Overlap 40 Managed by UT-Battelle

41 Broadcast Data 41 Managed by UT-Battelle

42 IB Large Message Algorithm Process I Process J 1) Register Receive Memory Send Credit QP Send 2) No fy sender Send Credit QP Send Recv Recv Recv Recv 3) Wait on credit message QP QP Send Send Wait Wait Send Send Recv Recv Recv Recv 42 Managed by UT-Battelle 4) Send user data

43 Broadcast Latency usec per call Msg size IBOff + SM IBOff P2P + SM Open MPI default 16B MVAPICH 1KB MB Managed by UT-Battelle

44 Nonblocking Broadcast Latency usec per call Msg sizeß IBOff + SM IBOff P2P + SM 16B KB MB Managed by UT-Battelle

45 Broadcast small data - hierarchical 45 Managed by UT-Battelle

46 Broadcast large data - hierarchical 46 Managed by UT-Battelle

47 Overlap Measurement Benchmark steps: Polling Method 1. Post broadcast 2. Do work and poll for completion 3. Continue until broadcast completion Post-work-wait Method 1. Post broadcast 2. Do work 3. Wait for broadcast completion 4. Compare the time of steps 1 3 with post-wait 5. Increase the work and repeat steps 1-4 until the time for postwork-wait is greater than post-wait 47 Managed by UT-Battelle

48 Nonblocking Broadcast Overlap - Poll 48 Managed by UT-Battelle

49 Nonblocking Broadcast Overlap - Wait 49 Managed by UT-Battelle

50 All-To-All Data 50 Managed by UT-Battelle

51 All-To-All: 1 Byte 51 Managed by UT-Battelle

52 All-To-All: 64 Bytes 52 Managed by UT-Battelle

53 All-To-All: 128 Bytes 53 Managed by UT-Battelle

54 All-To-All: 4 MB/process 54 Managed by UT-Battelle

55 Allgather Data 55 Managed by UT-Battelle

56 All-Gather: 1 Byte 56 Managed by UT-Battelle

57 All-Gather: 128 Bytes 57 Managed by UT-Battelle

58 All-Gather: Bytes 58 Managed by UT-Battelle

59 Summary Added hardware support for offloading broadcast operations Developed MPI-level support for one-copy for asynchronous contiguous large-data transfer Good collective performance Good overlap capabilities 59 Managed by UT-Battelle

Efficient Object Storage Journaling in a Distributed Parallel File System

Efficient Object Storage Journaling in a Distributed Parallel File System Efficient Object Storage Journaling in a Distributed Parallel File System Presented by Sarp Oral Sarp Oral, Feiyi Wang, David Dillow, Galen Shipman, Ross Miller, and Oleg Drokin FAST 10, Feb 25, 2010 A

More information

The Spider Center-Wide File System

The Spider Center-Wide File System The Spider Center-Wide File System Presented by Feiyi Wang (Ph.D.) Technology Integration Group National Center of Computational Sciences Galen Shipman (Group Lead) Dave Dillow, Sarp Oral, James Simmons,

More information

The Exascale Architecture

The Exascale Architecture The Exascale Architecture Richard Graham HPC Advisory Council China 2013 Overview Programming-model challenges for Exascale Challenges for scaling MPI to Exascale InfiniBand enhancements Dynamically Connected

More information

Hierarchy Aware Blocking and Nonblocking Collective Communications-The Effects of Shared Memory in the Cray XT environment

Hierarchy Aware Blocking and Nonblocking Collective Communications-The Effects of Shared Memory in the Cray XT environment Hierarchy Aware Blocking and Nonblocking Collective Communications-The Effects of Shared Memory in the Cray XT environment Richard L. Graham, Joshua S. Ladd, Manjunath GorentlaVenkata Oak Ridge National

More information

The Spider Center Wide File System

The Spider Center Wide File System The Spider Center Wide File System Presented by: Galen M. Shipman Collaborators: David A. Dillow Sarp Oral Feiyi Wang May 4, 2009 Jaguar: World s most powerful computer Designed for science from the ground

More information

Oak Ridge National Laboratory

Oak Ridge National Laboratory Oak Ridge National Laboratory Lustre Scalability Workshop Presented by: Galen M. Shipman Collaborators: David Dillow Sarp Oral Feiyi Wang February 10, 2009 We have increased system performance 300 times

More information

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Hari Subramoni, Ping Lai, Sayantan Sur and Dhabhaleswar. K. Panda Department of

More information

Future Routing Schemes in Petascale clusters

Future Routing Schemes in Petascale clusters Future Routing Schemes in Petascale clusters Gilad Shainer, Mellanox, USA Ola Torudbakken, Sun Microsystems, Norway Richard Graham, Oak Ridge National Laboratory, USA Birds of a Feather Presentation Abstract

More information

Oak Ridge National Laboratory Computing and Computational Sciences

Oak Ridge National Laboratory Computing and Computational Sciences Oak Ridge National Laboratory Computing and Computational Sciences OFA Update by ORNL Presented by: Pavel Shamis (Pasha) OFA Workshop Mar 17, 2015 Acknowledgments Bernholdt David E. Hill Jason J. Leverman

More information

Open MPI for Cray XE/XK Systems

Open MPI for Cray XE/XK Systems Open MPI for Cray XE/XK Systems Samuel K. Gutierrez LANL Nathan T. Hjelm LANL Manjunath Gorentla Venkata ORNL Richard L. Graham - Mellanox Cray User Group (CUG) 2012 May 2, 2012 U N C L A S S I F I E D

More information

ABySS Performance Benchmark and Profiling. May 2010

ABySS Performance Benchmark and Profiling. May 2010 ABySS Performance Benchmark and Profiling May 2010 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource - HPC

More information

A Case for Standard Non-Blocking Collective Operations

A Case for Standard Non-Blocking Collective Operations A Case for Standard Non-Blocking Collective Operations T. Hoefler,2, P. Kambadur, R. L. Graham 3, G. Shipman 4 and A. Lumsdaine Open Systems Lab 2 Computer Architecture Group Indiana University Technical

More information

DISP: Optimizations Towards Scalable MPI Startup

DISP: Optimizations Towards Scalable MPI Startup DISP: Optimizations Towards Scalable MPI Startup Huansong Fu, Swaroop Pophale*, Manjunath Gorentla Venkata*, Weikuan Yu Florida State University *Oak Ridge National Laboratory Outline Background and motivation

More information

Designing High Performance Communication Middleware with Emerging Multi-core Architectures

Designing High Performance Communication Middleware with Emerging Multi-core Architectures Designing High Performance Communication Middleware with Emerging Multi-core Architectures Dhabaleswar K. (DK) Panda Department of Computer Science and Engg. The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

HPC Customer Requirements for OpenFabrics Software

HPC Customer Requirements for OpenFabrics Software HPC Customer Requirements for OpenFabrics Software Matt Leininger, Ph.D. Sandia National Laboratories Scalable Computing R&D Livermore, CA 16 November 2006 I'll focus on software requirements (well maybe)

More information

Application-Transparent Checkpoint/Restart for MPI Programs over InfiniBand

Application-Transparent Checkpoint/Restart for MPI Programs over InfiniBand Application-Transparent Checkpoint/Restart for MPI Programs over InfiniBand Qi Gao, Weikuan Yu, Wei Huang, Dhabaleswar K. Panda Network-Based Computing Laboratory Department of Computer Science & Engineering

More information

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Krishna Kandalla, Emilio P. Mancini, Sayantan Sur, and Dhabaleswar. K. Panda Department of Computer Science & Engineering,

More information

Preparing GPU-Accelerated Applications for the Summit Supercomputer

Preparing GPU-Accelerated Applications for the Summit Supercomputer Preparing GPU-Accelerated Applications for the Summit Supercomputer Fernanda Foertter HPC User Assistance Group Training Lead foertterfs@ornl.gov This research used resources of the Oak Ridge Leadership

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference Maximizing Productivity With InfiniBand-Based Clusters Gilad Shainer Director of Technical Marketing Mellanox Technologies 2008 ANSYS, Inc. All rights reserved. 1 ANSYS,

More information

MPI Optimizations via MXM and FCA for Maximum Performance on LS-DYNA

MPI Optimizations via MXM and FCA for Maximum Performance on LS-DYNA MPI Optimizations via MXM and FCA for Maximum Performance on LS-DYNA Gilad Shainer 1, Tong Liu 1, Pak Lui 1, Todd Wilde 1 1 Mellanox Technologies Abstract From concept to engineering, and from design to

More information

Analytics of Wide-Area Lustre Throughput Using LNet Routers

Analytics of Wide-Area Lustre Throughput Using LNet Routers Analytics of Wide-Area Throughput Using LNet Routers Nagi Rao, Neena Imam, Jesse Hanley, Sarp Oral Oak Ridge National Laboratory User Group Conference LUG 2018 April 24-26, 2018 Argonne National Laboratory

More information

Application Acceleration Beyond Flash Storage

Application Acceleration Beyond Flash Storage Application Acceleration Beyond Flash Storage Session 303C Mellanox Technologies Flash Memory Summit July 2014 Accelerating Applications, Step-by-Step First Steps Make compute fast Moore s Law Make storage

More information

The Road to ExaScale. Advances in High-Performance Interconnect Infrastructure. September 2011

The Road to ExaScale. Advances in High-Performance Interconnect Infrastructure. September 2011 The Road to ExaScale Advances in High-Performance Interconnect Infrastructure September 2011 diego@mellanox.com ExaScale Computing Ambitious Challenges Foster Progress Demand Research Institutes, Universities

More information

The Future of Interconnect Technology

The Future of Interconnect Technology The Future of Interconnect Technology Michael Kagan, CTO HPC Advisory Council Stanford, 2014 Exponential Data Growth Best Interconnect Required 44X 0.8 Zetabyte 2009 35 Zetabyte 2020 2014 Mellanox Technologies

More information

Optimized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters: A Comprehensive Study with Applications

Optimized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters: A Comprehensive Study with Applications Optimized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters: A Comprehensive Study with Applications K. Vaidyanathan, P. Lai, S. Narravula and D. K. Panda Network Based Computing Laboratory

More information

High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A study with Parallel 3DFFT

High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A study with Parallel 3DFFT High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A study with Parallel 3DFFT Krishna Kandalla (1), Hari Subramoni (1), Karen Tomko (2), Dmitry Pekurovsky

More information

Efficient and Truly Passive MPI-3 RMA Synchronization Using InfiniBand Atomics

Efficient and Truly Passive MPI-3 RMA Synchronization Using InfiniBand Atomics 1 Efficient and Truly Passive MPI-3 RMA Synchronization Using InfiniBand Atomics Mingzhe Li Sreeram Potluri Khaled Hamidouche Jithin Jose Dhabaleswar K. Panda Network-Based Computing Laboratory Department

More information

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Sayantan Sur, Matt Koop, Lei Chai Dhabaleswar K. Panda Network Based Computing Lab, The Ohio State

More information

Sun Lustre Storage System Simplifying and Accelerating Lustre Deployments

Sun Lustre Storage System Simplifying and Accelerating Lustre Deployments Sun Lustre Storage System Simplifying and Accelerating Lustre Deployments Torben Kling-Petersen, PhD Presenter s Name Principle Field Title andengineer Division HPC &Cloud LoB SunComputing Microsystems

More information

Interconnect Your Future

Interconnect Your Future Interconnect Your Future Gilad Shainer 2nd Annual MVAPICH User Group (MUG) Meeting, August 2014 Complete High-Performance Scalable Interconnect Infrastructure Comprehensive End-to-End Software Accelerators

More information

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems?

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Sayantan Sur, Abhinav Vishnu, Hyun-Wook Jin, Wei Huang and D. K. Panda {surs, vishnu, jinhy, huanwei, panda}@cse.ohio-state.edu

More information

Unified Runtime for PGAS and MPI over OFED

Unified Runtime for PGAS and MPI over OFED Unified Runtime for PGAS and MPI over OFED D. K. Panda and Sayantan Sur Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University, USA Outline Introduction

More information

Philip C. Roth. Computer Science and Mathematics Division Oak Ridge National Laboratory

Philip C. Roth. Computer Science and Mathematics Division Oak Ridge National Laboratory Philip C. Roth Computer Science and Mathematics Division Oak Ridge National Laboratory A Tree-Based Overlay Network (TBON) like MRNet provides scalable infrastructure for tools and applications MRNet's

More information

Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand

Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand Jiuxing Liu and Dhabaleswar K. Panda Computer Science and Engineering The Ohio State University Presentation Outline Introduction

More information

Lustre at the OLCF: Experiences and Path Forward. Galen M. Shipman Group Leader Technology Integration

Lustre at the OLCF: Experiences and Path Forward. Galen M. Shipman Group Leader Technology Integration Lustre at the OLCF: Experiences and Path Forward Galen M. Shipman Group Leader Technology Integration A Demanding Computational Environment Jaguar XT5 18,688 Nodes Jaguar XT4 7,832 Nodes Frost (SGI Ice)

More information

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Matthew Koop 1 Miao Luo D. K. Panda matthew.koop@nasa.gov {luom, panda}@cse.ohio-state.edu 1 NASA Center for Computational

More information

NAMD Performance Benchmark and Profiling. November 2010

NAMD Performance Benchmark and Profiling. November 2010 NAMD Performance Benchmark and Profiling November 2010 Note The following research was performed under the HPC Advisory Council activities Participating vendors: HP, Mellanox Compute resource - HPC Advisory

More information

Birds of a Feather Presentation

Birds of a Feather Presentation Mellanox InfiniBand QDR 4Gb/s The Fabric of Choice for High Performance Computing Gilad Shainer, shainer@mellanox.com June 28 Birds of a Feather Presentation InfiniBand Technology Leadership Industry Standard

More information

Technical Computing Suite supporting the hybrid system

Technical Computing Suite supporting the hybrid system Technical Computing Suite supporting the hybrid system Supercomputer PRIMEHPC FX10 PRIMERGY x86 cluster Hybrid System Configuration Supercomputer PRIMEHPC FX10 PRIMERGY x86 cluster 6D mesh/torus Interconnect

More information

Advanced Software for the Supercomputer PRIMEHPC FX10. Copyright 2011 FUJITSU LIMITED

Advanced Software for the Supercomputer PRIMEHPC FX10. Copyright 2011 FUJITSU LIMITED Advanced Software for the Supercomputer PRIMEHPC FX10 System Configuration of PRIMEHPC FX10 nodes Login Compilation Job submission 6D mesh/torus Interconnect Local file system (Temporary area occupied

More information

In-Network Computing. Sebastian Kalcher, Senior System Engineer HPC. May 2017

In-Network Computing. Sebastian Kalcher, Senior System Engineer HPC. May 2017 In-Network Computing Sebastian Kalcher, Senior System Engineer HPC May 2017 Exponential Data Growth The Need for Intelligent and Faster Interconnect CPU-Centric (Onload) Data-Centric (Offload) Must Wait

More information

LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance

LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance 11 th International LS-DYNA Users Conference Computing Technology LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance Gilad Shainer 1, Tong Liu 2, Jeff Layton

More information

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc Scaling to Petaflop Ola Torudbakken Distinguished Engineer Sun Microsystems, Inc HPC Market growth is strong CAGR increased from 9.2% (2006) to 15.5% (2007) Market in 2007 doubled from 2003 (Source: IDC

More information

STAR-CCM+ Performance Benchmark and Profiling. July 2014

STAR-CCM+ Performance Benchmark and Profiling. July 2014 STAR-CCM+ Performance Benchmark and Profiling July 2014 Note The following research was performed under the HPC Advisory Council activities Participating vendors: CD-adapco, Intel, Dell, Mellanox Compute

More information

UCX: An Open Source Framework for HPC Network APIs and Beyond

UCX: An Open Source Framework for HPC Network APIs and Beyond UCX: An Open Source Framework for HPC Network APIs and Beyond Presented by: Pavel Shamis / Pasha ORNL is managed by UT-Battelle for the US Department of Energy Co-Design Collaboration The Next Generation

More information

Paving the Road to Exascale

Paving the Road to Exascale Paving the Road to Exascale Gilad Shainer August 2015, MVAPICH User Group (MUG) Meeting The Ever Growing Demand for Performance Performance Terascale Petascale Exascale 1 st Roadrunner 2000 2005 2010 2015

More information

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K.

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Panda Department of Computer Science and Engineering The Ohio

More information

HPC Saudi Jeffrey A. Nichols Associate Laboratory Director Computing and Computational Sciences. Presented to: March 14, 2017

HPC Saudi Jeffrey A. Nichols Associate Laboratory Director Computing and Computational Sciences. Presented to: March 14, 2017 Creating an Exascale Ecosystem for Science Presented to: HPC Saudi 2017 Jeffrey A. Nichols Associate Laboratory Director Computing and Computational Sciences March 14, 2017 ORNL is managed by UT-Battelle

More information

Op#miza#on and Tuning of Hybrid, Mul#rail, 3D Torus Support and QoS in MVAPICH2

Op#miza#on and Tuning of Hybrid, Mul#rail, 3D Torus Support and QoS in MVAPICH2 Op#miza#on and Tuning of Hybrid, Mul#rail, 3D Torus Support and QoS in MVAPICH2 MVAPICH2 User Group (MUG) Mee#ng by Hari Subramoni The Ohio State University E- mail: subramon@cse.ohio- state.edu h

More information

AcuSolve Performance Benchmark and Profiling. October 2011

AcuSolve Performance Benchmark and Profiling. October 2011 AcuSolve Performance Benchmark and Profiling October 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox, Altair Compute

More information

CRFS: A Lightweight User-Level Filesystem for Generic Checkpoint/Restart

CRFS: A Lightweight User-Level Filesystem for Generic Checkpoint/Restart CRFS: A Lightweight User-Level Filesystem for Generic Checkpoint/Restart Xiangyong Ouyang, Raghunath Rajachandrasekar, Xavier Besseron, Hao Wang, Jian Huang, Dhabaleswar K. Panda Department of Computer

More information

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience Jithin Jose, Mingzhe Li, Xiaoyi Lu, Krishna Kandalla, Mark Arnold and Dhabaleswar K. (DK) Panda Network-Based Computing Laboratory

More information

Design challenges of Highperformance. MPI over InfiniBand. Presented by Karthik

Design challenges of Highperformance. MPI over InfiniBand. Presented by Karthik Design challenges of Highperformance and Scalable MPI over InfiniBand Presented by Karthik Presentation Overview In depth analysis of High-Performance and scalable MPI with Reduced Memory Usage Zero Copy

More information

10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G

10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G 10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G Mohammad J. Rashti and Ahmad Afsahi Queen s University Kingston, ON, Canada 2007 Workshop on Communication Architectures

More information

Introduction to High-Speed InfiniBand Interconnect

Introduction to High-Speed InfiniBand Interconnect Introduction to High-Speed InfiniBand Interconnect 2 What is InfiniBand? Industry standard defined by the InfiniBand Trade Association Originated in 1999 InfiniBand specification defines an input/output

More information

HYCOM Performance Benchmark and Profiling

HYCOM Performance Benchmark and Profiling HYCOM Performance Benchmark and Profiling Jan 2011 Acknowledgment: - The DoD High Performance Computing Modernization Program Note The following research was performed under the HPC Advisory Council activities

More information

GPU-centric communication for improved efficiency

GPU-centric communication for improved efficiency GPU-centric communication for improved efficiency Benjamin Klenk *, Lena Oden, Holger Fröning * * Heidelberg University, Germany Fraunhofer Institute for Industrial Mathematics, Germany GPCDP Workshop

More information

Managing HPC Active Archive Storage with HPSS RAIT at Oak Ridge National Laboratory

Managing HPC Active Archive Storage with HPSS RAIT at Oak Ridge National Laboratory Managing HPC Active Archive Storage with HPSS RAIT at Oak Ridge National Laboratory Quinn Mitchell HPC UNIX/LINUX Storage Systems ORNL is managed by UT-Battelle for the US Department of Energy U.S. Department

More information

In-Network Computing. Paving the Road to Exascale. 5th Annual MVAPICH User Group (MUG) Meeting, August 2017

In-Network Computing. Paving the Road to Exascale. 5th Annual MVAPICH User Group (MUG) Meeting, August 2017 In-Network Computing Paving the Road to Exascale 5th Annual MVAPICH User Group (MUG) Meeting, August 2017 Exponential Data Growth The Need for Intelligent and Faster Interconnect CPU-Centric (Onload) Data-Centric

More information

Unifying UPC and MPI Runtimes: Experience with MVAPICH

Unifying UPC and MPI Runtimes: Experience with MVAPICH Unifying UPC and MPI Runtimes: Experience with MVAPICH Jithin Jose Miao Luo Sayantan Sur D. K. Panda Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University,

More information

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Design Alternatives for Implementing Fence Synchronization in MPI-2 One-Sided Communication for InfiniBand Clusters

Design Alternatives for Implementing Fence Synchronization in MPI-2 One-Sided Communication for InfiniBand Clusters Design Alternatives for Implementing Fence Synchronization in MPI-2 One-Sided Communication for InfiniBand Clusters G.Santhanaraman, T. Gangadharappa, S.Narravula, A.Mamidala and D.K.Panda Presented by:

More information

NAMD Performance Benchmark and Profiling. January 2015

NAMD Performance Benchmark and Profiling. January 2015 NAMD Performance Benchmark and Profiling January 2015 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox Compute resource

More information

InfiniBand Networked Flash Storage

InfiniBand Networked Flash Storage InfiniBand Networked Flash Storage Superior Performance, Efficiency and Scalability Motti Beck Director Enterprise Market Development, Mellanox Technologies Flash Memory Summit 2016 Santa Clara, CA 1 17PB

More information

Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters *

Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters * Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters * Krishna Kandalla, Hari Subramoni, Gopal Santhanaraman, Matthew Koop and Dhabaleswar K. Panda Department of Computer Science and

More information

Optimizing non-blocking Collective Operations for InfiniBand

Optimizing non-blocking Collective Operations for InfiniBand Optimizing non-blocking Collective Operations for InfiniBand Open Systems Lab Indiana University Bloomington, USA IPDPS 08 - CAC 08 Workshop Miami, FL, USA April, 14th 2008 Introduction Non-blocking collective

More information

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Presentation at Mellanox Theater () Dhabaleswar K. (DK) Panda - The Ohio State University panda@cse.ohio-state.edu Outline Communication

More information

OpenFOAM Performance Testing and Profiling. October 2017

OpenFOAM Performance Testing and Profiling. October 2017 OpenFOAM Performance Testing and Profiling October 2017 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Huawei, Mellanox Compute resource - HPC

More information

MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand

MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand Matthew Koop 1,2 Terry Jones 2 D. K. Panda 1 {koop, panda}@cse.ohio-state.edu trj@llnl.gov 1 Network-Based Computing Lab, The

More information

ZEST Snapshot Service. A Highly Parallel Production File System by the PSC Advanced Systems Group Pittsburgh Supercomputing Center 1

ZEST Snapshot Service. A Highly Parallel Production File System by the PSC Advanced Systems Group Pittsburgh Supercomputing Center 1 ZEST Snapshot Service A Highly Parallel Production File System by the PSC Advanced Systems Group Pittsburgh Supercomputing Center 1 Design Motivation To optimize science utilization of the machine Maximize

More information

I/O Router Placement and Fine-Grained Routing on Titan to Support Spider II

I/O Router Placement and Fine-Grained Routing on Titan to Support Spider II I/O Router Placement and Fine-Grained Routing on Titan to Support Spider II Matt Ezell, Sarp Oral, Feiyi Wang, Devesh Tiwari, Don Maxwell, Dustin Leverman, and Jason Hill Oak Ridge National Laboratory;

More information

TECHNOLOGIES FOR IMPROVED SCALING ON GPU CLUSTERS. Jiri Kraus, Davide Rossetti, Sreeram Potluri, June 23 rd 2016

TECHNOLOGIES FOR IMPROVED SCALING ON GPU CLUSTERS. Jiri Kraus, Davide Rossetti, Sreeram Potluri, June 23 rd 2016 TECHNOLOGIES FOR IMPROVED SCALING ON GPU CLUSTERS Jiri Kraus, Davide Rossetti, Sreeram Potluri, June 23 rd 2016 MULTI GPU PROGRAMMING Node 0 Node 1 Node N-1 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM

More information

AcuSolve Performance Benchmark and Profiling. October 2011

AcuSolve Performance Benchmark and Profiling. October 2011 AcuSolve Performance Benchmark and Profiling October 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox, Altair Compute

More information

MM5 Modeling System Performance Research and Profiling. March 2009

MM5 Modeling System Performance Research and Profiling. March 2009 MM5 Modeling System Performance Research and Profiling March 2009 Note The following research was performed under the HPC Advisory Council activities AMD, Dell, Mellanox HPC Advisory Council Cluster Center

More information

Optimizing LS-DYNA Productivity in Cluster Environments

Optimizing LS-DYNA Productivity in Cluster Environments 10 th International LS-DYNA Users Conference Computing Technology Optimizing LS-DYNA Productivity in Cluster Environments Gilad Shainer and Swati Kher Mellanox Technologies Abstract Increasing demand for

More information

Altair RADIOSS Performance Benchmark and Profiling. May 2013

Altair RADIOSS Performance Benchmark and Profiling. May 2013 Altair RADIOSS Performance Benchmark and Profiling May 2013 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Altair, AMD, Dell, Mellanox Compute

More information

Scheduling Strategies for HPC as a Service (HPCaaS) for Bio-Science Applications

Scheduling Strategies for HPC as a Service (HPCaaS) for Bio-Science Applications Scheduling Strategies for HPC as a Service (HPCaaS) for Bio-Science Applications Sep 2009 Gilad Shainer, Tong Liu (Mellanox); Jeffrey Layton (Dell); Joshua Mora (AMD) High Performance Interconnects for

More information

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri, D. Bureddy and D. K. Panda Presented by Dr. Xiaoyi

More information

To Infiniband or Not Infiniband, One Site s s Perspective. Steve Woods MCNC

To Infiniband or Not Infiniband, One Site s s Perspective. Steve Woods MCNC To Infiniband or Not Infiniband, One Site s s Perspective Steve Woods MCNC 1 Agenda Infiniband background Current configuration Base Performance Application performance experience Future Conclusions 2

More information

How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2 Libraries

How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2 Libraries How to Boost the Performance of Your MPI and PGAS s with MVAPICH2 Libraries A Tutorial at the MVAPICH User Group (MUG) Meeting 18 by The MVAPICH Team The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Interconnect Your Future

Interconnect Your Future Interconnect Your Future Smart Interconnect for Next Generation HPC Platforms Gilad Shainer, August 2016, 4th Annual MVAPICH User Group (MUG) Meeting Mellanox Connects the World s Fastest Supercomputer

More information

Cray XC Scalability and the Aries Network Tony Ford

Cray XC Scalability and the Aries Network Tony Ford Cray XC Scalability and the Aries Network Tony Ford June 29, 2017 Exascale Scalability Which scalability metrics are important for Exascale? Performance (obviously!) What are the contributing factors?

More information

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Matthew Koop, Wei Huang, Ahbinav Vishnu, Dhabaleswar K. Panda Network-Based Computing Laboratory Department of

More information

AMBER 11 Performance Benchmark and Profiling. July 2011

AMBER 11 Performance Benchmark and Profiling. July 2011 AMBER 11 Performance Benchmark and Profiling July 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource -

More information

Application Performance on IME

Application Performance on IME Application Performance on IME Toine Beckers, DDN Marco Grossi, ICHEC Burst Buffer Designs Introduce fast buffer layer Layer between memory and persistent storage Pre-stage application data Buffer writes

More information

GROMACS Performance Benchmark and Profiling. September 2012

GROMACS Performance Benchmark and Profiling. September 2012 GROMACS Performance Benchmark and Profiling September 2012 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource

More information

Informatix Solutions INFINIBAND OVERVIEW. - Informatix Solutions, Page 1 Version 1.0

Informatix Solutions INFINIBAND OVERVIEW. - Informatix Solutions, Page 1 Version 1.0 INFINIBAND OVERVIEW -, 2010 Page 1 Version 1.0 Why InfiniBand? Open and comprehensive standard with broad vendor support Standard defined by the InfiniBand Trade Association (Sun was a founder member,

More information

Multi-Threaded UPC Runtime for GPU to GPU communication over InfiniBand

Multi-Threaded UPC Runtime for GPU to GPU communication over InfiniBand Multi-Threaded UPC Runtime for GPU to GPU communication over InfiniBand Miao Luo, Hao Wang, & D. K. Panda Network- Based Compu2ng Laboratory Department of Computer Science and Engineering The Ohio State

More information

CP2K Performance Benchmark and Profiling. April 2011

CP2K Performance Benchmark and Profiling. April 2011 CP2K Performance Benchmark and Profiling April 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource - HPC

More information

The Impact of Inter-node Latency versus Intra-node Latency on HPC Applications The 23 rd IASTED International Conference on PDCS 2011

The Impact of Inter-node Latency versus Intra-node Latency on HPC Applications The 23 rd IASTED International Conference on PDCS 2011 The Impact of Inter-node Latency versus Intra-node Latency on HPC Applications The 23 rd IASTED International Conference on PDCS 2011 HPC Scale Working Group, Dec 2011 Gilad Shainer, Pak Lui, Tong Liu,

More information

New Storage Architectures

New Storage Architectures New Storage Architectures OpenFabrics Software User Group Workshop Replacing LNET routers with IB routers #OFSUserGroup Lustre Basics Lustre is a clustered file-system for supercomputing Architecture consists

More information

LAMMPS-KOKKOS Performance Benchmark and Profiling. September 2015

LAMMPS-KOKKOS Performance Benchmark and Profiling. September 2015 LAMMPS-KOKKOS Performance Benchmark and Profiling September 2015 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox, NVIDIA

More information

An Overview of Fujitsu s Lustre Based File System

An Overview of Fujitsu s Lustre Based File System An Overview of Fujitsu s Lustre Based File System Shinji Sumimoto Fujitsu Limited Apr.12 2011 For Maximizing CPU Utilization by Minimizing File IO Overhead Outline Target System Overview Goals of Fujitsu

More information

CPMD Performance Benchmark and Profiling. February 2014

CPMD Performance Benchmark and Profiling. February 2014 CPMD Performance Benchmark and Profiling February 2014 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the supporting

More information

OLCF's next- genera0on Spider file system

OLCF's next- genera0on Spider file system OLCF's next- genera0on Spider file system Sarp Oral, PhD File and Storage Systems Team Lead Technology Integra0on Group Oak Ridge Leadership Compu0ng Facility Oak Ridge Na0onal Laboratory April 18, 2013

More information

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09 RDMA over Ethernet - A Preliminary Study Hari Subramoni, Miao Luo, Ping Lai and Dhabaleswar. K. Panda Computer Science & Engineering Department The Ohio State University Introduction Problem Statement

More information

NAMD Performance Benchmark and Profiling. February 2012

NAMD Performance Benchmark and Profiling. February 2012 NAMD Performance Benchmark and Profiling February 2012 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource -

More information

1. ALMA Pipeline Cluster specification. 2. Compute processing node specification: $26K

1. ALMA Pipeline Cluster specification. 2. Compute processing node specification: $26K 1. ALMA Pipeline Cluster specification The following document describes the recommended hardware for the Chilean based cluster for the ALMA pipeline and local post processing to support early science and

More information

The Common Communication Interface (CCI)

The Common Communication Interface (CCI) The Common Communication Interface (CCI) Presented by: Galen Shipman Technology Integration Lead Oak Ridge National Laboratory Collaborators: Scott Atchley, George Bosilca, Peter Braam, David Dillow, Patrick

More information

Screencast: OMPI OpenFabrics Protocols (v1.2 series)

Screencast: OMPI OpenFabrics Protocols (v1.2 series) Screencast: OMPI OpenFabrics Protocols (v1.2 series) Jeff Squyres May 2008 May 2008 Screencast: OMPI OpenFabrics Protocols (v1.2 series) 1 Short Messages For short messages memcpy() into / out of pre-registered

More information