Overview. Overview. Example: Full Adder Diagnosis. Example: Full Adder Diagnosis. Valued CSP. Diagnosis using Bounded Search and Symbolic Inference

Size: px
Start display at page:

Download "Overview. Overview. Example: Full Adder Diagnosis. Example: Full Adder Diagnosis. Valued CSP. Diagnosis using Bounded Search and Symbolic Inference"

Transcription

1 Overview Diagnosis using Bounded Search and Smbolic Inference Martin Sachenbacher and Brian C. Williams MIT CSAIL Soft Constraints Framework Characteriing Structure in Soft Constraints Eploiting Structure in Soft Constraints Set-based Search Decomposition-based Search Hbrids Overview Soft Constraints Framework Characteriing Structure in Soft Constraints Eploiting Structure in Soft Constraints Set-based Search Decomposition-based Search Hbrids Eample: Full Adder Diagnosis Variables describe modes of gates Gates are either in good ( ) or broken ( ) mode Valued CSP A constraint network set of variables set of domains set of constraints valuation structure Eample: Full Adder Diagnosis AND-gates broken with % probabilit OR-, XOR-gates broken with 5% probabilit Probabilistic valuation structure A constraint is a function mapping assignments over to valuations in. The complete valuation of an assignment. is

2 Eample: Full Adder Diagnosis Model gates as soft constraints Inferring Solutions Constraint network Value of optimal solution obtained b combining the constraints: Gate is good Gate is broken Time: O(ep(n)) Space: O(ep(n)) Branch-and and-bound Search Overview Time: O(ep(n)) Space: O(n) Each search node is a soft constraint subproblem Lower Bound (lb): Optimistic estimate of best solution in subtree Upper Bound (ub): Best solution found so far Prune, if lb ub. Soft Constraints Framework Characteriing Structure in Soft Constraints Eploiting Structure in Soft Constraints Set-based Search Decomposition-based Search Hbrids Structure in Soft Constraints Structure can be characteried as independence properties of functions. Strong independence: Function independent of all assignments to some variables. Weak independence: Function independent of some assignments to some variables. Strong Independence Support Weak Strong Subset of variables that function depends upon. 2

3 Strong Independence Strong Independence Hpergraph Weak Independence Weak Independence E.g. for constraint : if, then value is regardless of and Sharing of common subassignments. Weak Independence Overview Soft Constraints Framework Characteriing Structure in Soft Constraints Eploiting Structure in Soft Constraints Decomposition-based Search Set-based Search Hbrids Algebraic Decision Diagram 3

4 Eploiting Strong Independence Principle: Strong independence allows to decompose the problem into subproblems with smaller sets of variables. Tree Decomposition Subproblems Tree Decomposition BnB with Tree Decomposition Variables χ Constraints λ Algorithm BTD (Terriou and Jégou CP-3) Record solutions for subproblems ( structural goods ) BnB with Tree Decomposition EO- Model: Constraint Graph Algorithm BTD (Terriou and Jégou CP-3) Record solutions for subproblems ( structural goods ) Time: O(ep(ma i χ i )) Space: O(ep(ma i,j χ i -χ j )) 4

5 EO- Model: Tree Decomposition Ssa267-4 Circuit: Graph Ssa267-3 Circuit: Tree Overview Soft Constraints Framework Characteriing Structure in Soft Constraints Eploiting Structure in Soft Constraints Decomposition-based Search Set-based Search Hbrids Eploiting Weak Independence Set-based Branch-and and-bound Principle: Weak independence allows to consider sets of assignments at once instead of individual assignments. Encode e.g. using ADD Each search node is a set of soft constraint subproblems Lower Bound Function (f lb ): Optimistic estimates of best solutions in subtree Upper Bound (ub): Best solution found so far Prune, if f lb ub. 5

6 Domain Splitting Generalie to search over sets: Partition domains into sets Choose subset for unassigned variable Eample: 4-Queens4 Variables: Rows Domains: Columns Constraints: Q Q Q Q Eample Eample Domain splitting with partitions Solution Solution Eample Domain splitting with partitions Results C++ Implementation of SBBTD on Pentium 4 with GB RAM, using ADD librar from CUDD package Weighted version of 6-Queens-Problem (6 variables, 36 constraints, domain sie 6) Using partition {{,...,5}}: out of memor (> GB) Using partition {{},{},, {5}}: out of time (> min) Using partition {{,...,7},{8,...,5}}: 4.8 sec Solution 6

7 Overview Soft Constraints Framework Characteriing Structure in Soft Constraints Eploiting Structure in Soft Constraints Set-based Search Decomposition-based Search Hbrids Hbrid Algorithm SBBTD Eploits both strong independence using tree decomposition, and weak independence using setbased search. Partition, all else Upper bound = Upper bound = Upper bound =.44 <u=, =>.47 <u=, =>.92 <u=, =>.47 <u=, =>.92 <v=, w=>.95 7

8 Upper bound =.44 Upper bound =.44 <u=, =>.47 <u=, =>.92 <u=, =>.47 <u=, =>.92 <v=, w=>.95 Eploiting goods recorded at v2 ( forward jump ) <v=, w=>.95 Upper bound =.44 Upper bound =.44 <u=, =>.47 <u=, =>.92 <u=, =>.47 <u=, =>.92 <v=, w=>.95 <v=, w=>.5 Cut b bound <v=, w=>.95 <v=, w=>.5 Cut b bound Cut b bound 8

9 Cut b bound Cut b bound Results Best solution =.44 # Nodes = 45 C++ Implementation of SBBTD on Pentium 4 with GB RAM, using ADD librar from CUDD package Weighted version of ssa432-3 circuit (435 variables, 27 constraints, domain sie 2) Time to compute tree decomposition: 5 sec. Using partition {{},{}}: out of time (> min) Using partition {{,}}: 3 sec. Cut b bound Finished. Future Work Material Determine optimal granularit of domain partitions? Combination with local filtering techniques? Material 9

10 Main Idea Diagnosis as soft constraint solving (DX-24) Efficient techniques for solving soft constraints? Branch-and-Bound Search: memor efficient, but time eponential (backtracking) Inference: no backtracking, but memor eponential Techniques to eploit structure: Decision diagrams, Tree Decompositions Still memor eponential. Idea: hbrid of branch-and-bound search, smbolic encoding and tree decomposition. Soft CSPs Unified framework for constraints and preferences. For each constraint/tuple, a valuation that reflects preference (e.g. cost, weight, priorit, probabilit, ). The valuation of an assignment is the combination of the valuations for each constraint, using a binar operator (with special aioms). Assignments are compared using a total order on valuations. The problem is to produce an assignment of minimum valuation. Formall: Valuation Structure Decision Diagrams Eample = set of valuations, used to assess assignments = minimum element of, corresponds to totall consistent assignments = maimum element of, corresponds to totall inconsistent assignments = total order on E, used to compare two valuations = operator used to combine two valuations (commutative, associative, monotonic, neutral element, annihilator ) Binar Decision Trees Recursive Shannon epansion Variable Ordering Impose arbitrar total ordering on variables Variables must obe ordering along all paths Propert: No conflicting assignments along path

11 Ordered Binar Decision Tree Ordered Binar Decision Tree Order Rule : Collapse Leaf Nodes Rule 2: Remove Redundant Tests No longer a tree. Rule 2: Remove Redundant Tests Rule 3: Isomorphic Subgraphs

12 Rule 3: Isomorphic Subgraphs Rule ma become applicable again Final Representation ROBDDs Reduced, Ordered Binar Decision Diagram (ROBDD) Contains onl variables from support Time and space compleit of operations depends on ROBDD sie rather than number of assignments Can be etended to functions with non-binar values and non-binar variables Algebraic Decision Diagrams (ADDs) [Bahar et al. 93] Multi-valued Decision Diagram (MDDs) [Kam 9] Significant compaction in man practical cases. Eample Full Adder Tree Decomposition Ever variable of the original problem must appear in at least one subproblem. Ever constraint of the original problem must appear in a subproblem, along with all variables in its scope (covering condition). If a variable occurs in two subproblems, it must appear in ever subproblem along the path that connects the two (connectedness condition). 2

13 Eample: Full Adder Variables Constraints Tree Decomposition Principle: Solve each subproblem, then combine solutions using dnamic programming. Time O(ep(tw)), where tree width tw is maimum number of variables in a subproblem minus one. Space O(ep(sw)), where separator width sw is maimum number of variables shared between subproblems. Finding decompositions with minimal width is NPhard, but good heuristics eist. The width is often small in practice. BTD (Terriou( and Jégou CP-3) Assign variables in subproblem, beginning with root of the tree decomposition. Inside a subproblem, use classical branch-andbound, considering onl the constraints of the subproblem. Once all variables in the subproblem have been assigned, consider its children (if an). Given a child, check if the current assignment, restricted to variables shared with the child, has been previousl recorded as a good. BTD (Terriou( and Jégou CP-3) If it is not previousl recorded, compute solution for the subproblem given the current assignment and upper bound, and record it as new good. Add recorded value to value of current assignment. If resulting value is below the upper bound, proceed with the net child, else backtrack. Projection Combination, 3

14 Combination Soft CSPs For each constraint/tuple: a valuation that reflects preference (e.g. cost, weight, probabilit, ). Valuations are combined using a binar operator (with special aioms). Assignments are compared using a total order on valuations. The problem is to produce an assignment of minimum valuation. Sinking Operation is a new constraint where all values of tuples have been replaced b Generalies the test to functions Constraint Constraint sink(f e2,.5) Set-based Branch-and and-bound Function ( : assignments, : value): value if then if then return let be an unassigned variable for each do return return Time: O(ep(n)) Space: O(ep(n)) Branch-and and-bound Search Function ( : assignment, : value): value if then if then return let be an unassigned variable for each do return return Time: O(ep(n)) Space: O(n) 4

Example: Bioinformatics. Soft Constraint Processing. From Optimal CSP to Soft CSP. Overview. From Optimal CSP to Soft CSP.

Example: Bioinformatics. Soft Constraint Processing. From Optimal CSP to Soft CSP. Overview. From Optimal CSP to Soft CSP. Example: Bioinformatics Soft Constraint Processing 16.412J/6.834J Cognitive Robotics Martin Sachenbacher (Using material from Thomas Schiex) RNA is single-strand molecule, composed of A,U,G,C Function

More information

Diagnosis using Bounded Search and Symbolic Inference

Diagnosis using Bounded Search and Symbolic Inference To appear in: International Workshop on Principles of Diagnosis, Pacific Grove, USA, 2005 Diagnosis using Bounded Search and Symbolic Inference Martin Sachenbacher and Brian C. Williams Massachusetts Institute

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Constraint Optimization Bernhard Nebel, Julien Hué, and Stefan Wölfl Albert-Ludwigs-Universität Freiburg July 17, 2012 Nebel, Hué and Wölfl (Universität Freiburg) Constraint

More information

A fuzzy constraint assigns every possible tuple in a relation a membership degree. The function

A fuzzy constraint assigns every possible tuple in a relation a membership degree. The function Scribe Notes: 2/13/2013 Presenter: Tony Schnider Scribe: Nate Stender Topic: Soft Constraints (Ch. 9 of CP handbook) Soft Constraints Motivation Soft constraints are used: 1. When we seek to find the best

More information

Lecture 18. Questions? Monday, February 20 CS 430 Artificial Intelligence - Lecture 18 1

Lecture 18. Questions? Monday, February 20 CS 430 Artificial Intelligence - Lecture 18 1 Lecture 18 Questions? Monday, February 20 CS 430 Artificial Intelligence - Lecture 18 1 Outline Chapter 6 - Constraint Satisfaction Problems Path Consistency & Global Constraints Sudoku Example Backtracking

More information

Constraint Satisfaction Problems. Chapter 6

Constraint Satisfaction Problems. Chapter 6 Constraint Satisfaction Problems Chapter 6 Constraint Satisfaction Problems A constraint satisfaction problem consists of three components, X, D, and C: X is a set of variables, {X 1,..., X n }. D is a

More information

Search and Optimization

Search and Optimization Search and Optimization Search, Optimization and Game-Playing The goal is to find one or more optimal or sub-optimal solutions in a given search space. We can either be interested in finding any one solution

More information

Boolean Functions (10.1) Representing Boolean Functions (10.2) Logic Gates (10.3)

Boolean Functions (10.1) Representing Boolean Functions (10.2) Logic Gates (10.3) Chapter (Part ): Boolean Algebra Boolean Functions (.) Representing Boolean Functions (.2) Logic Gates (.3) It has started from the book titled The laws of thought written b George Boole in 854 Claude

More information

Boolean Representations and Combinatorial Equivalence

Boolean Representations and Combinatorial Equivalence Chapter 2 Boolean Representations and Combinatorial Equivalence This chapter introduces different representations of Boolean functions. It then discusses the applications of these representations for proving

More information

Binary recursion. Unate functions. If a cover C(f) is unate in xj, x, then f is unate in xj. x

Binary recursion. Unate functions. If a cover C(f) is unate in xj, x, then f is unate in xj. x Binary recursion Unate unctions! Theorem I a cover C() is unate in,, then is unate in.! Theorem I is unate in,, then every prime implicant o is unate in. Why are unate unctions so special?! Special Boolean

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2013 Soleymani Course material: Artificial Intelligence: A Modern Approach, 3 rd Edition,

More information

Constraint satisfaction search

Constraint satisfaction search CS 70 Foundations of AI Lecture 6 Constraint satisfaction search Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Search problem A search problem: Search space (or state space): a set of objects among

More information

Outline. Best-first search

Outline. Best-first search Outline Best-first search Greedy best-first search A* search Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing search Genetic algorithms Constraint Satisfaction Problems

More information

24 Nov Boolean Operations. Boolean Algebra. Boolean Functions and Expressions. Boolean Functions and Expressions

24 Nov Boolean Operations. Boolean Algebra. Boolean Functions and Expressions. Boolean Functions and Expressions 24 Nov 25 Boolean Algebra Boolean algebra provides the operations and the rules for working with the set {, }. These are the rules that underlie electronic circuits, and the methods we will discuss are

More information

Artificial Intelligence

Artificial Intelligence Contents Artificial Intelligence 5. Constraint Satisfaction Problems CSPs as Search Problems, Solving CSPs, Problem Structure Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller What

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence 5. Constraint Satisfaction Problems CSPs as Search Problems, Solving CSPs, Problem Structure Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller SA-1 Contents

More information

Binary Decision Diagrams (BDD)

Binary Decision Diagrams (BDD) Binary Decision Diagrams (BDD) Contents Motivation for Decision diagrams Binary Decision Diagrams ROBDD Effect of Variable Ordering on BDD size BDD operations Encoding state machines Reachability Analysis

More information

Motivation. CS389L: Automated Logical Reasoning. Lecture 5: Binary Decision Diagrams. Historical Context. Binary Decision Trees

Motivation. CS389L: Automated Logical Reasoning. Lecture 5: Binary Decision Diagrams. Historical Context. Binary Decision Trees Motivation CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams Işıl Dillig Previous lectures: How to determine satisfiability of propositional formulas Sometimes need to efficiently

More information

Backtracking and Branch-and-Bound

Backtracking and Branch-and-Bound Backtracking and Branch-and-Bound Usually for problems with high complexity Exhaustive Search is too time consuming Cut down on some search using special methods Idea: Construct partial solutions and extend

More information

Backtracking. Chapter 5

Backtracking. Chapter 5 1 Backtracking Chapter 5 2 Objectives Describe the backtrack programming technique Determine when the backtracking technique is an appropriate approach to solving a problem Define a state space tree for

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 5. Constraint Satisfaction Problems CSPs as Search Problems, Solving CSPs, Problem Structure Wolfram Burgard, Bernhard Nebel, and Martin Riedmiller Albert-Ludwigs-Universität

More information

Space of Search Strategies. CSE 573: Artificial Intelligence. Constraint Satisfaction. Recap: Search Problem. Example: Map-Coloring 11/30/2012

Space of Search Strategies. CSE 573: Artificial Intelligence. Constraint Satisfaction. Recap: Search Problem. Example: Map-Coloring 11/30/2012 /0/0 CSE 57: Artificial Intelligence Constraint Satisfaction Daniel Weld Slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer Space of Search Strategies Blind Search DFS, BFS,

More information

What is Search For? CS 188: Artificial Intelligence. Example: Map Coloring. Example: N-Queens. Example: N-Queens. Constraint Satisfaction Problems

What is Search For? CS 188: Artificial Intelligence. Example: Map Coloring. Example: N-Queens. Example: N-Queens. Constraint Satisfaction Problems CS 188: Artificial Intelligence Constraint Satisfaction Problems What is Search For? Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space Planning:

More information

A generic framework for solving CSPs integrating decomposition methods

A generic framework for solving CSPs integrating decomposition methods A generic framework for solving CSPs integrating decomposition methods L. Blet 1,3, S. N. Ndiaye 1,2, and C. Solnon 1,3 1 Université de Lyon - LIRIS 2 Université Lyon 1, LIRIS, UMR5205, F-69622 France

More information

Unit 4: Formal Verification

Unit 4: Formal Verification Course contents Unit 4: Formal Verification Logic synthesis basics Binary-decision diagram (BDD) Verification Logic optimization Technology mapping Readings Chapter 11 Unit 4 1 Logic Synthesis & Verification

More information

Lecture 6: Constraint Satisfaction Problems (CSPs)

Lecture 6: Constraint Satisfaction Problems (CSPs) Lecture 6: Constraint Satisfaction Problems (CSPs) CS 580 (001) - Spring 2018 Amarda Shehu Department of Computer Science George Mason University, Fairfax, VA, USA February 28, 2018 Amarda Shehu (580)

More information

CS 4100 // artificial intelligence

CS 4100 // artificial intelligence CS 4100 // artificial intelligence instructor: byron wallace Constraint Satisfaction Problems Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials

More information

Organizing Spatial Data

Organizing Spatial Data Organizing Spatial Data Spatial data records include a sense of location as an attribute. Typically location is represented by coordinate data (in 2D or 3D). 1 If we are to search spatial data using the

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Last update: February 25, 2010 Constraint Satisfaction Problems CMSC 421, Chapter 5 CMSC 421, Chapter 5 1 Outline CSP examples Backtracking search for CSPs Problem structure and problem decomposition Local

More information

CS 188: Artificial Intelligence. Recap: Search

CS 188: Artificial Intelligence. Recap: Search CS 188: Artificial Intelligence Lecture 4 and 5: Constraint Satisfaction Problems (CSPs) Pieter Abbeel UC Berkeley Many slides from Dan Klein Recap: Search Search problem: States (configurations of the

More information

The problem: given N, find all solutions of queen sets and return either the number of solutions and/or the patterned boards.

The problem: given N, find all solutions of queen sets and return either the number of solutions and/or the patterned boards. N-ueens Background Problem surfaced in 1848 by chess player Ma Bezzel as 8 queens (regulation board size) Premise is to place N queens on N N board so that they are non-attacking A queen is one of si different

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 5: CSPs II 9/8/2011 Dan Klein UC Berkeley Multiple slides over the course adapted from either Stuart Russell or Andrew Moore 1 Today Efficient Solution

More information

Propagating Separable Equalities. in an MDD Store. Peter Tiedemann INFORMS John Hooker. Tarik Hadzic. Cork Constraint Computation Centre

Propagating Separable Equalities. in an MDD Store. Peter Tiedemann INFORMS John Hooker. Tarik Hadzic. Cork Constraint Computation Centre Propagating Separable Equalities in an MDD Store Tarik Hadzic Cork Constraint Computation Centre John Hooker Carnegie Mellon University Peter Tiedemann Configit Software Slide 1 INFORMS 2008 Slide 2 Constraint

More information

Solutions - Homework 2 (Due date: February 5 5:30 pm) Presentation and clarity are very important! Show your procedure!

Solutions - Homework 2 (Due date: February 5 5:30 pm) Presentation and clarity are very important! Show your procedure! Solutions - Homework (Due date: Februar 5 th @ 5: pm) Presentation and clarit are ver important! Show our procedure! PROBLEM ( PTS) In these problems, ou MUST show our conversion procedure. a) Convert

More information

Constraint Satisfaction. AI Slides (5e) c Lin

Constraint Satisfaction. AI Slides (5e) c Lin Constraint Satisfaction 4 AI Slides (5e) c Lin Zuoquan@PKU 2003-2018 4 1 4 Constraint Satisfaction 4.1 Constraint satisfaction problems 4.2 Backtracking search 4.3 Constraint propagation 4.4 Local search

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] What is Search

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Search and Lookahead Bernhard Nebel, Julien Hué, and Stefan Wölfl Albert-Ludwigs-Universität Freiburg June 4/6, 2012 Nebel, Hué and Wölfl (Universität Freiburg) Constraint

More information

Lecture 14: Lower Bounds for Tree Resolution

Lecture 14: Lower Bounds for Tree Resolution IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 14: Lower Bounds for Tree Resolution David Mix Barrington and Alexis Maciel August

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Constraint Satisfaction Problems II Instructors: Dan Klein and Pieter Abbeel University of California, Berkeley [These slides were created by Dan Klein and Pieter Abbeel

More information

Today. CS 188: Artificial Intelligence Fall Example: Boolean Satisfiability. Reminder: CSPs. Example: 3-SAT. CSPs: Queries.

Today. CS 188: Artificial Intelligence Fall Example: Boolean Satisfiability. Reminder: CSPs. Example: 3-SAT. CSPs: Queries. CS 188: Artificial Intelligence Fall 2007 Lecture 5: CSPs II 9/11/2007 More CSPs Applications Tree Algorithms Cutset Conditioning Today Dan Klein UC Berkeley Many slides over the course adapted from either

More information

An Optimal Algorithm for Layer Assignment of Bus Escape RoutingonPCBs

An Optimal Algorithm for Layer Assignment of Bus Escape RoutingonPCBs .3 An Optimal Algorithm for Layer Assignment of Bus Escape RoutingonPCBs Qiang Ma Evangeline F. Y. Young Martin D. F. Wong Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

More information

K-Consistency. CS 188: Artificial Intelligence. K-Consistency. Strong K-Consistency. Constraint Satisfaction Problems II

K-Consistency. CS 188: Artificial Intelligence. K-Consistency. Strong K-Consistency. Constraint Satisfaction Problems II CS 188: Artificial Intelligence K-Consistency Constraint Satisfaction Problems II Instructor: Marco Alvarez University of Rhode Island (These slides were created/modified by Dan Klein, Pieter Abbeel, Anca

More information

CONSTRAINT SATISFACTION

CONSTRAINT SATISFACTION 9// CONSRAI ISFACION oday Reading AIMA Chapter 6 Goals Constraint satisfaction problems (CSPs) ypes of CSPs Inference Search + Inference 9// 8-queens problem How would you go about deciding where to put

More information

Games and Adversarial Search II Alpha-Beta Pruning (AIMA 5.3)

Games and Adversarial Search II Alpha-Beta Pruning (AIMA 5.3) Games and Adversarial Search II Alpha-Beta Pruning (AIMA 5.) Some slides adapted from Richard Lathrop, USC/ISI, CS 7 Review: The Minimax Rule Idea: Make the best move for MAX assuming that MIN always replies

More information

Part 2.2 Continuous functions and their properties v1 2018

Part 2.2 Continuous functions and their properties v1 2018 Part 2.2 Continuous functions and their properties v 208 Intermediate Values Recall R is complete. This means that ever non-empt subset of R which is bounded above has a least upper bound. That is: (A

More information

BDD Representation for Incompletely Specified Multiple-Output Logic Functions and Its Applications to Functional Decomposition

BDD Representation for Incompletely Specified Multiple-Output Logic Functions and Its Applications to Functional Decomposition BDD Representation for Incompletel Specified Multiple-Output Logic Functions and Its Applications to Functional Decomposition. Tsutomu Sasao and Munehiro Matsuura Department of Computer Science and Electronics,

More information

B + -trees. Kerttu Pollari-Malmi

B + -trees. Kerttu Pollari-Malmi B + -trees Kerttu Pollari-Malmi This tet is based partl on the course tet book b Cormen and partl on the old lecture slides written b Matti Luukkainen and Matti Nkänen. 1 Introduction At first, read the

More information

ECE 3060 VLSI and Advanced Digital Design

ECE 3060 VLSI and Advanced Digital Design ECE 3060 VLSI and Advanced Digital Design Lecture 16 Technology Mapping/Library Binding Outline Modeling and problem analysis Rule-based systems for library binding Algorithms for library binding structural

More information

Mathematical Programming Formulations, Constraint Programming

Mathematical Programming Formulations, Constraint Programming Outline DM87 SCHEDULING, TIMETABLING AND ROUTING Lecture 3 Mathematical Programming Formulations, Constraint Programming 1. Special Purpose Algorithms 2. Constraint Programming Marco Chiarandini DM87 Scheduling,

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Constraint Satisfaction Luke Zettlemoyer Multiple slides adapted from Dan Klein, Stuart Russell or Andrew Moore What is Search For? Models of the world: single agent, deterministic

More information

Constraint (Logic) Programming

Constraint (Logic) Programming Constraint (Logic) Programming Roman Barták Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic bartak@ktiml.mff.cuni.cz Sudoku Combinatorial puzzle, whose goal is to enter

More information

Artificial Intelligence Constraint Satisfaction Problems

Artificial Intelligence Constraint Satisfaction Problems Artificial Intelligence Constraint Satisfaction Problems Recall Search problems: Find the sequence of actions that leads to the goal. Sequence of actions means a path in the search space. Paths come with

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems In which we see how treating states as more than just little black boxes leads to the invention of a range of powerful new search methods and a deeper understanding of

More information

LOGIC SYNTHESIS AND VERIFICATION ALGORITHMS. Gary D. Hachtel University of Colorado. Fabio Somenzi University of Colorado.

LOGIC SYNTHESIS AND VERIFICATION ALGORITHMS. Gary D. Hachtel University of Colorado. Fabio Somenzi University of Colorado. LOGIC SYNTHESIS AND VERIFICATION ALGORITHMS by Gary D. Hachtel University of Colorado Fabio Somenzi University of Colorado Springer Contents I Introduction 1 1 Introduction 5 1.1 VLSI: Opportunity and

More information

CS 314H Honors Data Structures Fall 2017 Programming Assignment #6 Treaps Due November 12/15/17, 2017

CS 314H Honors Data Structures Fall 2017 Programming Assignment #6 Treaps Due November 12/15/17, 2017 CS H Honors Data Structures Fall 207 Programming Assignment # Treaps Due November 2//7, 207 In this assignment ou will work individuall to implement a map (associative lookup) using a data structure called

More information

Chapter 3 Part 1 Combinational Logic Design

Chapter 3 Part 1 Combinational Logic Design Universit of Wisconsin - Madison EE/omp Sci 352 igital Sstems undamentals Kewal K. Saluja and Yu Hen Hu Spring 22 hapter 3 Part ombinational Logic esign Originals b: harles R. Kime and Tom Kamisnski Modified

More information

Verification of Arithmetic Circuits with Binary Moment Diagrams

Verification of Arithmetic Circuits with Binary Moment Diagrams Verification of Arithmetic Circuits with Binar Moment Diagrams Randal E. Brant, Yirng-An Chen Carnegie Mellon Universit Pittsburgh, PA 5 Abstract Binar Moment Diagrams (BMDs) provide a canonical representations

More information

Introduction to Algorithms Massachusetts Institute of Technology Professors Erik D. Demaine and Charles E. Leiserson.

Introduction to Algorithms Massachusetts Institute of Technology Professors Erik D. Demaine and Charles E. Leiserson. Introduction to Algorithms Massachusetts Institute of Technolog Professors Erik D. Demaine and Charles E. Leiserson October 24, 2005 6.046J/18.410J Handout 16 Problem Set 5 MIT students: This problem set

More information

Constraint Satisfaction

Constraint Satisfaction Constraint Satisfaction Philipp Koehn 1 October 2015 Outline 1 Constraint satisfaction problems (CSP) examples Backtracking search for CSPs Problem structure and problem decomposition Local search for

More information

A Structure-Based Variable Ordering Heuristic for SAT. By Jinbo Huang and Adnan Darwiche Presented by Jack Pinette

A Structure-Based Variable Ordering Heuristic for SAT. By Jinbo Huang and Adnan Darwiche Presented by Jack Pinette A Structure-Based Variable Ordering Heuristic for SAT By Jinbo Huang and Adnan Darwiche Presented by Jack Pinette Overview 1. Divide-and-conquer for SAT 2. DPLL & variable ordering 3. Using dtrees for

More information

Reading: Chapter 6 (3 rd ed.); Chapter 5 (2 nd ed.) For next week: Thursday: Chapter 8

Reading: Chapter 6 (3 rd ed.); Chapter 5 (2 nd ed.) For next week: Thursday: Chapter 8 Constraint t Satisfaction Problems Reading: Chapter 6 (3 rd ed.); Chapter 5 (2 nd ed.) For next week: Tuesday: Chapter 7 Thursday: Chapter 8 Outline What is a CSP Backtracking for CSP Local search for

More information

EECS 219C: Formal Methods Binary Decision Diagrams (BDDs) Sanjit A. Seshia EECS, UC Berkeley

EECS 219C: Formal Methods Binary Decision Diagrams (BDDs) Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Formal Methods Binary Decision Diagrams (BDDs) Sanjit A. Seshia EECS, UC Berkeley Boolean Function Representations Syntactic: e.g.: CNF, DNF (SOP), Circuit Semantic: e.g.: Truth table, Binary

More information

Index. C cmp;l, 126. C rq;l, 127. A A sp. B BANDWIDTH, 32, 218 complexity of, 32 k-bandwidth, 32, 218

Index. C cmp;l, 126. C rq;l, 127. A A sp. B BANDWIDTH, 32, 218 complexity of, 32 k-bandwidth, 32, 218 , 24, 96, 116 -compatible, 125 ++, 38 [], 125 P;l, 25 Q;l, 127 A A sp I, 166, 173 A sp R, 166, 173 174 A tw I, 189, 205 A tw R, 189, 205 210 adjacency list representation, 13 adjacent, 9 algorithm, 11

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Constraint Satisfaction Problems II and Local Search Instructors: Sergey Levine and Stuart Russell University of California, Berkeley [These slides were created by Dan Klein

More information

Taylor Expansion Diagrams: A Canonical Representation for Verification of Data Flow Designs

Taylor Expansion Diagrams: A Canonical Representation for Verification of Data Flow Designs Talor Epansion Diagrams: anonical Representation for Verification of Data Flow Designs Maciej iesielski, Priank Kalla, Serkan skar Department of Electrical and omputer Engineering Universit of Massachusetts,

More information

What is Search For? CSE 473: Artificial Intelligence. Example: N-Queens. Example: N-Queens. Example: Map-Coloring 4/7/17

What is Search For? CSE 473: Artificial Intelligence. Example: N-Queens. Example: N-Queens. Example: Map-Coloring 4/7/17 CSE 473: Artificial Intelligence Constraint Satisfaction Dieter Fox What is Search For? Models of the world: single agent, deterministic actions, fully observed state, discrete state space Planning: sequences

More information

AI Fundamentals: Constraints Satisfaction Problems. Maria Simi

AI Fundamentals: Constraints Satisfaction Problems. Maria Simi AI Fundamentals: Constraints Satisfaction Problems Maria Simi Constraints satisfaction LESSON 3 SEARCHING FOR SOLUTIONS Searching for solutions Most problems cannot be solved by constraint propagation

More information

Constraint Optimisation Problems. Constraint Optimisation. Cost Networks. Branch and Bound. Dynamic Programming

Constraint Optimisation Problems. Constraint Optimisation. Cost Networks. Branch and Bound. Dynamic Programming Summary Network Search Bucket Elimination Soft Soft s express preferences over variable assignments Preferences give dierent values over variable assignment A student can follow only one class at a time

More information

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence,

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, Course on Artificial Intelligence, winter term 2012/2013 0/35 Artificial Intelligence Artificial Intelligence 3. Constraint Satisfaction Problems Lars Schmidt-Thieme Information Systems and Machine Learning

More information

Announcements. CS 188: Artificial Intelligence Fall 2010

Announcements. CS 188: Artificial Intelligence Fall 2010 Announcements Project 1: Search is due Monday Looking for partners? After class or newsgroup Written 1: Search and CSPs out soon Newsgroup: check it out CS 188: Artificial Intelligence Fall 2010 Lecture

More information

EECS 571 Principles of Real-Time Embedded Systems. Lecture Note #8: Task Assignment and Scheduling on Multiprocessor Systems

EECS 571 Principles of Real-Time Embedded Systems. Lecture Note #8: Task Assignment and Scheduling on Multiprocessor Systems EECS 571 Principles of Real-Time Embedded Systems Lecture Note #8: Task Assignment and Scheduling on Multiprocessor Systems Kang G. Shin EECS Department University of Michigan What Have We Done So Far?

More information

The Size Robust Multiple Knapsack Problem

The Size Robust Multiple Knapsack Problem MASTER THESIS ICA-3251535 The Size Robust Multiple Knapsack Problem Branch and Price for the Separate and Combined Recovery Decomposition Model Author: D.D. Tönissen, Supervisors: dr. ir. J.M. van den

More information

CS 188: Artificial Intelligence Spring Today

CS 188: Artificial Intelligence Spring Today CS 188: Artificial Intelligence Spring 2006 Lecture 7: CSPs II 2/7/2006 Dan Klein UC Berkeley Many slides from either Stuart Russell or Andrew Moore Today More CSPs Applications Tree Algorithms Cutset

More information

What is Search For? CS 188: Artificial Intelligence. Constraint Satisfaction Problems

What is Search For? CS 188: Artificial Intelligence. Constraint Satisfaction Problems CS 188: Artificial Intelligence Constraint Satisfaction Problems What is Search For? Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space Planning:

More information

Optional: Building a processor from scratch

Optional: Building a processor from scratch Optional: Building a processor from scratch In this assignment we are going build a computer processor from the ground up, starting with transistors, and ending with a small but powerful processor. The

More information

Branch and Bound. Live-node: A node that has not been expanded. It is similar to backtracking technique but uses BFS-like search.

Branch and Bound. Live-node: A node that has not been expanded. It is similar to backtracking technique but uses BFS-like search. Branch and Bound Definitions: Branch and Bound is a state space search method in which all the children of a node are generated before expanding any of its children. Live-node: A node that has not been

More information

CS 267: Automated Verification. Lecture 6: Binary Decision Diagrams. Instructor: Tevfik Bultan

CS 267: Automated Verification. Lecture 6: Binary Decision Diagrams. Instructor: Tevfik Bultan CS 267: Automated Verification Lecture 6: Binar Decision Diagrams Instructor: evfik Bultan Binar Decision Diagrams (BDDs) [Brant 86] Reduced Ordered Binar Decision Diagrams (BDDs) An efficient data structure

More information

Chronological Backtracking Conflict Directed Backjumping Dynamic Backtracking Branching Strategies Branching Heuristics Heavy Tail Behavior

Chronological Backtracking Conflict Directed Backjumping Dynamic Backtracking Branching Strategies Branching Heuristics Heavy Tail Behavior PART III: Search Outline Depth-first Search Chronological Backtracking Conflict Directed Backjumping Dynamic Backtracking Branching Strategies Branching Heuristics Heavy Tail Behavior Best-First Search

More information

Announcements. Reminder: CSPs. Today. Example: N-Queens. Example: Map-Coloring. Introduction to Artificial Intelligence

Announcements. Reminder: CSPs. Today. Example: N-Queens. Example: Map-Coloring. Introduction to Artificial Intelligence Introduction to Artificial Intelligence 22.0472-001 Fall 2009 Lecture 5: Constraint Satisfaction Problems II Announcements Assignment due on Monday 11.59pm Email search.py and searchagent.py to me Next

More information

(Refer Slide Time 04:53)

(Refer Slide Time 04:53) Programming and Data Structure Dr.P.P.Chakraborty Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture 26 Algorithm Design -1 Having made a preliminary study

More information

1/28/2013. Synthesis. The Y-diagram Revisited. Structural Behavioral. More abstract designs Physical. CAD for VLSI 2

1/28/2013. Synthesis. The Y-diagram Revisited. Structural Behavioral. More abstract designs Physical. CAD for VLSI 2 Synthesis The Y-diagram Revisited Structural Behavioral More abstract designs Physical CAD for VLSI 2 1 Structural Synthesis Behavioral Physical CAD for VLSI 3 Structural Processor Memory Bus Behavioral

More information

Dynamic heuristics for branch and bound search on tree-decomposition of Weighted CSPs

Dynamic heuristics for branch and bound search on tree-decomposition of Weighted CSPs Dynamic heuristics for branch and bound search on tree-decomposition of Weighted CSPs Philippe Jégou, Samba Ndojh Ndiaye, and Cyril Terrioux LSIS - UMR CNRS 6168 Université Paul Cézanne (Aix-Marseille

More information

Lagrangian Relaxation in CP

Lagrangian Relaxation in CP Lagrangian Relaxation in CP Willem-Jan van Hoeve CPAIOR 016 Master Class Overview 1. Motivation for using Lagrangian Relaxations in CP. Lagrangian-based domain filtering Example: Traveling Salesman Problem.

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Chapter 5 Chapter 5 1 Outline CSP examples Backtracking search for CSPs Problem structure and problem decomposition Local search for CSPs Chapter 5 2 Constraint satisfaction

More information

Constraints. CSC 411: AI Fall NC State University 1 / 53. Constraints

Constraints. CSC 411: AI Fall NC State University 1 / 53. Constraints CSC 411: AI Fall 2013 NC State University 1 / 53 Constraint satisfaction problems (CSPs) Standard search: state is a black box that supports goal testing, application of an evaluation function, production

More information

Constraint Satisfaction Problems (CSPs)

Constraint Satisfaction Problems (CSPs) 1 Hal Daumé III (me@hal3.name) Constraint Satisfaction Problems (CSPs) Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 7 Feb 2012 Many

More information

Chapter 6 Constraint Satisfaction Problems

Chapter 6 Constraint Satisfaction Problems Chapter 6 Constraint Satisfaction Problems CS5811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline CSP problem definition Backtracking search

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 Announcements Project 1: Search is due next week Written 1: Search and CSPs out soon Piazza: check it out if you haven t CS 188: Artificial Intelligence Fall 2011 Lecture 4: Constraint Satisfaction 9/6/2011

More information

A novel implementation of tile-based address mapping

A novel implementation of tile-based address mapping A novel implementation of tile-based address mapping Sambuddhi Hettiaratchi and Peter Y.K. Cheung Department of Electrical and Electronic Engineering Imperial College of Science, Technolog and Medicine,

More information

2. Modeling AEA 2018/2019. Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2

2. Modeling AEA 2018/2019. Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2 2. Modeling AEA 2018/2019 Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2 Content Introduction Modeling phases Modeling Frameworks Graph Based Models Mixed

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Revised by Hankui Zhuo, March 14, 2018 Constraint Satisfaction Problems Chapter 5 Chapter 5 1 Outline CSP examples Backtracking search for CSPs Problem structure and problem decomposition Local search

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References: 1. S. Russell and P. Norvig. Artificial Intelligence:

More information

CS 188: Artificial Intelligence. What is Search For? Constraint Satisfaction Problems. Constraint Satisfaction Problems

CS 188: Artificial Intelligence. What is Search For? Constraint Satisfaction Problems. Constraint Satisfaction Problems CS 188: Artificial Intelligence Constraint Satisfaction Problems Constraint Satisfaction Problems N variables domain D constraints x 1 x 2 Instructor: Marco Alvarez University of Rhode Island (These slides

More information

Decision Tree CE-717 : Machine Learning Sharif University of Technology

Decision Tree CE-717 : Machine Learning Sharif University of Technology Decision Tree CE-717 : Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Some slides have been adapted from: Prof. Tom Mitchell Decision tree Approximating functions of usually discrete

More information

Simple example. Analysis of programs with pointers. Program model. Points-to relation

Simple example. Analysis of programs with pointers. Program model. Points-to relation Simple eample Analsis of programs with pointers := 5 ptr := & *ptr := 9 := program S1 S2 S3 S4 What are the defs and uses of in this program? Problem: just looking at variable names will not give ou the

More information

CS 771 Artificial Intelligence. Constraint Satisfaction Problem

CS 771 Artificial Intelligence. Constraint Satisfaction Problem CS 771 Artificial Intelligence Constraint Satisfaction Problem Constraint Satisfaction Problems So far we have seen a problem can be solved by searching in space of states These states can be evaluated

More information

CS 314H Algorithms and Data Structures Fall 2012 Programming Assignment #6 Treaps Due November 11/14/16, 2012

CS 314H Algorithms and Data Structures Fall 2012 Programming Assignment #6 Treaps Due November 11/14/16, 2012 CS H Algorithms and Data Structures Fall 202 Programming Assignment # Treaps Due November //, 202 In this assignment ou will work in pairs to implement a map (associative lookup) using a data structure

More information

Announcements. CS 188: Artificial Intelligence Spring Today. A* Review. Consistency. A* Graph Search Gone Wrong

Announcements. CS 188: Artificial Intelligence Spring Today. A* Review. Consistency. A* Graph Search Gone Wrong CS 88: Artificial Intelligence Spring 2009 Lecture 4: Constraint Satisfaction /29/2009 John DeNero UC Berkeley Slides adapted from Dan Klein, Stuart Russell or Andrew Moore Announcements The Python tutorial

More information

Announcements. CS 188: Artificial Intelligence Fall Reminder: CSPs. Today. Example: 3-SAT. Example: Boolean Satisfiability.

Announcements. CS 188: Artificial Intelligence Fall Reminder: CSPs. Today. Example: 3-SAT. Example: Boolean Satisfiability. CS 188: Artificial Intelligence Fall 2008 Lecture 5: CSPs II 9/11/2008 Announcements Assignments: DUE W1: NOW P1: Due 9/12 at 11:59pm Assignments: UP W2: Up now P2: Up by weekend Dan Klein UC Berkeley

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 5: CSPs II 9/11/2008 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore 1 1 Assignments: DUE Announcements

More information