2002 Intelligent Ground Vehicle Competition Design Report. Grizzly Oakland University

Size: px
Start display at page:

Download "2002 Intelligent Ground Vehicle Competition Design Report. Grizzly Oakland University"

Transcription

1 2002 Intelligent Ground Vehicle Competition Design Report Grizzly Oakland University June 21, 2002 Submitted By: Matt Rizzo Brian Clark Brian Yurconis Jelena Nikolic

2 I. ABSTRACT Grizzly is the product of just under a year of work conducted by undergraduate engineering students that had never before designed or built an autonomous vehicle. The main focus of the team was to learn and understand new technologies and attempt to make them work in a real-world project. The ground vehicle that is entered in this year s competition has a Global Positioning System (GPS), an omni-directional self-stabilizing camera system for vision, a pair of LIDAR distance sensors to measure distances to hard objects, and wheels speeds sensors to help control the vehicle. A laptop is used to combine all sensors and control the vehicle. In addition to the design and construction of the vehicle our team attempted to use this project to help other students, both college and high school, in their understanding of engineering principles. In addition, this year s team was pleased to bring back to life Oakland Universities AUVS student chapter, and we hope that it will remain active for many years to come.

3 Table of Contents I. ABSTACT II. Grizzly Subsystems a. Electrical i. NovAtel GPS ii. Omni-Directional Self Stabilizing Camera iii. Mitsubishi LIDAR iv. Innovation First Robot Controller 1. Victor H Bridges 2. Spike Relay 3. Hall Effect Wheel Speed Sensors v. Power system 1. Battery 2. Fuse setup 3. 5v Converter 4. RS422 to RS232 converter b. Mechanical i. Mabuchi RS550 PF-6534 ii. Step down gearbox, 147 to 1 ratio c. Navigation/Control i. A* Path Planning / Obstacle Avoidance Program ii. Sensor Fusion with Kalman Filter iii. Software PI Controllers iv. C++ Dynamic Link Libraries III. System Integration IV. Costs V. Conclusion

4 II. Grizzly Subsystems Electrical Subsystem The electrical subsystem of Grizzly consists of the necessary components that are required for autonomous navigation. The NovAtel Pro-Pak4E GPS unit contains the Euro4 that is capable of tracking 12 satellites and has accuracy below 2 meters in both latitude and longitude. The Pro-Pak4E is further enhanced with the GPS-600L1 antenna with NovAtel s Pinwheel (patent pending) aperture couple slot array technology. The Pro-Pak4E also has the ability to output the vehicles forward velocity and current heading. All communication with the device is done using a standard PC serial line and custom-built C++ program to read in the GPS data packets. It is also important to note that NovAtel was gracious enough to give us an educational discount on the price of the unit. Without this discount we probably would have not been able to purchase this device. The Omni-Directional Self-Stabilizing Camera system is the main sensor on the vehicle. It is responsible for detection white lines painted on the ground, and finding any other obstacles that are in front of the vehicle. The camera system uses a simple and cheap USB web cam, and a convex mirror that is designed for trucks. The advantage of this system is its field-of-view (FOV) is greatly enhanced with the use of a convex mirror. The only drawback is the decrease in resolution. In order to determine distances on the ground, the camera is calibrated and a map of the mirror is built using Sugano- Type Fuzzy Logic. The Self-Stabilizing platform, which was designed by Ruben de Schipper, is used to maintain a vertical positioning of the camera. The camera is calibrated while vertical to the ground so any deviation from this will cause errors in the positioning calculations. The Self-Stabilizing platform uses 2 angular rate sensors (gyros) and 2 linear accelerometers to maintain the platform s position. The system also uses sensor fusing to estimate the angle of the platform.

5 Self-Stabilizing platform Omni-Direction Camera The Mitsubishi LIDAR s where donated to our team by Mitsubishi Electric and have the ability to measure distances using an infrared laser. Grizzly uses 2 of these units, where each unit has a FOV of 12 degrees wide by 4 degrees tall. Within the 12 degree span the unit takes 80 measurements that can measure as far as meters. The major disadvantage to these units is their narrow FOV. To fix this problem a rotating platform with the two LIDAR s fixed 90 degrees to each other was looked into; the prototype platform did not provide the results we wanted and with time running out, we abandoned the idea for this year. The major problem encountered in the prototype was that lack of smooth free action and scanning time. Communication with the LIDAR s is accomplished using a Hitachi SH2 micro-controller and a standard PC serial port to connect the SH2 to the laptop. Each LIDAR uses a serial port from communications, so the SH2 was used to compress the 2 serial ports down to 1. To control the motors on the vehicle an Innovation FIRST Robot Controller was used to act as an interface/relay between the laptop and the H-Bridges. The Innovation First Controller is designed for the FIRST high school robotics competition. A C++

6 program was developed to communicate with the controller using a serial port line. The program allows the computer to have complete control over the commands being sent to the H-Bridges. The wheel speed calculations are fed into the FIRST Controller s digital I/O lines, which are then sent back to the PC. Included with the FIRST Controller are the Victor H Bridges and the Spike Relay. These all connect to control pins that are controlled by the FIRST Controller. The final piece of the electrical system is the power system. Grizzly s power system consists of fuse/circuit breaker distribution blocks that allow independent protection for all electrical components, and a 12V to 5V output DC-DC converter. A single sealed lead-acid 12V 18Ah battery is used to power the entire system with an estimated run time of 3 hours. Mechanical Subsystem Grizzly was constructed using only the simplest of framing materials. This choice has two major advantages, one, the overall cost of construction is low, and two, the vehicle is simple and requires limited resources. The underlining frame is a child s Power Wheels toy build by Fisher Price. This frame was chosen because of its ability to handle rough terrain, its light weight, its already had a built in motor and gear box and it was easy to add on to. Two Mabuchi RS550 PF-6534 motors with accompanying 147:1 gearboxes are used to power the 18-inch plastic wheels; these motors are connected directly to the H- Bridges previously mentioned. During field tests a safe vehicle speeds was found to be much lower than the max speed, so during normal operations the motors are not running at their maximum speeds.

7 Navigation/Control Subsystem The overall control of the vehicle is governed by a navigation program that used the A* path planning method. The A* method consisted of a grid being laid out around the vehicle and each cell within the grid can either be passable or impassable. The A* program is given the target cell position and its starting position and it searches the grid for the target. Once the target is found it traces its steps back to find the path. The A* program utilizes a heuristic, of the distance from its current position to the target, in its calculations. This ensures that the path found would be the optimal path given the particular grid. The A* method is very flexible because it does not differentiate between types of obstacles; they can be white or yellow lanes, construction barrels, or white 5 gallon jugs. It takes into account the value of the cells it interacts with, being either passable or impassable. This feature makes it much easier for the programmers because the same program, with only limited changes, can be used for both the Autonomous and Navigation Challenges. A* example #1 A* example #2 The navigation program starts by taking in all current sensor and target data. It then builds the grid and marks all cells near calculated obstacle positions as impassable. Once the grid is built, the A* program finds the path to the target. The path known, a heading error is calculated by looking out on the path a fixed distance on the path. A PI (Proportional/Integral) Controller is used to minimize the heading error. This process is repeated until the target is reached or the vehicle is stopped.

8 The navigation programs construction is unique in the fact that C++ Dynamic Linked Libraries (DLLs) where used to separate individual components of the software. For example, all serial port communication run on its own thread or process. This allows constant communications with a device and ensures a constant steady stream of sensor data and motor commands to be received and sent. The code separation that is required when using DLLs helped tremendously because as the sophistication of our vehicle grew, so did the amount of code that was being written. Without the use of DLLs, the amount of code in a single program would have been so large that debugging would be very difficult. Also included in the navigation program is a Kalman Filter that is used to combine wheel speed sensors with the GPS positioning data to calculate a more accurate position. The Kalman Filer code was written in C++ and uses a free matrix algebra C++ library for the matrix calculations. The filter estimates the position of the vehicle using both the raw GPS data along with dead-reckoning calculations that are done using the Hall Effect sensors that measure the RPM of each wheel. This has proven very useful and has enhanced our already accurate GPS. III. System Integration Grizzly is made up of many subsystems but without a core center nothing would happen. The core of Grizzly is the laptop which reads in all sensor data, makes a decision on what the next actions should be, and then commands the motors to manipulate the vehicle. As mentioned before all communication to and from the laptop is made through RS-232 serial ports. The exceptions are the joystick and the camera, which are USB. The laptop being used is a Dell Latitude CPt 400MHz, and the backup laptop is a Sony Vaio, 800 MHz Athlon

9 IV. Costs Equipment NovAtel GPS + Antenna $ Intel USB WebCam ~$100 Frame/Motors/Gearbox ~$200 Innovation FIRST Controller $800 (donated) Microsoft Sidewinder Joystick $25 Batteries $100 12v to 5v DC-DC converter $80 Hitachi SH2 $300 Stamp micro-controller $100 PCMCIA-to-quad serial port card $360 Convex Mirror $10 Self-Stabilizing platform? (custom made) Cost V. Conclusion Grizzly is a capable autonomous vehicle that can navigate itself to pre-determined GPS positions while avoiding obstacles along its traverse. Grizzly is also able to compete in the Autonomous Challenge where it will stay within the lanes throughout the course while avoiding any and all obstacles. Grizzly was an excellent learning experience and has open all of the participating students to many new fields and topics that where unknown a year ago. The chance to work with today s cutting-edge technologies, such as GPS, is an experience more engineering students should have.

9th Intelligent Ground Vehicle Competition. Design Competition Written Report. Design Change Report AMIGO

9th Intelligent Ground Vehicle Competition. Design Competition Written Report. Design Change Report AMIGO 9th Intelligent Ground Vehicle Competition Design Competition Written Report Design Change Report AMIGO AMIGO means the friends who will join to the IGV Competition. Watanabe Laboratory Team System Control

More information

Systems and Control Engineering Department Faculty of Engineering, Hosei University Kajinocho Koganei, Tokyo , Japan ;

Systems and Control Engineering Department Faculty of Engineering, Hosei University Kajinocho Koganei, Tokyo , Japan  ; Systems and Control Engineering Department Faculty of Engineering, Hosei University 3-7-2 Kajinocho Koganei, Tokyo 194-8584, Japan E-mail; ikko@hosei.ac.jp Faculty Advisor Statement I hereby certify that

More information

Jo-Car2 Autonomous Mode. Path Planning (Cost Matrix Algorithm)

Jo-Car2 Autonomous Mode. Path Planning (Cost Matrix Algorithm) Chapter 8.2 Jo-Car2 Autonomous Mode Path Planning (Cost Matrix Algorithm) Introduction: In order to achieve its mission and reach the GPS goal safely; without crashing into obstacles or leaving the lane,

More information

This is an inspection failure, not meeting the requirement of >10k Ohm between either PD battery post and chassis.

This is an inspection failure, not meeting the requirement of >10k Ohm between either PD battery post and chassis. Troubleshooting This is a document put together by CSA Laura Rhodes that contains a lot of information about troubleshooting steps for a lot of common control system problems encountered at events. No

More information

2004 IGVC LTU Zenna Design Report. Project Zenna IGVC entry from Lawrence Technological University

2004 IGVC LTU Zenna Design Report. Project Zenna IGVC entry from Lawrence Technological University Project Zenna 2004 IGVC entry from Lawrence Technological University Team Zenna: Mike Nasers Mohammad Jallad Faculty Adviser Statement: I, Dr Chan-Jin Chung of the Department of Math and Computer Science

More information

WAVE2: Warriors Autonomous Vehicle IGVC Entry. Wayne State University. Advising Faculty: Dr. R. Darin Ellis. Team Members: Justin Ar-Rasheed

WAVE2: Warriors Autonomous Vehicle IGVC Entry. Wayne State University. Advising Faculty: Dr. R. Darin Ellis. Team Members: Justin Ar-Rasheed WAVE2: Warriors Autonomous Vehicle 2010 IGVC Entry Wayne State University Advising Faculty: Dr. R. Darin Ellis Team Members: Justin Ar-Rasheed Shawn Hunt Sam Li Vishal Lowalekar Prem Sivakumar Ali Syed

More information

Epic Made Easy The Redesigned 350 QX3

Epic Made Easy The Redesigned 350 QX3 Available November 2014 350 QX3 AP Combo BLH8160 (APC) Epic Made Easy The Redesigned 350 QX3 Capturing spectacular aerial video and stills is even easier with the new Blade 350 QX3. Its simplified controls,

More information

Build and Test Plan: IGV Team

Build and Test Plan: IGV Team Build and Test Plan: IGV Team 2/6/2008 William Burke Donaldson Diego Gonzales David Mustain Ray Laser Range Finder Week 3 Jan 29 The laser range finder will be set-up in the lab and connected to the computer

More information

Indoor Mobile Robot Navigation and Obstacle Avoidance Using a 3D Camera and Laser Scanner

Indoor Mobile Robot Navigation and Obstacle Avoidance Using a 3D Camera and Laser Scanner AARMS Vol. 15, No. 1 (2016) 51 59. Indoor Mobile Robot Navigation and Obstacle Avoidance Using a 3D Camera and Laser Scanner Peter KUCSERA 1 Thanks to the developing sensor technology in mobile robot navigation

More information

Sensor Fusion: Potential, Challenges and Applications. Presented by KVH Industries and Geodetics, Inc. December 2016

Sensor Fusion: Potential, Challenges and Applications. Presented by KVH Industries and Geodetics, Inc. December 2016 Sensor Fusion: Potential, Challenges and Applications Presented by KVH Industries and Geodetics, Inc. December 2016 1 KVH Industries Overview Innovative technology company 600 employees worldwide Focused

More information

TEST RESULTS OF A GPS/INERTIAL NAVIGATION SYSTEM USING A LOW COST MEMS IMU

TEST RESULTS OF A GPS/INERTIAL NAVIGATION SYSTEM USING A LOW COST MEMS IMU TEST RESULTS OF A GPS/INERTIAL NAVIGATION SYSTEM USING A LOW COST MEMS IMU Alison K. Brown, Ph.D.* NAVSYS Corporation, 1496 Woodcarver Road, Colorado Springs, CO 891 USA, e-mail: abrown@navsys.com Abstract

More information

Active2012 HOSEI UNIVERSITY

Active2012 HOSEI UNIVERSITY Active2012 HOSEI UNIVERSITY Faculty of Science and Engineering, Hosei University 3-7-2 Kajinocho Koganei, Tokyo 194-8584, Japan E-mail; ikko@hosei.ac.jp Faculty Advisor Statement I hereby certify that

More information

WIRELESS VEHICLE WITH ANIMATRONIC ROBOTIC ARM

WIRELESS VEHICLE WITH ANIMATRONIC ROBOTIC ARM WIRELESS VEHICLE WITH ANIMATRONIC ROBOTIC ARM PROJECT REFERENCE NO. : 37S0918 COLLEGE : P A COLLEGE OF ENGINEERING, MANGALORE BRANCH : ELECTRONICS & COMMUNICATION GUIDE : MOHAMMAD RAFEEQ STUDENTS : CHARANENDRA

More information

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS Mobile Robotics Mathematics, Models, and Methods Alonzo Kelly Carnegie Mellon University HI Cambridge UNIVERSITY PRESS Contents Preface page xiii 1 Introduction 1 1.1 Applications of Mobile Robots 2 1.2

More information

Android Spybot. ECE Capstone Project

Android Spybot. ECE Capstone Project Android Spybot ECE Capstone Project Erik Bruckner - bajisci@eden.rutgers.edu Jason Kelch - jkelch@eden.rutgers.edu Sam Chang - schang2@eden.rutgers.edu 5/6/2014 1 Table of Contents Introduction...3 Objective...3

More information

Southern Illinois University Edwardsville

Southern Illinois University Edwardsville Southern Illinois University Edwardsville 2014-2015 I certify that the design and engineering of the vehicle Roadrunner by the SIUE Team Roadrunner has been significant and equivalent to what might be

More information

Summary of Computing Team s Activities Fall 2007 Siddharth Gauba, Toni Ivanov, Edwin Lai, Gary Soedarsono, Tanya Gupta

Summary of Computing Team s Activities Fall 2007 Siddharth Gauba, Toni Ivanov, Edwin Lai, Gary Soedarsono, Tanya Gupta Summary of Computing Team s Activities Fall 2007 Siddharth Gauba, Toni Ivanov, Edwin Lai, Gary Soedarsono, Tanya Gupta 1 OVERVIEW Input Image Channel Separation Inverse Perspective Mapping The computing

More information

Exam in DD2426 Robotics and Autonomous Systems

Exam in DD2426 Robotics and Autonomous Systems Exam in DD2426 Robotics and Autonomous Systems Lecturer: Patric Jensfelt KTH, March 16, 2010, 9-12 No aids are allowed on the exam, i.e. no notes, no books, no calculators, etc. You need a minimum of 20

More information

SpatialFuser. Offers support for GNSS and INS navigation systems. Supports multiple remote sensing equipment configurations.

SpatialFuser. Offers support for GNSS and INS navigation systems. Supports multiple remote sensing equipment configurations. SPATIALFUSER SpatialFuser SpatialFuser is designed to georeference data acquired by our LiDAR mapping systems into common mapping formats such as LAS/LAZ or GPX. The main purpose of SpatialFuser is to

More information

OFERTA O120410PA CURRENT DATE 10/04//2012 VALID UNTIL 10/05/2012 SUMMIT XL

OFERTA O120410PA CURRENT DATE 10/04//2012 VALID UNTIL 10/05/2012 SUMMIT XL OFERTA O120410PA CURRENT DATE 10/04//2012 VALID UNTIL 10/05/2012 SUMMIT XL CLIENT CLIENT: Gaitech REPRESENTANT: Andrew Pether MAIL: andyroojp@hotmail.com PRODUCT Introduction The SUMMIT XL has skid-steering

More information

8th Intelligent Ground Vehicle Competition

8th Intelligent Ground Vehicle Competition 8th Intelligent Ground Vehicle Competition Design Competition Written Report AMIGO AMIGO means the friends who will join to the IGV Competition. Watanabe Laboratory Team System Control Engineering Department

More information

PATENT LIABILITY ANALYSIS. Daniel Barrett Sebastian Hening Sandunmalee Abeyratne Anthony Myers

PATENT LIABILITY ANALYSIS. Daniel Barrett Sebastian Hening Sandunmalee Abeyratne Anthony Myers PATENT LIABILITY ANALYSIS Autonomous Targeting Vehicle (ATV) Daniel Barrett Sebastian Hening Sandunmalee Abeyratne Anthony Myers Autonomous wheeled vehicle with obstacle avoidance Two infrared range finder

More information

UCSD AUVSI Unmanned Aerial System Team. Joshua Egbert Shane Grant

UCSD AUVSI Unmanned Aerial System Team. Joshua Egbert Shane Grant UCSD AUVSI Unmanned Aerial System Team Joshua Egbert Shane Grant Agenda Project background and history System design overview Gimbal Stabilization Target Recognition Lessons Learned Future Work Q&A UCSD

More information

Technical Specification for Educational Robots

Technical Specification for Educational Robots Technical Specification for Educational Robots 1. Introduction The e-yantra project, sponsored by MHRD, aims to start a robotic revolution in the country through the deployment of low-cost educational

More information

FIRST Robotics Optimized Drive Train System

FIRST Robotics Optimized Drive Train System FIRST Robotics Optimized Drive Train System Design Team Nicole Byrne, Michael Conry, Steven Fernandez, Brandon Holley Design Advisors Prof. Yiannis Levendis, Prof. Donald Goldthwaite Abstract The purpose

More information

A Simple Introduction to Omni Roller Robots (3rd April 2015)

A Simple Introduction to Omni Roller Robots (3rd April 2015) A Simple Introduction to Omni Roller Robots (3rd April 2015) Omni wheels have rollers all the way round the tread so they can slip laterally as well as drive in the direction of a regular wheel. The three-wheeled

More information

A Reactive Bearing Angle Only Obstacle Avoidance Technique for Unmanned Ground Vehicles

A Reactive Bearing Angle Only Obstacle Avoidance Technique for Unmanned Ground Vehicles Proceedings of the International Conference of Control, Dynamic Systems, and Robotics Ottawa, Ontario, Canada, May 15-16 2014 Paper No. 54 A Reactive Bearing Angle Only Obstacle Avoidance Technique for

More information

Homework 13: User Manual

Homework 13: User Manual Homework 13: User Manual Team Code Name: Autonomous Targeting Vehicle Group No. 3 User Manual Outline: Brief (marketing-style) product description Product illustration annotated with callouts for each

More information

ECGR4161/5196 Lecture 6 June 9, 2011

ECGR4161/5196 Lecture 6 June 9, 2011 ECGR4161/5196 Lecture 6 June 9, 2011 YouTube Videos: http://www.youtube.com/watch?v=7hag6zgj78o&feature=p layer_embedded Micro Robotics Worlds smallest robot - Version 1 - "tank" Worlds smallest robot

More information

WatBot: Design Report

WatBot: Design Report IGVC2014-WatBot WatBot: Design Report University of Waterloo Stuart Alldritt, Tim Vieregge, AJ Rosewarne Steven Waslander (stevenw@uwaterloo.ca) ABSTRACT The Intelligent Ground Vehicle Competition is a

More information

THE MANTIS INTELLIGENT ROBOTIC PLATFORM

THE MANTIS INTELLIGENT ROBOTIC PLATFORM IGVC2014-MANTIS THE MANTIS INTELLIGENT ROBOTIC PLATFORM Oakland University Kevin Hallenbeck, Mike Truitt, Steve Grzebyk, Mike Norman, Brian Neumeyer, Britni Reese, Parker Bidigare, Lincoln Lorenz, Sami

More information

Line tracking sensors and algorithms

Line tracking sensors and algorithms Line tracking sensors and algorithms Posted on February 28, 2008, by Ibrahim KAMAL, in Robotics, tagged Line tracking is a very important notion in the world of robotics as it give to the robot a precise,

More information

The UTA Crazy Horse Platform

The UTA Crazy Horse Platform The UTA Crazy Horse Platform University of Texas at Arlington Required Faculty Advisor Statement (*) I hereby certify that the engineering design and development on Crazy Horse has been significant and

More information

PROMETHEUS: WPI s 2012 ENTRY TO IGVC. Authors: Craig DeMello Robotics Engineering. Eric Fitting. Taskin Padir. Samson King.

PROMETHEUS: WPI s 2012 ENTRY TO IGVC. Authors: Craig DeMello Robotics Engineering. Eric Fitting. Taskin Padir. Samson King. PROMETHEUS: WPI s 2012 ENTRY TO IGVC Authors: Craig DeMello Robotics Engineering Eric Fitting Robotics Engineering Computer Science Samson King Robotics Engineering Greg McConnell Robotics Engineering

More information

Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018

Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018 Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018 Asaf Moses Systematics Ltd., Technical Product Manager aviasafm@systematics.co.il 1 Autonomous

More information

Control System Consideration of IR Sensors based Tricycle Drive Wheeled Mobile Robot

Control System Consideration of IR Sensors based Tricycle Drive Wheeled Mobile Robot Control System Consideration of IR Sensors based Tricycle Drive Wheeled Mobile Robot Aye Aye New, Aye Aye Zan, and Wai Phyo Aung Abstract Nowadays, Wheeled Mobile Robots (WMRs) are built and the control

More information

RDB3K. An Unique Omni-directional 4-Wheeled Platform Governed by ARTMAP Neural Networks. Volunteer Team Members:

RDB3K. An Unique Omni-directional 4-Wheeled Platform Governed by ARTMAP Neural Networks. Volunteer Team Members: RDB3K An Unique Omni-directional 4-Wheeled Platform Governed by ARTMAP Neural Networks Volunteer Team Members: Core Members: Contributing Members: Programming, Concept, and Schematics: Electronics, Funding:

More information

Intelligent Outdoor Navigation of a Mobile Robot Platform Using a Low Cost High Precision RTK-GPS and Obstacle Avoidance System

Intelligent Outdoor Navigation of a Mobile Robot Platform Using a Low Cost High Precision RTK-GPS and Obstacle Avoidance System Intelligent Outdoor Navigation of a Mobile Robot Platform Using a Low Cost High Precision RTK-GPS and Obstacle Avoidance System Under supervision of: Prof. Dr. -Ing. Klaus-Dieter Kuhnert Dipl.-Inform.

More information

2 Structural Design. 2.1 Electrical Design

2 Structural Design. 2.1 Electrical Design ALEN Faculty Statement: ALEN was designed and built by our student team over the course of a year. For this substantial design effort, the students senior project and independent study credit. 1 Introduction

More information

GNSS-aided INS for land vehicle positioning and navigation

GNSS-aided INS for land vehicle positioning and navigation Thesis for the degree of Licentiate of Engineering GNSS-aided INS for land vehicle positioning and navigation Isaac Skog Signal Processing School of Electrical Engineering KTH (Royal Institute of Technology)

More information

VERTIGO. Team Captains: Team Members: IGVC 2018 Design Report University of Detroit Mercy. Christine Hillebrand Marcus Barnett

VERTIGO. Team Captains: Team Members: IGVC 2018 Design Report University of Detroit Mercy. Christine Hillebrand Marcus Barnett VERTIGO IGVC 2018 Design Report University of Detroit Mercy Team Captains: Christine Hillebrand Marcus Barnett Team Members: Ted Chase Nayan Patel Isaac Elicea John Slowik Ben Kendell Zach Arnold Anna

More information

CAPRA DESIGN REPORT. École de technologie supérieure François Langelier Camille Roch Gabriel Kenderessy Jérémie Savage Philippe Delisle

CAPRA DESIGN REPORT. École de technologie supérieure François Langelier Camille Roch Gabriel Kenderessy Jérémie Savage Philippe Delisle IGVC2014-CAPRA6 CAPRA DESIGN REPORT École de technologie supérieure François Langelier Camille Roch Gabriel Kenderessy Jérémie Savage Philippe Delisle Department of Software Engineering and Information

More information

Evaluating the Performance of a Vehicle Pose Measurement System

Evaluating the Performance of a Vehicle Pose Measurement System Evaluating the Performance of a Vehicle Pose Measurement System Harry Scott Sandor Szabo National Institute of Standards and Technology Abstract A method is presented for evaluating the performance of

More information

THE MANTIS 2.0 INTELLIGENT ROBOTIC PLATFORM. Oakland University

THE MANTIS 2.0 INTELLIGENT ROBOTIC PLATFORM. Oakland University IGVC2015-MANTIS 2.0 THE MANTIS 2.0 INTELLIGENT ROBOTIC PLATFORM Oakland University Brian Neumeyer, Jozefina Ujka, Tyler Gnass, Parker Bidigare, Christopher Hideg, Lucas Fuchs, Sami Oweis Ph.D., Hudhaifa

More information

SPARTAN ROBOTICS FRC 971

SPARTAN ROBOTICS FRC 971 SPARTAN ROBOTICS FRC 971 Controls Documentation 2015 Design Goals Create a reliable and effective system for controlling and debugging robot code that provides greater flexibility and higher performance

More information

Faculty Advisor Statement

Faculty Advisor Statement Abou-Baker Kadmiry Amandeep Brar Chris Smith Daniel Kim Daniel Valenzuela Denny Farias Eric Espiritu Hassib Abi Rafeh Jesse Campos Jesse Combs Joseph Prince Margaret Goldman Melissa Flores Qusai Qaneetah

More information

LibrePilot GCS Tutorial

LibrePilot GCS Tutorial LibrePilot GCS Tutorial BY Wirginia Tomczyk page 1 of 13 Introduction The first dron of Drone Team project use Open Pilot Copter Control (CC). It is the flight controller supported by LibrePilot firmware.

More information

Multiple camera, laser rangefinder, and encoder data fusion for navigation of a differentially steered 3-wheeled autonomous vehicle

Multiple camera, laser rangefinder, and encoder data fusion for navigation of a differentially steered 3-wheeled autonomous vehicle Multiple camera, laser rangefinder, and encoder data fusion for navigation of a differentially steered 3-wheeled autonomous vehicle David C. Conner*, Philip R. Kedrowski, Charles F. Reinholtz Department

More information

Aaronia GPS-Logger Software. Users Guide

Aaronia GPS-Logger Software. Users Guide Aaronia GPS-Logger Software Users Guide Index GPS-Logger Software Version 0.2...3 System Requirements...4 Hardware Overview...5 Top view...6 Back view...7 Software Installation...8 Quickstart...9 Device

More information

Outline Sensors. EE Sensors. H.I. Bozma. Electric Electronic Engineering Bogazici University. December 13, 2017

Outline Sensors. EE Sensors. H.I. Bozma. Electric Electronic Engineering Bogazici University. December 13, 2017 Electric Electronic Engineering Bogazici University December 13, 2017 Absolute position measurement Outline Motion Odometry Inertial systems Environmental Tactile Proximity Sensing Ground-Based RF Beacons

More information

GPS-Aided Inertial Navigation Systems (INS) for Remote Sensing

GPS-Aided Inertial Navigation Systems (INS) for Remote Sensing GPS-Aided Inertial Navigation Systems (INS) for Remote Sensing www.inertiallabs.com 1 EVOLUTION OF REMOTE SENSING The latest progress in Remote sensing emerged more than 150 years ago, as balloonists took

More information

12th Intelligent Ground Vehicle Competition

12th Intelligent Ground Vehicle Competition 12th Intelligent Ground Vehicle Competition Design Competition Written Report AMIGO2004 HOSEI UNIVERSITY Signed Date Watanabe Laboratory Team System and Control Engineering Department Faculty of Engineering

More information

UAV Hyperspectral system for remote sensing application

UAV Hyperspectral system for remote sensing application UAV Hyperspectral system for remote sensing application The system consists airborne imaging spectrophotometer placed on a frame suitable for use aircraft, a UAV helicopter and all components needed for

More information

ECE 477 Design Review Team 8 Spring Mike Cianciarulo, Josh Wildey, Robert Toepfer, Trent Nelson

ECE 477 Design Review Team 8 Spring Mike Cianciarulo, Josh Wildey, Robert Toepfer, Trent Nelson ECE 477 Design Review Team 8 Spring 2008 Mike Cianciarulo, Josh Wildey, Robert Toepfer, Trent Nelson Outline Project overview Project-specific success criteria Block diagram Component selection rationale

More information

CS283: Robotics Fall 2016: Software

CS283: Robotics Fall 2016: Software CS283: Robotics Fall 2016: Software Sören Schwertfeger / 师泽仁 ShanghaiTech University Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 2 Review Definition Robot: A machine capable of performing

More information

Sensory Augmentation for Increased Awareness of Driving Environment

Sensory Augmentation for Increased Awareness of Driving Environment Sensory Augmentation for Increased Awareness of Driving Environment Pranay Agrawal John M. Dolan Dec. 12, 2014 Technologies for Safe and Efficient Transportation (T-SET) UTC The Robotics Institute Carnegie

More information

Final Report. EEL 5666 Intelligent Machines Design Laboratory

Final Report. EEL 5666 Intelligent Machines Design Laboratory Final Report EEL 5666 Intelligent Machines Design Laboratory TAs: Mike Pridgen & Thomas Vermeer Instructors: Dr. A. Antonio Arroyo & Dr. Eric M. Schwartz Hao (Hardy) He Dec 08 th, 2009 Table of Contents

More information

Vehicle Localization. Hannah Rae Kerner 21 April 2015

Vehicle Localization. Hannah Rae Kerner 21 April 2015 Vehicle Localization Hannah Rae Kerner 21 April 2015 Spotted in Mtn View: Google Car Why precision localization? in order for a robot to follow a road, it needs to know where the road is to stay in a particular

More information

MEM 380/800: Autonomous Vehicle Control I

MEM 380/800: Autonomous Vehicle Control I Abstract MEM 380/800: Autonomous Vehicle Control I Project Summary December 4, 2008 Jason Collins, Ted Bieniosek, Jessica Snyder An all terrain radio operated vehicle was modified both mechanically and

More information

Leica Systems Overview

Leica Systems Overview RC30 AERIAL CAMERA SYSTEM Leica Systems Overview The Leica RC30 aerial film camera is the culmination of decades of development, started with Wild's first aerial camera in the 1920s. Beautifully engineered

More information

GSM+GPS Based School Kids Tracking System

GSM+GPS Based School Kids Tracking System GSM+GPS Based School Kids Tracking System Introduction: In this project, the tracking system will used GPS (Global Positioning System) and GSM(Global System for Mobile Communications)as the tracking system

More information

AlphaBot2 robot building kit for Raspberry Pi 3 Model B

AlphaBot2 robot building kit for Raspberry Pi 3 Model B AlphaBot2 robot building kit for Raspberry Pi 3 Model B SKU 110060863 Description This AlphaBot2 robot kit is designed to use with Raspberry Pi 3 Model B. It features rich common robot functions including

More information

3D Laser Range Finder Topological sensor gathering spatial data from the surrounding environment

3D Laser Range Finder Topological sensor gathering spatial data from the surrounding environment Initial Project and Group Identification Document September 19, 2013 3D Laser Range Finder Topological sensor gathering spatial data from the surrounding environment Christian Conrose Jonathan Ulrich Andrew

More information

Georgia Institute of Technology RoboJackets 2007 IGVC Design Report

Georgia Institute of Technology RoboJackets 2007 IGVC Design Report Georgia Institute of Technology RoboJackets 2007 IGVC Design Report Table of Contents 1. Introduction 1 2. Team Organization 1 3. Vehicle Design 2 3.1 Mechanical 2 3.2 Electrical 3 3.2.1 Environmental

More information

Design Progress Report: x10 Environmental Control System Brian Kennedy, David Ramsay University of Rhode Island, Department of Biomedical Engineering

Design Progress Report: x10 Environmental Control System Brian Kennedy, David Ramsay University of Rhode Island, Department of Biomedical Engineering Design Progress Report: x10 Environmental Control System Brian Kennedy, David Ramsay University of Rhode Island, Department of Biomedical Engineering Kingston, Rhode Island Professors: Ying Sun, PhD. Eugene

More information

Arduino Smart Robot Car Kit User Guide

Arduino Smart Robot Car Kit User Guide User Guide V1.0 04.2017 UCTRONIC Table of Contents 1. Introduction...3 2. Assembly...4 2.1 Arduino Uno R3...4 2.2 HC-SR04 Ultrasonic Sensor Module with Bracket / Holder...5 2.3 L293D Motor Drive Expansion

More information

E-Blocks Easy GPS Bundle

E-Blocks Easy GPS Bundle Page 1 Cover Page Page 2 Flowcode Installing Flowcode Instruction for installing Flowcode can be found inside the installation booklet located inside the Flowcode DVD case. Before starting with the course

More information

ECE 480- Proposal. Team 8- agbot competition. By: Harsh Desai, Yirui Wu, Yanqi Wang, Chen Hao, Sumanto Pal.

ECE 480- Proposal. Team 8- agbot competition. By: Harsh Desai, Yirui Wu, Yanqi Wang, Chen Hao, Sumanto Pal. ECE 480- Proposal Team 8- agbot competition By: Harsh Desai, Yirui Wu, Yanqi Wang, Chen Hao, Sumanto Pal. 10/9/2015 Table of contents Introduction Background Problem Statement Customer requirements Exploring

More information

1. INTRODUCTION 2. DESIGN INNOVATIONS 3. PROJECT MANAGEMENT

1. INTRODUCTION 2. DESIGN INNOVATIONS 3. PROJECT MANAGEMENT 1. INTRODUCTION The University of Detroit Mercy (UDM) 2011 IGVC team is pleased to reintroduce Megatron, an enhanced version of Cerberus, the differential drive vehicle first introduced in the 2010 IGVC.

More information

Internet Robotics Using an Open Source Platform

Internet Robotics Using an Open Source Platform Internet Robotics Using an Open Source Platform Adam Wilson University of Northern Colorado Colorado Space Grant Consortium Abstract Our dependence on the internet is escalating daily. The ability to control

More information

3D Terrain Sensing System using Laser Range Finder with Arm-Type Movable Unit

3D Terrain Sensing System using Laser Range Finder with Arm-Type Movable Unit 3D Terrain Sensing System using Laser Range Finder with Arm-Type Movable Unit 9 Toyomi Fujita and Yuya Kondo Tohoku Institute of Technology Japan 1. Introduction A 3D configuration and terrain sensing

More information

ME 597/747 Autonomous Mobile Robots. Mid Term Exam. Duration: 2 hour Total Marks: 100

ME 597/747 Autonomous Mobile Robots. Mid Term Exam. Duration: 2 hour Total Marks: 100 ME 597/747 Autonomous Mobile Robots Mid Term Exam Duration: 2 hour Total Marks: 100 Instructions: Read the exam carefully before starting. Equations are at the back, but they are NOT necessarily valid

More information

Detection and Avoidance of Simulated Potholes in Autonomous Vehicle Navigation in an Unstructured Environment

Detection and Avoidance of Simulated Potholes in Autonomous Vehicle Navigation in an Unstructured Environment Detection and Avoidance of Simulated Potholes in Autonomous Vehicle Navigation in an Unstructured Environment Jaiganesh Karuppuswamy, Vishnuvardhanaraj Selvaraj, Meyyappa Murugappa Ganesh and Ernest L

More information

Relating Local Vision Measurements to Global Navigation Satellite Systems Using Waypoint Based Maps

Relating Local Vision Measurements to Global Navigation Satellite Systems Using Waypoint Based Maps Relating Local Vision Measurements to Global Navigation Satellite Systems Using Waypoint Based Maps John W. Allen Samuel Gin College of Engineering GPS and Vehicle Dynamics Lab Auburn University Auburn,

More information

2009 Bearcat Micro IGVC Procedures Manual

2009 Bearcat Micro IGVC Procedures Manual 2009 Bearcat Micro IGVC Procedures Manual 1 powering up the robot The robot is composed of multiple independent devices which are integrated to perform complex functions, and is therefore not trivial to

More information

ROBOTIC SURVEILLANCE

ROBOTIC SURVEILLANCE ROBOTIC SURVEILLANCE PROJECT REFERENCE NO. : 37S1070 COLLEGE : PES INSTITUTE OF TECHNOLOGY, BANGALORE BRANCH : TELECOMMUNICATION ENGINEERING GUIDE : SUSHMA RAWAL STUDENTS : SHASHANK C VAISHAKH SHIRUR DHANUSH

More information

AlphaBot2 robot building kit for Arduino

AlphaBot2 robot building kit for Arduino AlphaBot2 robot building kit for Arduino SKU 110060864 Description This AlphaBot2 robot kit is designed to use with an Arduino compatible board UNO PLUS. It features rich common robot functions including

More information

MTRX4700: Experimental Robotics

MTRX4700: Experimental Robotics Stefan B. Williams April, 2013 MTR4700: Experimental Robotics Assignment 3 Note: This assignment contributes 10% towards your final mark. This assignment is due on Friday, May 10 th during Week 9 before

More information

Mobile Robots: An Introduction.

Mobile Robots: An Introduction. Mobile Robots: An Introduction Amirkabir University of Technology Computer Engineering & Information Technology Department http://ce.aut.ac.ir/~shiry/lecture/robotics-2004/robotics04.html Introduction

More information

InteLAS Family of Mobile LiDAR Systems

InteLAS Family of Mobile LiDAR Systems InteLAS Family of Mobile LiDAR Systems September 2015 What we do ilinks Geosolutions LLC Hydrographic surveying and seabed modeling Topographic surveying and mobile mapping Systems engineering and integration

More information

Autonomous Vehicle Navigation Using Stereoscopic Imaging

Autonomous Vehicle Navigation Using Stereoscopic Imaging Autonomous Vehicle Navigation Using Stereoscopic Imaging Project Proposal By: Beach Wlaznik Advisors: Dr. Huggins Dr. Stewart December 7, 2006 I. Introduction The objective of the Autonomous Vehicle Navigation

More information

Camera Positioning System

Camera Positioning System Camera Positioning System Team 79 Members: Junjiao Tian, Jialu Li, and Weicheng Jiang Spring 2017 TA: John Capozzo Table of Contents 1 Introduction 1.1 Objective 1.2 Background 1.3 High-level requirement

More information

Amplifying Human Performance Through Advanced Technology

Amplifying Human Performance Through Advanced Technology Amplifying Human Performance Through Advanced Technology Team Cybernet The Only Michigan Centric Team that Qualified for the Finals Over 10 Km segments traveled through obstacles, intersections, GPS denied

More information

Dynamic Sensor-based Path Planning and Hostile Target Detection with Mobile Ground Robots. Matt Epperson Dr. Timothy Chung

Dynamic Sensor-based Path Planning and Hostile Target Detection with Mobile Ground Robots. Matt Epperson Dr. Timothy Chung Dynamic Sensor-based Path Planning and Hostile Target Detection with Mobile Ground Robots Matt Epperson Dr. Timothy Chung Brief Bio Matt Epperson Cal Poly, San Luis Obispo Sophmore Computer Engineer NREIP

More information

NAVIGATION SYSTEM OF AN OUTDOOR SERVICE ROBOT WITH HYBRID LOCOMOTION SYSTEM

NAVIGATION SYSTEM OF AN OUTDOOR SERVICE ROBOT WITH HYBRID LOCOMOTION SYSTEM NAVIGATION SYSTEM OF AN OUTDOOR SERVICE ROBOT WITH HYBRID LOCOMOTION SYSTEM Jorma Selkäinaho, Aarne Halme and Janne Paanajärvi Automation Technology Laboratory, Helsinki University of Technology, Espoo,

More information

Lawrence Technological University. Think-Tank. IGVC 2005 Autonomous Vehicle

Lawrence Technological University. Think-Tank. IGVC 2005 Autonomous Vehicle Lawrence Technological University Think-Tank IGVC 2005 Autonomous Vehicle Team Members David Bruder, Eden Cheng, Johnny Liu Mark Salamango, and Maurice Tedder Faculty Advisor Statement I, Dr. CJ Chung

More information

THE UNIVERSITY OF AUCKLAND

THE UNIVERSITY OF AUCKLAND THE UNIVERSITY OF AUCKLAND FIRST SEMESTER, 2002 Campus: Tamaki COMPUTER SCIENCE Intelligent Active Vision (Time allowed: TWO hours) NOTE: Attempt questions A, B, C, D, E, and F. This is an open book examination.

More information

Selection and Integration of Sensors Alex Spitzer 11/23/14

Selection and Integration of Sensors Alex Spitzer 11/23/14 Selection and Integration of Sensors Alex Spitzer aes368@cornell.edu 11/23/14 Sensors Perception of the outside world Cameras, DVL, Sonar, Pressure Accelerometers, Gyroscopes, Magnetometers Position vs

More information

SPAN. novatel.com. Tightly coupled GNSS+INS technology performance for exceptional 3D, continuous position, velocity & attitude

SPAN. novatel.com. Tightly coupled GNSS+INS technology performance for exceptional 3D, continuous position, velocity & attitude SPAN novatel.com Tightly coupled GNSSINS technology performance for exceptional 3D, continuous position, velocity & attitude For comprehensive SPAN information, visit: www.novatel.com/span SPAN Technology

More information

Festo LOGISTICS COMPETITION 2011

Festo LOGISTICS COMPETITION 2011 Festo LOGISTICS COMPETITION 2011 ENGINEERING REFERENCE 013 This booklet includes descriptions and features of the Robotino platform and hardware incorporated into the competition area. Index 1.1 The Mobile

More information

Mobile Autonomous Robotic Sentry (MARS) with Facial Detection and Recognition

Mobile Autonomous Robotic Sentry (MARS) with Facial Detection and Recognition Mobile Autonomous Robotic Sentry (MARS) with Facial Detection and Recognition Tyler M. Lovelly University of Florida, Dept. of Electrical & Computer Engineering 12315 Clarendon Ct Spring Hill, FL 34609

More information

The Applanix Approach to GPS/INS Integration

The Applanix Approach to GPS/INS Integration Lithopoulos 53 The Applanix Approach to GPS/INS Integration ERIK LITHOPOULOS, Markham ABSTRACT The Position and Orientation System for Direct Georeferencing (POS/DG) is an off-the-shelf integrated GPS/inertial

More information

Jeffrey A. Schepers P.S. EIT Geospatial Services Holland Engineering Inc. 220 Hoover Blvd, Suite 2, Holland, MI Desk

Jeffrey A. Schepers P.S. EIT Geospatial Services Holland Engineering Inc. 220 Hoover Blvd, Suite 2, Holland, MI Desk Jeffrey A. Schepers P.S. EIT Geospatial Services Holland Engineering Inc. 220 Hoover Blvd, Suite 2, Holland, MI 49423 616-594-5127 Desk 616-322-1724 Cell 616-392-5938 Office Mobile LiDAR - Laser Scanning

More information

Embedded ROBOTICS. A 15 days program on Embedded Systems & Robotics Development with Microcontroller Technology & Image Processing

Embedded ROBOTICS. A 15 days program on Embedded Systems & Robotics Development with Microcontroller Technology & Image Processing Embedded ROBOTICS A 15 days program on Embedded Systems & Robotics Development with Microcontroller Technology & Image Processing Workshop Designed & Conceptualized by Training Courseware We will provide

More information

다중센서기반자율시스템의모델설계및개발 이제훈차장 The MathWorks, Inc. 2

다중센서기반자율시스템의모델설계및개발 이제훈차장 The MathWorks, Inc. 2 1 다중센서기반자율시스템의모델설계및개발 이제훈차장 2017 The MathWorks, Inc. 2 What we will see today 3 Functional Segmentation of Autonomous System Aircraft/ Platform Sense Perceive Plan & Decide Control Connect/ Communicate

More information

GPS + Inertial Sensor Fusion

GPS + Inertial Sensor Fusion GPS + Inertial Sensor Fusion Senior Project Proposal Aleksey Lykov, William Tarpley, Anton Volkov Advisors: Dr. In Soo Ahn, Dr. Yufeng Lu Date: November 26, 2013 Project Summary The objective of this project

More information

OLD DOMINION UNIVERSITY AUTONOMOUS SURFACE VEHICLE TEAM: BIG BLUE

OLD DOMINION UNIVERSITY AUTONOMOUS SURFACE VEHICLE TEAM: BIG BLUE OLD DOMINION UNIVERSITY AUTONOMOUS SURFACE VEHICLE TEAM: BIG BLUE MEMBERS BIRAM DIOP DARENI FARRAR LLOYD THURSTON MATTHEW VECERKAUSKAS NADEEM KHAN THEODORE TEATES Abstract For the 8th Annual International

More information

Servosila Robotic Heads

Servosila Robotic Heads Servosila Robotic Heads www.servosila.com TABLE OF CONTENTS SERVOSILA ROBOTIC HEADS 2 SOFTWARE-DEFINED FUNCTIONS OF THE ROBOTIC HEADS 2 SPECIFICATIONS: ROBOTIC HEADS 4 DIMENSIONS OF ROBOTIC HEAD 5 DIMENSIONS

More information

Autonomous Vehicle Navigation Using Stereoscopic Imaging

Autonomous Vehicle Navigation Using Stereoscopic Imaging Autonomous Vehicle Navigation Using Stereoscopic Imaging Functional Description and Complete System Block Diagram By: Adam Beach Nick Wlaznik Advisors: Dr. Huggins Dr. Stewart December 14, 2006 I. Introduction

More information

ELEVENTH ANNUAL INTELLIGENT GROUND VEHICLE COMPETITION. Design Report

ELEVENTH ANNUAL INTELLIGENT GROUND VEHICLE COMPETITION. Design Report ELEVENTH ANNUAL INTELLIGENT GROUND VEHICLE COMPETITION ALVIN IV Design Report Trishan de Lanerolle, Nhon Trinh, Michelle Bovard, Mathew Gillette, Bozidar Marinkovic Advisor Dr. David J Ahlgren Table of

More information