802.3bj FEC Overview and Status. 1x400G vs 4x100G FEC Implications DRAFT. IEEE P802.3bs 400 Gb/s Ethernet Task Force. Bill Wilkie Xilinx

Size: px
Start display at page:

Download "802.3bj FEC Overview and Status. 1x400G vs 4x100G FEC Implications DRAFT. IEEE P802.3bs 400 Gb/s Ethernet Task Force. Bill Wilkie Xilinx"

Transcription

1 802.3bj FEC Overview and Status 1x400G vs 4x100G FEC Implications DRAFT IEEE P802.3bs 400 Gb/s Ethernet Task Force July 2015 Hawaii Bill Wilkie Xilinx

2 Introduction This presentation takes a look at the differences in implementation of a 1x400G and a 4x100G FEC architecture The implementation types/styles are just some valid options, there are many ways to implement each architecture The sizing data presented is a combination of real design data and the results from micro architecture analysis and extrapolation Page 2

3 Data Rates These bus widths, clock frequencies and data rates are investigated in this presentation 425Gbps RS(544,514) Encoding Input Input Data Rate Input Width Nominal Input Clock Frequency Cycles per RS Codeword Gbps 257/256 Transcoding KP4 400Gbps FPGA 425Gbps MHz 4.25 FPGA RS Decoder Gbps MHz 4 Payload data 400Gbps KP4 400Gbps ASIC 425Gbps MHz 8.5 ASIC RS Decoder Gbps MHz 8 Page 3

4 4x 100G KP4 Datapath: 340-bit Decoder Current FPGA appropriate bus widths and clock frequencies Uses free running local clock for most of the circuitry Running off a local clock with periodic gaps eases design issues with unstable clocks Gearboxing from 320b to 340b is essentially free since this logic is used for alignment, re-ordering etc. Recovered clock MHz 17:16 duty cycle takes care of clock ppm variation. 17 th clock cycle not used unless recovered clock is faster than fixed clock, in which case it will occasionally be used. If recovered clock is slower then extra dead cycles are inserted here. Fixed clock MHz Gbps 4x Gbps SerDes MHz 320-bit lock & Deskew + gearbox 340-bit RS Decode 340-bit Descramble Transcode & removal + gearbox 330-bit 400Gbps Rest of PCS Size = T 100 Size = A 100 Size = D 100 Gearbox ~63% of T 100 x4 Page 4

5 100G Transcode Gearboxing: 340-bit Decoder Gearbox complexity is high for this option 340 Decode 340 Transcode 330 PU1 PU2 5*264 -> 330*4 Gearbox 5*264 -> 330*4 5*264 -> 330*4 Buffer input mux is 16:1 PU1 Gearbox mux is 16:1 PU2 Gearbox mux is 4:1 Output gearbox needed.to convert from 5*264 to 4*330 5*264 -> 330*4 PU1 idle 1/17 PU2 idle 13/17 Gearbox = parity Complex gearbox + 2 Processing Units (PU) Page 5

6 4x 100G KP4 332MHz Datapath: 320-bit Decoder Current FPGA appropriate bus widths and clock frequencies Uses recovered clock for all of the circuitry No gearbox required on lock and De-skew Recovered clock MHz 17:17 duty cycle 17:16 duty cycle Gbps 4x Gbps SerDes MHz 320-bit lock & Deskew 320-bit RS Decode 320-bit Descramble Transcode & removal + gearbox 330-bit 400Gbps Rest of PCS Size = A 100 Size = D 100 Size = T 100 Gearbox ~63% of T 100 x4 Page 6

7 100G Transcode Gearboxing: 320-bit Decoder Gearbox complexity is high for this option, similar to the 340b decoder 320 Decode 320 Transcode /17 17/17 PU1 PU2 5*264 -> 330*4 Gearbox 5*264 -> 330*4 5*264 -> 330*4 5*264 -> 330*4 Gearbox = parity PU1 idle 1/17 PU2 idle 13/17 Page 7

8 4x 100G KP4 Datapath: 170-bit Decoder Current ASIC and future FPGA appropriate bus widths and clock frequencies Uses free running local clock for most of the circuitry Running off a local clock with periodic gaps eases design issues with unstable clocks Gearboxing from 160b to 170b is essentially free since this logic is used for alignment, re-ordering etc. Recovered clock MHz 17:16 duty cycle takes care of clock ppm variation. 17 th clock cycle not used unless recovered clock is faster than fixed clock, in which case it will occasionally be used. If recovered clock is slower then extra dead cycles are inserted here. Fixed clock MHz Gbps 4x Gbps SerDes MHz 160-bit lock & Deskew + gearbox 170-bit RS Decode 170-bit Descramble Transcode & removal + gearbox 165-bit 400Gbps Rest of PCS Size = A 100A Size = D 100A x4 Size = T 100A Gearbox ~63% of T 100 Page 8

9 100G Transcode Gearboxing: 170-bit Decoder Gearbox complexity is high for this option 170 Decode 170 Transcode 165 Lane Distribution 5*33 5*264 -> 165*8 Gearbox 5*264 -> 165*8 5*264 -> 165*8 Buffer input mux is 31:1 PU Gearbox is 20:1 mux Output gearbox needed.to convert from 5*264 to 8*165 5*264 -> 165*8 PU Idle 14/34 Gearbox = parity Very complex gearbox + 1 Processing Unit XILINX CONFIDENTIAL.

10 4x 100G KP4 664MHz Datapath: 160-bit Decoder Current ASIC and future FPGA appropriate bus widths and clock frequencies Uses recovered clock for all of the circuitry Drawback of dealing with a potentially unstable clock No gearbox required on lock and De-skew Recovered clock MHz 17:17 duty cycle 17:16 duty cycle Gbps 4x Gbps SerDes MHz 160-bit lock & Deskew 160-bit RS Decode 160-bit Descramble Transcode & removal + gearbox 165-bit 400Gbps Rest of PCS Size = A 100A Size = D 100A x4 Size = T 100A Gearbox ~88% of T 100A Page 10

11 100G Transcode Gearboxing: 160-bit Decoder Gearbox complexity is high for this option 160 Decode 160 Transcode /17 17/17 Gearbox 5*264 -> 165*8 5*264 -> 165*8 5*264 -> 165*8 Buffer input mux is 33:1 PU Gearbox is 20:1 mux Output gearbox needed.to convert from 5*264 to 8*165 5*264 -> 165*8 = parity PU Idle 14/34 Very complex gearbox + 1 Processing Unit Gearbox Page 11

12 1x400G KP4 332MHz Datapath Current FPGA appropriate bus widths and clock frequencies Uses free running local clock for most of the circuitry Running off a local clock with periodic gaps easies design issues with unstable clocks Gearboxing from 1280b to 1360b is essentially free since this logic is used for alignment, re-ordering etc. 17:16 duty cycle takes care of clock ppm variation Recovered clock MHz Fixed clock MHz Transcode: 257 in, 264 out 425Gbps 16x Gbps 1280-bit lock & Deskew 1360-bit RS Decode Gbps gearbox 332MHz 1360-bit Descramble Transcode & removal + gearbox 1320-bit Rest of PCS 400Gbps Size = A 400 = 4xA 100 Size = D 400 = 4xD 100 Size = T 400 = 1.35xT 100 Gearbox ~30% of T 400 Page 12

13 1x400G Transcode Gearboxing: 1360-bit Decoder Low complexity gearboxing for this option 5* RS Decode 1360 Parity Removal 1285 Transcode 1320 PU1 PU2 PU3 PU4 PU5 1 RS Codeword 4 cycles of 1360 bits 4 cycles of 1285 bits Buffer input mux is 4:1 Gearbox mux is 4:1 No output gearbox needed. = parity bits Simple gearbox + 5 Processing Units (PU), busy 100% of the time Page 13

14 1x400G KP4 664MHz Datapath Current ASIC and future FPGA appropriate bus widths and clock frequencies Uses free running local clock for most of the circuitry Running off a local clock with periodic gaps easies design issues with unstable clocks Gearboxing from 640b to 680b is essentially free since this logic is used for alignment, re-ordering etc. 17:16 duty cycle takes care of clock ppm variation Recovered clock MHz Fixed clock MHz Transcode: 257 in, 264 out 425Gbps 16x Gbps lock & Deskew 680-bit RS Decode gearbox Gbps 664MHz 680-bit Descramble Transcode & removal + gearbox 660-bit Rest of PCS 400Gbps Size = A 400A = 4xA 100A Size = D 400A = 3.7xD 100A Size = T 400A = T 100A Gearbox ~57% of T 400A Page 14

15 400G Transcode Gearboxing: 680-bit Decoder Medium complexity gearboxing for this option 680 Decode 680 Transcode 660 PU1 PU2 PU3 5*264 -> 2*660 5*264 -> 2*660 5*264 -> 2*660 1 RS Codeword 8 cycles of 680 bits Idle 1/17 Idle 1/17 Idle 9/17 Gearbox + 3 Processing Units 5*264 -> 2*660 Buffer input mux is 8:1 PU1 & PU2 gearbox mux s are 8:1 PU3 gearbox mux is 4:1 Output gearbox needed.to convert from 5*264 to 2*660 Page 15

16 Size Comparison: 332MHz Clock 4x100G (KP4) 100G RS Decoder, size = D G, lock and de-skew & gearboxes, size = A 100 ~= 0.131D G Transcode, alignment removal & gearboxes, size = T 100 ~= 0.094D 100 4x100G overall size = 4 * (D A T 100 ) ~= 4.9D 100 1x400G (KP4) 400G RS Decoder, size = D 400 ~= 4D G, lock and de-skew & gearboxes, size = A 400 ~= 4A G Transcode, alignment removal & gearboxes, size = T 400 ~= 1.35T G overall size = D A T 400 ~= 4.7D 100 Page 16

17 Size Comparison: 664MHz Clock 4x100G (KP4) 100G RS Decoder, size = D 100A 100G, lock and de-skew & gearboxes, size = A 100A ~= 0.187D 100A 100G Transcode, alignment removal & gearboxes, size = T 100A ~= 0.272D 100A 4x100G overall size = 4 * (D 100A + A 100A + T 100A ) ~= 5.84D 100A 1x400G (KP4) 400G RS Decoder, size = D 400A ~= 3.68D 100A 400G, lock and de-skew & gearboxes, size = A 400A ~= 4A 100A 400G Transcode, alignment removal & gearboxes, size = T 400A ~= 0.94T 100A 400G overall size = D 400A + A 400A + T 400A ~= 4.68D 100A Page 17

18 Conclusion Both 4x100G (KP4) and 1x400G (KP4) architectures are implementable in both current ASIC and FPGA technology Gearboxing on either side of the decoder is not a concern, the logic is already there to do this function as part of the other required functions A 1x400G FEC architecture has a small size advantage Page 18

Investigation on Technical Feasibility of FEC Architecture with 1X400Gbps or 4X100Gbps

Investigation on Technical Feasibility of FEC Architecture with 1X400Gbps or 4X100Gbps Investigation on Technical Feasibility of FEC Architecture 1X400Gbps or 4X Xinyuan Wang, Tongtong Wang, Wenbin Yang HUAWEI TECHNOLOGIES CO., LTD. IEEE 802.3bs 400 GbE Task Force Contributor and Supporter

More information

Investigation on Technical Feasibility of FEC Architecture with 1X400Gbps or 4X100Gbps

Investigation on Technical Feasibility of FEC Architecture with 1X400Gbps or 4X100Gbps Investigation on Technical Feasibility of FEC Architecture or X Xinyuan Wang, Tongtong Wang, Wenbin Yang HUAWEI TECHNOLOGIES CO., LTD. IEEE 802.3bs 00 GbE Task Force Introduction and Background This presentation

More information

Update of Bit multiplexing in 400GbE PMA

Update of Bit multiplexing in 400GbE PMA Update of Bit multiplexing in 400GbE PMA Xinyuan Wang, Tongtong Wang, Wenbin Yang HUAWEI TECHNOLOGIES CO., LTD. IEEE 802.3bs 400 GbE Task Force Motivation A bit-multiplexing method based on FOM (FEC Orthogonal

More information

802.3bj FEC Overview and Status 400GbE Logic Challenges DRAFT IEEE

802.3bj FEC Overview and Status 400GbE Logic Challenges DRAFT IEEE 802.3bj FEC Overview and Status 400GbE Logic Challenges DRAFT IEEE May 2013 Victoria Mark Gustlin - Xilinx John D Ambrosia - Dell Gary Nicholl - Cisco Agenda Review of past logic related objectives Lessons

More information

40-Gbps and 100-Gbps Ethernet in Altera Devices

40-Gbps and 100-Gbps Ethernet in Altera Devices 40-Gbps and 100-Gbps Ethernet in Altera Devices Transceiver Portfolio Workshops 2009 Agenda 40/100 GbE standards 40/100 GbE IP in Altera devices Stratix IV GT FPGA features and advantages Altera standards

More information

802.3bj FEC Overview and Status AMP_Valid and PCS_Lane TBDs DRAFT IEEE P802.3bs 400 Gb/s Ethernet Task Force Mark Gustlin - Xilinx

802.3bj FEC Overview and Status AMP_Valid and PCS_Lane TBDs DRAFT IEEE P802.3bs 400 Gb/s Ethernet Task Force Mark Gustlin - Xilinx 802.3bj FEC Overview and Status AMP_Valid and PCS_Lane TBDs DRAFT IEEE P802.3bs 400 Gb/s Ethernet Task Force Mark Gustlin - Xilinx Introduction There are several TBDs around the amp_valid and pcs_lane

More information

Joint ITU-T/IEEE Workshop on Carrier-class Ethernet

Joint ITU-T/IEEE Workshop on Carrier-class Ethernet Joint ITU-T/IEEE Workshop on Carrier-class Ethernet Proposed 100GE PCS and Electrical Interface Gary Nicholl, Senior Technical Leader Cisco Systems 1 Outline The following slides present a proposal for

More information

FEC Core Area Comparison and Model

FEC Core Area Comparison and Model FEC Core Area Comparison and Model Martin Langhammer Altera Corporation P802.3bs 400Gb/s Ethernet Task Force 1 Overview This presentation will show the relative areas of FEC cores used in recent 802.3bs

More information

Interlaken IP datasheet

Interlaken IP datasheet Key words:interlaken, MAC, PCS, SERDES Abstract:Interlaken MAC/PCS implementation per Interlaken protocol v1.2 All rights reserved Table of Contents 1. Introduction...4 2. Specification...4 3. Architecture...4

More information

EEE Modifications P802.3bj comments 115, 116, 117 P802.3bm describe fast-wake signaling compatible with OTN mapper. Steve Trowbridge Alcatel-Lucent

EEE Modifications P802.3bj comments 115, 116, 117 P802.3bm describe fast-wake signaling compatible with OTN mapper. Steve Trowbridge Alcatel-Lucent EEE Modifications P802.3bj comments 115, 116, 117 P802.3bm describe fast-wake signaling compatible with OTN mapper Steve Trowbridge Alcatel-Lucent 1 Supporters Pete Anslow (Ciena) Ghani Abbas (Ericsson)

More information

Farhad Shafai, Sarance Technologies March, 2008 SARANCE TECHNOLOGIES

Farhad Shafai, Sarance Technologies March, 2008 SARANCE TECHNOLOGIES Technical Feasibility of 100G/40G MLD Farhad Shafai, Sarance Technologies March, 08 1 Outline Presentation is focused on the implementation of the digital logic Agenda: MLD overview 100G implementation

More information

EPoC PHY and MAC proposal

EPoC PHY and MAC proposal EPoC PHY and MAC proposal Marek Hajduczenia, PhD ZTE Corporation marek.hajduczenia@zte.pt Supporters Alan Brown, Aurora Ed Mallette, Bright House Networks 2 RF spectrum churn Chunks of RF spectrum may

More information

UltraScale Architecture Integrated Block for 100G Ethernet v1.4

UltraScale Architecture Integrated Block for 100G Ethernet v1.4 UltraScale Architecture Integrated Block for 100G Ethernet v1.4 LogiCORE IP Product Guide Vivado Design Suite Table of Contents IP Facts Chapter 1: Overview Feature Summary..................................................................

More information

Edits to P802.3bs D1.2 for Alignment Marker Mapping and Insertion

Edits to P802.3bs D1.2 for Alignment Marker Mapping and Insertion 119.2.4.4 Alignment marker mapping and insertion In order to support deskew and reordering of the 16 individual PCS lanes at the receive PCS, alignment markers are added periodically for each PCS lane.

More information

An Alternative Scheme of FOM Bit Mux with Pre-interleave

An Alternative Scheme of FOM Bit Mux with Pre-interleave An Alternative Scheme of FOM Bit Mux with Pre-interleave Tongtong Wang, Wenbin Yang, Xinyuan Wang IEEE 802.3bs 400 GbE Task Force Background PMA options as in gustlin_3bs_04_0714 are: Bit Muxing, used

More information

PBL Model Update. Trey Malpass Ye Min Ding Chiwu Zengli. IEEE Higher Speed Study Group Nov HUAWEI TECHNOLOGIES Co., Ltd.

PBL Model Update. Trey Malpass Ye Min Ding Chiwu Zengli. IEEE Higher Speed Study Group Nov HUAWEI TECHNOLOGIES Co., Ltd. Model Update Trey Malpass Ye Min Ding Chiwu Zengli IEEE 802.3 Higher Speed Study Group 12-15 Nov 2007 Contents Page 2 Model Architecture Model Detailed Information Interface Functions Applications 10 x

More information

HSE OTN Support. Qiwen Zhong Qiuyou Wu WB Jiang Huawei Technologies. IEEE 802.3ba Task Force, March HUAWEI TECHNOLOGIES Co., Ltd.

HSE OTN Support. Qiwen Zhong Qiuyou Wu WB Jiang Huawei Technologies. IEEE 802.3ba Task Force, March HUAWEI TECHNOLOGIES Co., Ltd. HSE Support Qiwen Zhong Qiuyou Wu WB Jiang Huawei Technologies Content Page 2 Bit transparency requirement Skew accumulation issue Lane independent transport & 2x skew tolerance Page 3 Transparency Requirement

More information

100GE and 40GE PCS Proposal

100GE and 40GE PCS Proposal 100GE and 0GE PCS Proposal Mark Gustlin, Gary Nicholl, Oded Trainin IEEE HSSG September 2007 Supporters Pete Anslow - Nortel Med Belhadj Cortina Brad Booth AMCC Frank Chang - Vitesse Chris Cole Finisar

More information

Optimal Management of System Clock Networks

Optimal Management of System Clock Networks Optimal Management of System Networks 2002 Introduction System Management Is More Challenging No Longer One Synchronous per System or Card Must Design Source-Synchronous or CDR Interfaces with Multiple

More information

10Gb Ethernet PCS Core

10Gb Ethernet PCS Core July 2002 Features Complete 10Gb Ethernet Physical Coding Sublayer (PCS) Solution Based on the ORCA 10 Gbits/s Line Interface (ORLI10G) FPSC, Enabling Flexible10GbE LAN/WAN Application Solutions. IP Targeted

More information

10GBase-R PCS/PMA Controller Core

10GBase-R PCS/PMA Controller Core 10GBase-R PCS/PMA Controller Core Contents 1 10GBASE-R PCS/PMA DATA SHEET 1 1.1 FEATURES.................................................. 1 1.2 APPLICATIONS................................................

More information

Flex Ethernet Implementation Agreement

Flex Ethernet Implementation Agreement Flex Ethernet Implementation Agreement IA # OIF-FLEXE-01.1 June 21, 2017 Implementation Agreement created and approved by the Optical Internetworking Forum www.oiforum.com The OIF is an international non

More information

Technical Feasibility of optical PMDs with RS FEC

Technical Feasibility of optical PMDs with RS FEC Technical Feasibility of optical PMDs with RS FEC Yu Xu, Xinyuan Wang HUAWEI TECHNOLOGIES CO., LTD. IEEE 802.3 50GE & NGOATH Study Group Background and Introduction In 50 Gb/s Ethernet Over a Single Lane

More information

Virtex-5 GTP Aurora v2.8

Virtex-5 GTP Aurora v2.8 0 DS538 October 10, 2007 0 0 Introduction The Virtex -5 GTP Aurora core implements the Aurora protocol using the high-speed serial GTP transceivers in Virtex-5 LXT and SXT devices. The core can use up

More information

Globally Synchronized time via Datacenter Networks

Globally Synchronized time via Datacenter Networks 1 Globally Synchronized time via Datacenter Networks Ki Suh Lee Cornell University Joint work with Han Wang, Vishal Shrivastav and Hakim Weatherspoon 2 Synchronized Clocks Fundamental for network and distributed

More information

OTN Support Update P802.3bs 400 Gb/s Ethernet Task Force. Steve Trowbridge Alcatel-Lucent

OTN Support Update P802.3bs 400 Gb/s Ethernet Task Force. Steve Trowbridge Alcatel-Lucent Support Update P802.3bs 400 Gb/s Ethernet Task Force Steve Trowbridge Alcatel-Lucent 1 Key Elements of Support See Support: What is it and why is it important?, July 2013 A new rate of Ethernet (e.g.,

More information

25 Gb/s Ethernet Study Group CSD: Technical Feasibility. Joel Goergen - Cisco Matt Brown APM Version goergen_25ge_01_0914d

25 Gb/s Ethernet Study Group CSD: Technical Feasibility. Joel Goergen - Cisco Matt Brown APM Version goergen_25ge_01_0914d 25 Gb/s Ethernet Study Group CSD: Technical Feasibility Joel Goergen - Cisco Matt Brown APM Version goergen_25ge_01_0914d Supporters Rich Meltz Intel Brad Booth Microsoft Nathan Tracy TE Kent Lusted Intel

More information

Flex Ethernet 2.0 Implementation Agreement

Flex Ethernet 2.0 Implementation Agreement Flex Ethernet 2.0 Implementation Agreement IA # OIF-FLEXE-02.0 June 22, 2018 Implementation Agreement created and approved by the Optical Internetworking Forum www.oiforum.com The OIF is an international

More information

MPM-400G 400G Multi-Protocol Module

MPM-400G 400G Multi-Protocol Module MPM-400G 400G Multi-Protocol Module MPA Multi-Protocol Analzyer Modular Test Platform Specifically designed to meet the test and measurement challenges of developers and early adopters of 400G ASICs, CFP8

More information

10 Gigabit Ethernet 10GBase-W PHY. 1 Introduction. Product Brief Version May 2005

10 Gigabit Ethernet 10GBase-W PHY. 1 Introduction. Product Brief Version May 2005 1 Introduction Initially, 10 Gigabit Ethernet is used by network managers to provide high-speed, local backbone interconnection between large-capacity switches, as it enables Internet Service Providers

More information

fleximac A MICROSEQUENCER FOR FLEXIBLE PROTOCOL PROCESSING

fleximac A MICROSEQUENCER FOR FLEXIBLE PROTOCOL PROCESSING fleximac A MICROSEQUENCER FOR FLEXIBLE PROTOCOL PROCESSING A Lattice Semiconductor White Paper February 2006 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503)

More information

Thoughts for 400GbE FEC Architecture with Pre-interleave

Thoughts for 400GbE FEC Architecture with Pre-interleave Thoughts for 400GbE FEC Architecture with Pre-interleave Xinyuan Wang, Tongtong Wang HUAWEI TECHNOLOGIES CO., LTD. IEEE 802.3bs 400 GbE Task Force Background and Introduction In Hawaii meeting, how to

More information

Latency and FEC options for 25G Ethernet

Latency and FEC options for 25G Ethernet Latency and FEC options for 25G Ethernet Adee Ran Intel Corp. August 2014 August 12, 2014 IEEE 802.3 25 Gb/s Ethernet Study Group 1 Goals Explore FEC encoding/decoding options Discuss FEC gain/latency

More information

10 Gigabit XGXS/XAUI PCS Core. 1 Introduction. Product Brief Version April 2005

10 Gigabit XGXS/XAUI PCS Core. 1 Introduction. Product Brief Version April 2005 1 Introduction Initially, network managers use 10 Gigabit Ethernet to provide high-speed, local backbone interconnection between large-capacity switches. 10 Gigabit Ethernet enables Internet Service Providers

More information

More on Super-PON. Scale Fully Passive Optical Access Networks to Longer Reaches and to a Significantly Higher Number of Subscribers

More on Super-PON. Scale Fully Passive Optical Access Networks to Longer Reaches and to a Significantly Higher Number of Subscribers More on Super-PON Scale Fully Passive Optical Access Networks to Longer Reaches and to a Significantly Higher Number of Subscribers Claudio DeSanti Liang Du Agenda Refinements 2.5G-EPON Upstream Speed

More information

DesignCon SerDes Architectures and Applications. Dave Lewis, National Semiconductor Corporation

DesignCon SerDes Architectures and Applications. Dave Lewis, National Semiconductor Corporation DesignCon 2004 SerDes Architectures and Applications Dave Lewis, National Semiconductor Corporation Abstract When most system designers look at serializer/deserializer (SerDes) devices, they often compare

More information

WAN-compatible 10 Gigabit Ethernet Tutorial. Opticon Burlingame, CA July 31, 2000

WAN-compatible 10 Gigabit Ethernet Tutorial. Opticon Burlingame, CA July 31, 2000 WAN-compatible 10 Gigabit Ethernet Tutorial Opticon 2000 Burlingame, CA July 31, 2000 Carrier and Service Provider Applications Location A 10GbE Metro Metropolitan Optical Networks Dark Fiber Interconnect

More information

UltraScale Architecture Integrated IP Core for Interlaken v1.3

UltraScale Architecture Integrated IP Core for Interlaken v1.3 UltraScale Architecture Integrated IP Core for Interlaken v1.3 LogiCORE IP Product Guide Vivado Design Suite Table of Contents IP Facts Chapter 1: Overview Feature Summary..................................................................

More information

A HT3 Platform for Rapid Prototyping and High Performance Reconfigurable Computing

A HT3 Platform for Rapid Prototyping and High Performance Reconfigurable Computing A HT3 Platform for Rapid Prototyping and High Performance Reconfigurable Computing Second International Workshop on HyperTransport Research and Application (WHTRA 2011) University of Heidelberg Computer

More information

A (Very Hand-Wavy) Introduction to. PCI-Express. Jonathan Heathcote

A (Very Hand-Wavy) Introduction to. PCI-Express. Jonathan Heathcote A (Very Hand-Wavy) Introduction to PCI-Express Jonathan Heathcote Motivation Six Week Project Before PhD Starts: SpiNNaker Ethernet I/O is Sloooooow How Do You Get Things In/Out of SpiNNaker, Fast? Build

More information

SPACEFIBRE. Session: SpaceWire Standardisation. Long Paper.

SPACEFIBRE. Session: SpaceWire Standardisation. Long Paper. SPACEFIBRE Session: SpaceWire Standardisation Long Paper Steve Parkes 1, Chris McClements 1, Martin Suess 2 1 School of Computing, University of Dundee, Dundee, DD1 4HN, Scotland, U.K. E-mail: sparkes@computing.dundee.ac.uk

More information

IEEE 802.3by 25G Ethernet TF A BASELINE PROPOSAL FOR RS, PCS, AND FEC

IEEE 802.3by 25G Ethernet TF A BASELINE PROPOSAL FOR RS, PCS, AND FEC IEEE 802.3by 25G Ethernet TF A BASELINE PROPOSAL FOR RS, PCS, AND FEC Eric Baden (ericb at broadcom com), presenting Ankit Bansal (ankitb at broadcom com), Cedric Begin (cbeginat cisco com), Gary Nicholl(gnicholl

More information

Receiver BER target for 32GFC. Adam Healey February 2013 T11/13-058v0

Receiver BER target for 32GFC. Adam Healey February 2013 T11/13-058v0 Receiver BER target for 32GFC Adam Healey February 2013 T11/13-058v0 Background FC-PI-5, 5.1 The FC-FS-3 protocol is defined to operate across connections having a bit error ratio (BER) detected at the

More information

Ethernet The Next Generation

Ethernet The Next Generation Ethernet The Next Generation John D Ambrosia Chair, IEEE P802.3ba Task Force Scientist Sr., Components Technology Force10 Networks Presented by: Debbie Montano dmontano@force10networks.com Per IEEE-SA

More information

Relationship of 1000BASE-T1 to other standards

Relationship of 1000BASE-T1 to other standards 97.1.2 Relationship of 1000BASE-T1 to other standards Relations between the 1000BASE-T1 PHY, the ISO Open Systems Interconnection (OSI) Reference Model, and the IEEE 802.3 CSMA/CD LAN Model are shown in

More information

Technical Article MS-2503

Technical Article MS-2503 Technical Article MS-2503. Slay Your System Dragons with JESD204B by Ian Beavers, Applications Engineer, Analog Devices, Inc. The JESD204B serial data link interface was developed to support the growing

More information

Trends in Digital Interfaces for High-Speed ADCs

Trends in Digital Interfaces for High-Speed ADCs Trends in Digital Interfaces for High-Speed ADCs Robbie Shergill National Semiconductor Corp. INTRODUCTION The analog-to-digital converter is a critical component in many of the most demanding applications

More information

EE 8217 *Reconfigurable Computing Systems Engineering* Sample of Final Examination

EE 8217 *Reconfigurable Computing Systems Engineering* Sample of Final Examination 1 Student name: Date: June 26, 2008 General requirements for the exam: 1. This is CLOSED BOOK examination; 2. No questions allowed within the examination period; 3. If something is not clear in question

More information

LatticeSC/M Family flexipcs Data Sheet. DS1005 Version 02.0, June 2011

LatticeSC/M Family flexipcs Data Sheet. DS1005 Version 02.0, June 2011 DS1005 Version 02.0, June 2011 Table of Contents June 2011 Introduction to flexipcs... 1-1 flexipcs Features... 1-1 flexipcs Introduction... 1-2 Architecture Overview... 1-2 flexipcs Quad... 1-2 flexipcs

More information

Optimizing latency in Xilinx FPGA Implementations of the GBT. Jean-Pierre CACHEMICHE

Optimizing latency in Xilinx FPGA Implementations of the GBT. Jean-Pierre CACHEMICHE Optimizing latency in Xilinx FPGA Implementations of the GBT Steffen MUSCHTER Christian BOHM Sophie BARON Jean-Pierre CACHEMICHE Csaba SOOS (Stockholm University) (Stockholm University) (CERN) (CPPM) (CERN)

More information

Multi-Gigabit Transceivers Getting Started with Xilinx s Rocket I/Os

Multi-Gigabit Transceivers Getting Started with Xilinx s Rocket I/Os Multi-Gigabit Transceivers Getting Started with Xilinx s Rocket I/Os Craig Ulmer cdulmer@sandia.gov July 26, 2007 Craig Ulmer SNL/CA Sandia is a multiprogram laboratory operated by Sandia Corporation,

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 16: PCI Bus Serial Buses Zeshan Chishti Electrical and Computer Engineering Dept. Maseeh College of Engineering and Computer Science Source: Lecture based on materials

More information

White Paper. ORSPI4 Field-Programmable System-on-a-Chip Solves Design Challenges for 10 Gbps Line Cards

White Paper. ORSPI4 Field-Programmable System-on-a-Chip Solves Design Challenges for 10 Gbps Line Cards White Paper ORSPI4 Field-Programmable System-on-a-Chip Solves Design Challenges for 10 Gbps Line Cards Sidhartha Mohanty and Fred Koons Lattice Semiconductor Corporation October 2003 Bringing the Best

More information

Understanding JESD204B High-speed inter-device data transfers for SDR

Understanding JESD204B High-speed inter-device data transfers for SDR Understanding JESD204B High-speed inter-device data transfers for SDR Lars-Peter Clausen Introduction JESD204 Standard Designed as high-speed serial data link between converter (ADC, DAC) and logic device

More information

M1QSFP28SFP28. 5-speed dual-media test module. Xena Networks The price/performance leaders in Gigabit Ethernet Test & Measurement

M1QSFP28SFP28. 5-speed dual-media test module. Xena Networks The price/performance leaders in Gigabit Ethernet Test & Measurement M1 5-speed dual-media test module 100G/40G/10G XenaCompact XenaBay Product Order Number C1-M1 M1 The M1 is a versatile test solution offering five different Ethernet network speeds: 10GE, 25GE, 40GE, 50GE

More information

OTU2 I.4 FEC IP Core (IP-OTU2EFECI4Z) Data Sheet

OTU2 I.4 FEC IP Core (IP-OTU2EFECI4Z) Data Sheet OTU2 I.4 FEC IP Core (IP-OTU2EFECI4Z) Data Sheet Revision 0.08 Release Date 2014-03-29 Document number TD0307 . All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX

More information

Altera Product Overview. Altera Product Overview

Altera Product Overview. Altera Product Overview Altera Product Overview Tim Colleran Vice President, Product Marketing Altera Product Overview High Density + High Bandwidth I/O Programmable ASSP with CDR High-Speed Product Term Embedded Processor High

More information

Pretty Good Protocol - Design Specification

Pretty Good Protocol - Design Specification Document # Date effective October 23, 2006 Author(s) Ryan Herbst Supersedes Draft Revision 0.02 January 12, 2007 Document Title Pretty Good Protocol - Design Specification CHANGE HISTORY LOG Revision Effective

More information

100 Gbps/40 Gbps PCS/PMA + MAC IP Core

100 Gbps/40 Gbps PCS/PMA + MAC IP Core 100 Gbps/40 Gbps PCS/PMA + MAC IP Core Getting started guide: 1. Prerequisites: In order to simulate and implement Aitia's 100 Gbps / 40 Gbps Ethernet PCS/PMA + MAC IP core you must meet the following

More information

The equivalent of XAUI and other architectural considerations in 40G/100G Ethernet

The equivalent of XAUI and other architectural considerations in 40G/100G Ethernet The equivalent of XAUI and other architectural considerations in 40G/100G Ethernet Piers Dawe Avago Technologies May 2008, Munich The equivalent of XAUI and other architectural 1 Contents For those who

More information

XAUI as a SUPI Alternative

XAUI as a SUPI Alternative Rich Taborek Tampa, FL nserial November 6-9, 2000 IEEE P802.3ae Task Force 1 Presentation Purpose Why Propose This Now? Why Wasn t This Proposed Before? Illustrate WAN PHY & Its Interfaces Describe WAN

More information

10 Gigabit Ethernet 10GBase-R PCS Core. 1 Introduction. Product Brief Version August 2004

10 Gigabit Ethernet 10GBase-R PCS Core. 1 Introduction. Product Brief Version August 2004 1 Introduction Initially, 10 Gigabit Ethernet (10 GbE) is used by network managers to provide high-speed, local backbone interconnection between large-capacity switches, as it enables Internet Service

More information

Advanced Modulation and Coding Challenges

Advanced Modulation and Coding Challenges WHITE PAPER Accelerating from 100GE to 400GE in the Data Center Advanced Modulation and Coding Challenges Ever increasing demands for a connected world with instant data access continues to drive data

More information

Speedster22i FPGA Family Power Estimator Tool User Guide. UG054- July 28, 2015

Speedster22i FPGA Family Power Estimator Tool User Guide. UG054- July 28, 2015 Speedster22i FPGA Family Power Estimator Tool User Guide UG054- July 28, 2015 1 UG054, July 28, 2015 Copyright Info Copyright 2015 Achronix Semiconductor Corporation. All rights reserved. Achronix is a

More information

ORCA FPGA- Optimized VectorBlox Computing Inc.

ORCA FPGA- Optimized VectorBlox Computing Inc. ORCA FPGA- Optimized 2016 VectorBlox Computing Inc. 1 ORCA FPGA- Optimized Tiny, Low-Power FPGA 3,500 LUT4s 4 MUL16s < $5.00 ISA: RV32IM hw multiply, sw divider < 2,000 LUTs ~ 20MHz What is ORCA? Family

More information

FEC Summary. Ed Boyd, Xingtera. IEEE 802.3bn January

FEC Summary. Ed Boyd, Xingtera. IEEE 802.3bn January FE Summary Ed Boyd, Xingtera IEEE 802.3bn January 2014 1 FE Summary Encoder Delay Decoder Delay Overall omplexity Efficiency* Medium Only 0 Med 80.4% Easy Long Short Long Long 87.4% Medium Long Short 0

More information

Recommended Protocol Configurations for Stratix IV GX FPGAs

Recommended Protocol Configurations for Stratix IV GX FPGAs Recommended Protocol s for Stratix IV GX FPGAs AN-577-3.0 Application Note The architecture of the Altera Stratix IV GX FPGA is designed to accommodate the widest range of protocol standards spread over

More information

Adaptive Multi-bit Crosstalk-Aware Error Control Coding Scheme for On-Chip Communication

Adaptive Multi-bit Crosstalk-Aware Error Control Coding Scheme for On-Chip Communication Abstract: Adaptive Multi-bit Crosstalk-Aware Error Control Coding Scheme for On-Chip Communication The presence of different noise sources and continuous increase in crosstalk in the deep sub micrometer

More information

ispgdx2 vs. ispgdx Architecture Comparison

ispgdx2 vs. ispgdx Architecture Comparison isp2 vs. isp July 2002 Technical Note TN1035 Introduction The isp2 is the second generation of Lattice s successful isp platform. Architecture enhancements improve flexibility and integration when implementing

More information

JDSU ONT-503/506/512 Optical Network Tester

JDSU ONT-503/506/512 Optical Network Tester COMMUNICATIONS TEST & MEASUREMENT SOLUTIONS JDSU ONT-503/506/512 Optical Network Tester 100G Test Solution supporting 40GE/100GE/OTU4 Preliminary Key features Powerful test solution designed to address

More information

S2C K7 Prodigy Logic Module Series

S2C K7 Prodigy Logic Module Series S2C K7 Prodigy Logic Module Series Low-Cost Fifth Generation Rapid FPGA-based Prototyping Hardware The S2C K7 Prodigy Logic Module is equipped with one Xilinx Kintex-7 XC7K410T or XC7K325T FPGA device

More information

Serial RapidIO Gen2 Protocol Analyzer

Serial RapidIO Gen2 Protocol Analyzer Serial RapidIO Gen2 Protocol Analyzer Serial RapidIO Protocol Analyzer & Pattern Injector Supports Serial RapidIO Gen2 or Gen 1 Descrambling & scrambling supported Tight integration and easy setup with

More information

8. High-Speed Differential I/O Interfaces and DPA in Stratix IV Devices

8. High-Speed Differential I/O Interfaces and DPA in Stratix IV Devices June 015 SIV51008-3.5 8. High-Speed Differential I/O Interfaces and DPA in Stratix IV Devices SIV51008-3.5 This chapter describes the significant advantages of the high-speed differential I/O interfaces

More information

Clock Tree Design Considerations

Clock Tree Design Considerations Tree Design Considerations Hardware design in high performance applications such as communications, wireless infrastructure, servers, broadcast video and test and measurement is becoming increasingly complex

More information

LVDS applications, testing, and performance evaluation expand.

LVDS applications, testing, and performance evaluation expand. Stephen Kempainen, National Semiconductor Low Voltage Differential Signaling (LVDS), Part 2 LVDS applications, testing, and performance evaluation expand. Buses and Backplanes D Multi-drop D LVDS is a

More information

Table of Contents 1. INTRODUCTION SYSTEM DESCRIPTION...1

Table of Contents 1. INTRODUCTION SYSTEM DESCRIPTION...1 Table of Contents 1. INTRODUCTION...1 2. SYSTEM DESCRIPTION...1 3. ST-106 VERSION 1.0 RELEASE NOTES...2 3.1 UPGRADES AND NEW FEATURES...2 3.2 KNOWN DISCREPANCIES...2 4. SYSTEM REQUIREMENTS...3 5. INSTALLATION...3

More information

SPI-4.2 Interoperability with the Intel IXF1110 in Stratix GX Devices

SPI-4.2 Interoperability with the Intel IXF1110 in Stratix GX Devices SPI-4.2 Interoperability with the Intel IXF1110 in Stratix GX Devices May 2003, ver. 1.0 Application Note 227 Introduction The system packet interface level 4 phase 2 (SPI-4.2) specification, defined by

More information

SpaceWire-RT Update. EU FP7 Project Russian and European Partners. SUAI, SubMicron, ELVEES University of Dundee, Astrium GmbH

SpaceWire-RT Update. EU FP7 Project Russian and European Partners. SUAI, SubMicron, ELVEES University of Dundee, Astrium GmbH SpaceWire-RT Update EU FP7 Project Russian and European Partners SUAI, SubMicron, ELVEES University of Dundee, Astrium GmbH 1 Contents SpaceWire-RT project SpaceWire-RT protocols Oversampled SpaceFibre

More information

FLASH RELIABILITY, BEYOND DATA MANAGEMENT AND ECC. Hooman Parizi, PHD Proton Digital Systems Aug 15, 2013

FLASH RELIABILITY, BEYOND DATA MANAGEMENT AND ECC. Hooman Parizi, PHD Proton Digital Systems Aug 15, 2013 FLASH RELIABILITY, BEYOND DATA MANAGEMENT AND ECC Hooman Parizi, PHD Proton Digital Systems Aug 15, 2013 AGENDA Section 1: Flash Reliability Section 2: Components to Improve Flash Reliability Section 3:

More information

Implementing 9.8G CPRI in Arria V GT and ST FPGAs

Implementing 9.8G CPRI in Arria V GT and ST FPGAs 03..06 AN 686 Subscribe This application note describes the implementation of 9.8304 Gbps Common Public Radio Interface (CPRI) using the Arria V GT and Arria V ST FPGA transceivers. The hard physical coding

More information

Economic Feasibility of 400G Ethernet MAC/PCS/FEC/PMA

Economic Feasibility of 400G Ethernet MAC/PCS/FEC/PMA Economic Feasibility of 400G Ethernet MAC/PCS/FEC/PMA Mike Peng Li, Gregg Baeckler, Martin Langhammer, Divya Vijayaraghavan, Paul Scheidt, Curt Wortman Altera Corporation For IEEE 400G SG Jan, 2014 1 Context

More information

PCI-X Protocol Addendum to the PCI Local Bus Specification Revision 2.0a

PCI-X Protocol Addendum to the PCI Local Bus Specification Revision 2.0a PCI-X Protocol Addendum to the PCI Local Bus Specification Revision 2.0a July 29, 2002July 22, 2003 REVISION REVISION HISTORY DATE 1.0 Initial release. 9/22/99 1.0a Clarifications and typographical corrections.

More information

LatticeSC MACO Core LSCDR1X18 Low-Speed Clock and Data Recovery User s Guide

LatticeSC MACO Core LSCDR1X18 Low-Speed Clock and Data Recovery User s Guide Low-Speed Clock and Data Recovery User s Guide January 2008 Technical Note TN1122 Introduction The LatticeSC (low-speed clock and data recovery) MACO core is a fully integrated low-power clock and data

More information

Data Center architecture trends and their impact on PMD requirements

Data Center architecture trends and their impact on PMD requirements Data Center architecture trends and their impact on PMD requirements Mark Nowell, Matt Traverso Cisco Kapil Shrikhande Dell IEEE 802.3 NG100GE Optics Study Group March 2012 1 Scott Kipp Brocade David Warren

More information

SpaceWire-RT. SpaceWire-RT Status SpaceWire-RT IP Core ASIC Feasibility SpaceWire-RT Copper Line Transceivers

SpaceWire-RT. SpaceWire-RT Status SpaceWire-RT IP Core ASIC Feasibility SpaceWire-RT Copper Line Transceivers SpaceWire-RT SpaceWire-RT Status SpaceWire-RT IP Core ASIC Feasibility SpaceWire-RT Copper Line Transceivers 1 Overview of SpaceWire-RT Project Aims The SpaceWire-RT research programme aims to: Conceive

More information

SpaceWire Technologies deliver multi-gigabit data rates for on-board Spacecraft. SpaceTech Expo Gregor Cranston Business Development Manager

SpaceWire Technologies deliver multi-gigabit data rates for on-board Spacecraft. SpaceTech Expo Gregor Cranston Business Development Manager SpaceWire Technologies deliver multi-gigabit data rates for on-board Spacecraft SpaceTech Expo 2013 Gregor Cranston Business Development Manager 1 Introducing SpaceFibre A very high-speed serial data-link

More information

AdvancedTCA Backplane Tester

AdvancedTCA Backplane Tester AdvancedTCA Backplane Tester Alexandra Dana Oltean, Brian Martin POLITEHNICA University Bucharest Romania and CERN 1211Geneva 23 Switzerland Email: alexandra.oltean@cern.ch, brian.martin@cern.ch CERN-OPEN-2005-014

More information

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011 FPGA for Complex System Implementation National Chiao Tung University Chun-Jen Tsai 04/14/2011 About FPGA FPGA was invented by Ross Freeman in 1989 SRAM-based FPGA properties Standard parts Allowing multi-level

More information

Xilinx 7 Series FPGA Power Benchmark Design Summary

Xilinx 7 Series FPGA Power Benchmark Design Summary Xilinx 7 Series FPGA Power Benchmark Design Summary June 1 Copyright 1 1 Xilinx Xilinx Application-centric Benchmarking Process 1G Packet Processor OTN Muxponder ASIC Emulation Wireless Radio & Satellite

More information

SpaceWire 101. Webex Seminar. February 15th, 2006

SpaceWire 101. Webex Seminar. February 15th, 2006 SpaceWire 101 Webex Seminar February 15th, 2006 www.aeroflex.com/spacewire SpaceWire 101 What is SpaceWire Protocol, Links, Basic Communication Architecture Physical Layer Interface and Network Components

More information

HARI Interface Chip for Serial PMD A comparison of two clocking schemes. Vipul Bhatt, Finisar, 2/2/00 1

HARI Interface Chip for Serial PMD A comparison of two clocking schemes. Vipul Bhatt, Finisar, 2/2/00 1 Interface Chip for Serial PMD A comparison of two clocking schemes Vipul Bhatt, Finisar, 2/2/00 1 chip, 2 clock domains, Tx path De-, De-skew 32 16 644.53 MHz CKI 312.5M Recovered Byte Clock REFCK 312.5

More information

Emerging DRAM Technologies

Emerging DRAM Technologies 1 Emerging DRAM Technologies Michael Thiems amt051@email.mot.com DigitalDNA Systems Architecture Laboratory Motorola Labs 2 Motivation DRAM and the memory subsystem significantly impacts the performance

More information

Possibilities of implementation of synchronous Ethernet in popular Ethernet version using timing and interference constraints

Possibilities of implementation of synchronous Ethernet in popular Ethernet version using timing and interference constraints Possibilities of implementation of synchronous Ethernet in popular Ethernet version using timing and interference constraints Seetaiah KILARU 1,*, Bhargava PULI 2, and Shwetha PULI 3 1 Department of Electronics

More information

ENGG3380: Computer Organization and Design Lab5: Microprogrammed Control

ENGG3380: Computer Organization and Design Lab5: Microprogrammed Control ENGG330: Computer Organization and Design Lab5: Microprogrammed Control School of Engineering, University of Guelph Winter 201 1 Objectives: The objectives of this lab are to: Start Date: Week #5 201 Due

More information

Logic Built In Self-Test Verification Statergy For SerDes PHY

Logic Built In Self-Test Verification Statergy For SerDes PHY Logic Built In Self-Test Verification Statergy For SerDes PHY 1 Adarsh Malagi, 2 Kariyappa B.S RV College of Engineering Bengaluru, India 1 adarshmalagi@gmail.com, 2 kariyappabs@rvce.edu.in Abstract: VLSI

More information

Intel Stratix 10 High-Speed LVDS I/O User Guide

Intel Stratix 10 High-Speed LVDS I/O User Guide Intel Stratix 10 High-Speed LVDS I/O User Guide Updated for Intel Quartus Prime Design Suite: 18.1 Subscribe Latest document on the web: PDF HTML Contents Contents 1. Intel Stratix 10 High-Speed LVDS I/O

More information

IMPLEMENTATION AGREEMENT: OIF-SPI SPI-5. System Packet Interface Level 5 (SPI-5): OC-768 System Interface for Physical and Link Layer Devices.

IMPLEMENTATION AGREEMENT: OIF-SPI SPI-5. System Packet Interface Level 5 (SPI-5): OC-768 System Interface for Physical and Link Layer Devices. Working Group: Physical and Link Layer (PLL) TITLE: System Packet Interface Level 5 (SPI-5): OC-768 System Interface for Physical and Link Layer Devices. SOURCE: Karl Gass Russ Tuck Technical Editor Sandia

More information

Arria II GX FPGA Development Kit HSMC Loopback Tests Rev 0.1

Arria II GX FPGA Development Kit HSMC Loopback Tests Rev 0.1 Arria II GX FPGA Development Kit HSMC Loopback Tests Rev 0.1 High Speed Design Team, San Diego Thursday, July 23, 2009 1 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions

More information

Section I. Stratix II GX Device Data Sheet

Section I. Stratix II GX Device Data Sheet Section I. Stratix II GX Device Data Sheet This section provides designers with the data sheet specifications for Stratix II GX devices. They contain feature definitions of the transceivers, internal architecture,

More information

The implementation of these interfaces may assume any of the following forms:

The implementation of these interfaces may assume any of the following forms: Draft Standard Contribution2 1. Physical Sublayer Interface 1.1 SONNET/SDH Physical Sublayer 1.1.1 Overview This clause defines the logical and electrical characteris tics for the SPI interfaces between

More information