Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

Size: px
Start display at page:

Download "Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated"

Transcription

1 Freescale emiconductor Technical Data Integrated ilicon Pressure ensor On-hip ignal onditioned, Temperature ompensated and alibrated The series piezoresistive transducer is a state-of-the-art monolithic silicon pressure sensor designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This sensor combines a highly sensitive implanted strain gauge with advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure. Rev 6, 01/2007 ITERATED PREURE EOR 0 to 6 kpa (0 to 0.87 psi) 0.2 to 4.7 V OUTPUT THROUH-HOLE Features Temperature ompensated over 10 to 60 Ideally uited for icroprocessor or icrocontroller-based ystems Available in auge urface ount (T) or Through-hole (DIP) onfigurations Durable Thermoplastic (PP) Package 7U AE 482B-03 7U AE series pressure sensors are available in the basic element package or with pressure ports. Two packing options are offered for the 482 and 482A case configurations. URFAE OUT ORDERI IFORATIO Device Type Options ase o. PX eries Order o. Packing Options arking Basic Element Element Only 482 6U Rails Element Only 482 6T1 Tape & Reel Element Only 482B 7U Rails 6U/6T1 AE U/6T1 AE 482A-01 Ported Element Axial Port 482A 6U Rails Axial Port 482A 6T1 Tape & Reel Axial Port 482 7U Rails ide Port 1369 P Trays Dual Port 1351 PXV4006DP Trays PXV4006DP AE P AE PI UBER (1) 1 / 5 / 2 V 6 / 3 nd 7 / 4 V out 8 / 1. Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch i n the lead. Freescale emiconductor, Inc., All rights reserved.

2 V ensing Element Thin Film Temperature ompensation and ain tage #1 ain tage #2 and round Reference hift ircuitry V out D Pins 1, 5, 6, 7, and 8 are O OET for small outline package device Figure 1. Fully Integrated Pressure ensor chematic Table 1. aximum Ratings (1) Parametrics ymbol Value Units aximum Pressure (P1 >P2) P max 24 kpa torage Temperature T stg -30 to +100 Operating Temperature T A -10 to Exposure beyond the specified limits may cause permanent damage or degradation to the device. Table 2. Operating haracteristics haracteristic ymbol in Typ ax Unit Pressure Range P OP kpa upply Voltage (1) V Vdc upply urrent I 10 madc Full cale Output (2) Offset (3)(5) (RF = 51kΩ) (RF = 51kΩ) V F 4.6 V V off V ensitivity V/P 766 mv/kpa Accuracy (4)(5) (10 to 60 ) ±5.0 %V F 1. Device is ratiometric within this specified excitation range. 2. Full cale pan (V F ) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure. 3. Offset (V off ) is defined as the output voltage at the minimum rated pressure. 4. Accuracy (error budget) consists of the following: Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range. Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied. Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from minimum or maximum rated pressure, at 25. Offset tability: Output deviation, after 1000 temperature cycles, -30 to 100, and 1.5 million pressure cycles, with minimum rated pressure applied. Tcpan: Output deviation over the temperature range of 10 to 60, relative to 25. TcOffset: Output deviation with minimum pressure applied, over the temperature range of 10 to 60, relative to Auto Zero at Factory Installation: Due to the sensitivity of the, external mechanical stresses and mounting position can affect the zero pressure output reading. To obtain the 5% F accuracy, the device output must be autozeroed'' after installation. Autozeroing is defined as storing the zero pressure output reading and subtracting this from the device's output during normal operations. 2 Freescale emiconductor

3 O-HIP TEPERATURE OPEATIO, ALIBRATIO, AD IAL ODITIOI The performance over temperature is achieved by from the factory. ontact the factory for information regarding integrating the shear-stress strain gauge, temperature media tolerance in your application. compensation, calibration and signal conditioning circuitry Figure 3 shows the recommended decoupling circuit for onto a single monolithic chip. interfacing the output of the integrated sensor to the A/D input Figure 2 illustrates the gauge configuration in the basic of a microprocessor or microcontroller. Proper decoupling of chip carrier (ase 482). A fluorosilicone gel isolates the die the power supply is recommended. surface and wire bonds from the environment, while allowing Figure 4 shows the sensor output signal relative to the pressure signal to be transmitted to the silicon diaphragm. pressure input. Typical, minimum and maximum output The series sensor operating characteristics curves are shown for operation over a temperature range of are based on use of dry air as pressure media. edia, other 10 to 60 using the decoupling circuit shown in Figure 3. than dry air, may have adverse effects on sensor The output will saturate outside of the specified pressure performance and long-term reliability. Internal reliability and range. qualification test for dry air, and other media, are available Fluorosilicone el Die oat Die tainless teel ap +5 V Wire Bond P1 Thermoplastic ase Vs Vout OUTPUT Lead Frame 1.0 µf IP 0.01 µf D 470 pf Differential ensing Element P2 Die Bond Figure 2. ross ectional Diagram OP (ot to cale) Figure 3. Recommended Power upply Decoupling and Output Filtering Recommendations (For additional output filtering, please refer to Application ote A1646.) Output (V) 5 Transfer Function: 4.5 V out = V *[(0.1533*P) ] ± 5% V F 4 V = 5.0 V ± 0.25 Vdc 3.5 TEP = 10 to 60 3 Typical ax in Differential Pressure (kpa) ee ote 5 in Operating haracteristics Figure 4. Output versus Pressure Differential Freescale emiconductor 3

4 PREURE (P1)/VAUU (P2) IDE IDETIFIATIO TABLE Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing silicone gel which isolates the die from the environment. The pressure sensor is Table 3. Pressure (P1)/Vacuum (P2) ide Identification Table designed to operate with positive differential pressure applied, P1 > P2. The Pressure (P1) side may be identified by using the table below: Part umber ase Type Pressure (P1) ide Identifier 6U/T1 482 tainless teel ap 6U/T1 482A ide with Port Attached 7U 482B tainless teel ap 7U 482 ide with Port Attached P 1369 ide with Port Attached PXV4006DP 1351 ide with Part arking IIU REOEDED FOOTPRIT FOR URFAE OUTED APPLIATIO urface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct footprint, the packages will self align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads TYP TYP 8X TYP 8X 2.54 inch mm Figure 5. OP Footprint (ase 482) 4 Freescale emiconductor

5 PAAE DIEIO -A- -B D 8 PL 0.25 (0.010) T B A OTE: 1. DIEIOI AD TOLERAI PER AI Y14.5, OTROLLI DIEIO: IH. 3. DIEIO A AD B DO OT ILUDE OLD PROTRUIO. 4. AXIU OLD PROTRUIO 0.15 (0.006). 5. ALL VERTIAL URFAE 5 TYPIAL DRAFT. PI 1 IDETIFIER H -T- EATI PLAE IHE ILLIETER DI I AX I AX A B D B 2.54 B H AE IUE O URFAE OUT -A- -B T- V 4 1 D 8 PL 0.25 (0.010) T B A W H OTE: 1. DIEIOI AD TOLERAI PER AI Y14.5, OTROLLI DIEIO: IH. 3. DIEIO A AD B DO OT ILUDE OLD PROTRUIO. 4. AXIU OLD PROTRUIO 0.15 (0.006). 5. ALL VERTIAL URFAE 5 TYPIAL DRAFT. IHE ILLIETER DI I AX I AX A B D B 2.54 B H V W PI 1 IDETIFIER EATI PLAE AE 482A-01 IUE A URFAE OUT Freescale emiconductor 5

6 PAAE DIEIO -A- -B T- 4 1 D 8 PL 0.25 (0.010) T B A PI 1 IDETIFIER DETAIL X DETAIL X EATI PLAE OTE: DIEIOI AD TOLERAI PER AI Y14.5, OTROLLI DIEIO: IH. DIEIO A AD B DO OT ILUDE OLD PROTRUIO. AXIU OLD PROTRUIO 0.15 (0.006). ALL VERTIAL URFAE 5 TYPIAL DRAFT. DIEIO TO ETER OF LEAD WHE FORED PARALLEL. DI A B D IHE ILLIETER I AX I AX B 2.54 B AE 482B-03 IUE B THROUH-HOLE -A- -B V PI 1 IDETIFIER W D 8 PL 0.25 (0.010) T B A DETAIL X OTE: DIEIOI AD TOLERAI PER AI Y14.5, OTROLLI DIEIO: IH. DIEIO A AD B DO OT ILUDE OLD PROTRUIO. AXIU OLD PROTRUIO 0.15 (0.006). ALL VERTIAL URFAE 5 TYPIAL DRAFT. DIEIO TO ETER OF LEAD WHE FORED PARALLEL. DI A B D V W IHE ILLIETER I AX I AX B 2.54 B DETAIL X -T- EATI PLAE AE IUE B THROUH-HOLE 6 Freescale emiconductor

7 PAAE DIEIO AE IUE A URFAE OUT PAE 1 OF 2 Freescale emiconductor 7

8 PAAE DIEIO AE IUE A URFAE OUT PAE 2 OF 2 8 Freescale emiconductor

9 PAAE DIEIO AE IUE B URFAE OUT PAE 1 OF 2 Freescale emiconductor 9

10 PAAE DIEIO AE IUE B URFAE OUT PAE 2 OF 2 10 Freescale emiconductor

11 How to Reach Us: Home Page: Web upport: UA/Europe or Locations ot Listed: Freescale emiconductor, Inc. Technical Information enter, EL East Elliot Road Tempe, Arizona or Europe, iddle East, and Africa: Freescale Halbleiter Deutschland mbh Technical Information enter chatzbogen uenchen, ermany (English) (English) (erman) (French) apan: Freescale emiconductor apan Ltd. Headquarters ARO Tower 15F 1-8-1, himo-eguro, eguro-ku, Tokyo apan or support.japan@freescale.com Asia/Pacific: Freescale emiconductor Hong ong Ltd. Technical Information enter 2 Dai ing treet Tai Po Industrial Estate Tai Po,.T., Hong ong support.asia@freescale.com For Literature Requests Only: Freescale emiconductor Literature Distribution enter P.O. Box 5405 Denver, olorado or Fax: LDForFreescaleemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale emiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale emiconductor reserves the right to make changes without further notice to any products herein. Freescale emiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale emiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters that may be provided in Freescale emiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicals, must be validated for each customer application by customer s technical experts. Freescale emiconductor does not convey any license under its patent rights nor the rights of others. Freescale emiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale emiconductor product could create a situation where personal injury or death may occur. hould Buyer purchase or use Freescale emiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale emiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale emiconductor was negligent regarding the design or manufacture of the part. Freescale and the Freescale logo are trademarks of Freescale emiconductor, Inc. All other product or service names are the property of their respective owners. Freescale emiconductor, Inc All rights reserved. Rev. 6 01/2007

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated Freescale Semiconductor Technical Data Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated The series piezoresistive transducer is a state-of-the-art monolithic

More information

MPXH6250A SERIES. Freescale Semiconductor Technical Data MPXH6250A. Rev 2, 01/2007

MPXH6250A SERIES. Freescale Semiconductor Technical Data MPXH6250A. Rev 2, 01/2007 Freescale Semiconductor Technical Data High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and Calibrated The

More information

Freescale Semiconductor. Integrated Silicon Pressure Sensor, On-Chip Signal Conditioned, Temperature Compensated and Calibrated MP3V5004G.

Freescale Semiconductor. Integrated Silicon Pressure Sensor, On-Chip Signal Conditioned, Temperature Compensated and Calibrated MP3V5004G. Freescale Semiconductor Integrated Silicon Pressure Sensor, On-Chip Signal Conditioned, Temperature Compensated and Calibrated The series piezoresistive transducer is a state-of-the-art monolithic silicon

More information

Freescale Semiconductor. Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated MP3V5050.

Freescale Semiconductor. Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated MP3V5050. Freescale Semiconductor Integrated Silicon Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated The series piezoresistive transducer is a state-of-the-art monolithic silicon pressure

More information

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated Freescale Semiconductor Technical Data Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated The series piezoresistive transducers are state-of-the-art monolithic

More information

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated Freescale Semiconductor Technical Data Rev 5, 05/2005 Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated The piezoresistive transducer is a state-of-the-art

More information

MPXHZ6400A. Freescale Semiconductor Technical Data. MPXHZ6400A Rev 0, 08/2005

MPXHZ6400A. Freescale Semiconductor Technical Data. MPXHZ6400A Rev 0, 08/2005 Freescale Semiconductor Technical Data Media Resistant and High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated

More information

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated Freescale Semiconductor Technical Data Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated The series piezoresistive transducers are state-of-the-art monolithic

More information

Freescale Semiconductor

Freescale Semiconductor Freescale Semiconductor High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and Calibrated The Freescale MPXxx6400A

More information

ORDERING INFORMATION # of Ports Pressure Type Device Name

ORDERING INFORMATION # of Ports Pressure Type Device Name Freescale Semiconductor Data Sheet: Technical Data High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and

More information

ORDERING INFORMATION. Device Type Options Case No. MPX Series Order No. Packing Options Device Marking

ORDERING INFORMATION. Device Type Options Case No. MPX Series Order No. Packing Options Device Marking Freescale Semiconductor Technical Data High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and Calibrated The

More information

Integrated Silicon Pressure Sensor for Manifold Absolute Pressure Applications On-Chip Signal Conditioned, Temperature Compensated and Calibrated

Integrated Silicon Pressure Sensor for Manifold Absolute Pressure Applications On-Chip Signal Conditioned, Temperature Compensated and Calibrated Freescale Semiconductor Technical Data Rev 1, 05/2005 Integrated Silicon Pressure Sensor for Manifold Absolute Pressure Applications On-Chip Signal Conditioned, Temperature Compensated and Calibrated The

More information

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated Freescale Semiconductor Technical Data Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated The series piezoresistive transducers are state-of-the-art monolithic

More information

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated Freescale Semiconductor Technical Data Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated The /MPXV5050G series piezoresistive transducer is a state-of-theart

More information

MP3V5050, 0 to 50 kpa, Differential, and Gauge Pressure Sensor

MP3V5050, 0 to 50 kpa, Differential, and Gauge Pressure Sensor NXP Semiconductors Document Number: Data Sheet: Technical Data Rev. 1.3, 11/2017, 0 to 50 kpa, Differential, and Gauge Pressure Sensor The series piezoresistive transducer is a state-of-the-art, monolithic

More information

MP3V5050V, -50 to 0 kpa, Gauge Pressure Sensor

MP3V5050V, -50 to 0 kpa, Gauge Pressure Sensor Freescale Semiconductor Document Number: Data Sheet: Technical Data Rev. 3.0, 09/2015, -50 to 0 kpa, Gauge Pressure Sensor The piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned,

More information

MPXH6300A, 20 to 300 kpa, Absolute, Integrated, Pressure Sensor

MPXH6300A, 20 to 300 kpa, Absolute, Integrated, Pressure Sensor Freescale Semiconductor Document Number: Data Sheet: Technical Data Rev. 6.0, 09/2015, 20 to 300 kpa, Absolute, Integrated, Pressure Sensor Freescale's series sensor integrates on-chip, bipolar op amp

More information

Freescale Semiconductor Data Sheet: Technical Data

Freescale Semiconductor Data Sheet: Technical Data Freescale Semiconductor Data Sheet: Technical Data High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and

More information

MPXA6115A MPXH6115A SERIES. Freescale Semiconductor Technical Data MPXA6115A. Rev 3, 01/2007

MPXA6115A MPXH6115A SERIES. Freescale Semiconductor Technical Data MPXA6115A. Rev 3, 01/2007 Freescale Semiconductor Technical Data High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and Calibrated The

More information

MPXHZ6130A, 15 to 130 kpa, Absolute, Integrated Pressure Sensor

MPXHZ6130A, 15 to 130 kpa, Absolute, Integrated Pressure Sensor Freescale Semiconductor Document Number: Data Sheet: Technical Data Rev. 1.2, 06/2015, 15 to 130 kpa, Absolute, Integrated Pressure Sensor The series sensor integrates on-chip, bipolar op amp circuitry

More information

ORDERING INFORMATION. Device Marking MPXC2011DTI Tape and Reel 423A Date Code, Lot ID MPXC2012DTI Tape and Reel 423A Date Code, Lot ID

ORDERING INFORMATION. Device Marking MPXC2011DTI Tape and Reel 423A Date Code, Lot ID MPXC2012DTI Tape and Reel 423A Date Code, Lot ID Freescale Semiconductor High Volume Sensor for Low Pressure Applications Freescale Semiconductor has developed a low cost, high volume, miniature pressure sensor package which is ideal as a sub-module

More information

PCB Layout Guidelines for the MC1321x

PCB Layout Guidelines for the MC1321x Freescale Semiconductor Application Note Document Number: AN3149 Rev. 0.0, 03/2006 PCB Layout Guidelines for the MC1321x 1 Introduction This application note describes Printed Circuit Board (PCB) footprint

More information

Freescale Semiconductor

Freescale Semiconductor Freescale Semiconductor High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and Calibrated The MPXxx6115A series

More information

Freescale Semiconductor. Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated MPX5010

Freescale Semiconductor. Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated MPX5010 Freescale Semiconductor Integrated Silicon Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated The MPxx5010 series piezoresistive transducers are state-of-the-art monolithic silicon

More information

Using the Multi-Axis g-select Evaluation Boards

Using the Multi-Axis g-select Evaluation Boards Freescale Semiconductor Application Note Rev 2, 10/2006 Using the Multi-Axis g-select Evaluation Boards by: Michelle Clifford and John Young Applications Engineers Tempe, AZ INTRODUCTION This application

More information

Upgrade the Solution With No Changes 2 Upgrade the Solution With No Changes If a Codebase does not contain updates to its properties, it is possible t

Upgrade the Solution With No Changes 2 Upgrade the Solution With No Changes If a Codebase does not contain updates to its properties, it is possible t Freescale Semiconductor Application Note Document Number: AN3819 Rev. 0.0, 02/2009 Methods for Upgrading Freescale BeeStack Codebases 1 Introduction This note describes how to upgrade an existing Freescale

More information

Mechanical Differences Between the 196-pin MAP-BGA and 196-pin PBGA Packages

Mechanical Differences Between the 196-pin MAP-BGA and 196-pin PBGA Packages Freescale Semiconductor Engineering Bulletin EB360 Rev. 1, 10/2005 Mechanical Differences Between the 196-pin MAP-BGA and 196-pin PBGA Packages This document describes the differences between the 196-pin

More information

Power Cycling Algorithm using the MMA73x0L 3-Axis Linear Accelerometer

Power Cycling Algorithm using the MMA73x0L 3-Axis Linear Accelerometer Freescale Semiconductor Application Note Rev 1, 06/2007 Power Cycling Algorithm using the MMA73x0L 3-Axis Linear Accelerometer by: Kimberly Tuck Accelerometer Systems and Applications Engineering Tempe,

More information

Design Recommendations to Implement Compatibility Between the MC13783VK and the MC13783VK5

Design Recommendations to Implement Compatibility Between the MC13783VK and the MC13783VK5 Freescale Semiconductor Application Note Document Number: AN3417 Rev. 0.1, 01/2010 Design Recommendations to Implement Compatibility Between the MC13783VK and the MC13783VK5 by: Power Management and Audio

More information

MC33696MODxxx Kit. 1 Overview. Freescale Semiconductor Quick Start Guide. Document Number: MC33696MODUG Rev. 0, 05/2007

MC33696MODxxx Kit. 1 Overview. Freescale Semiconductor Quick Start Guide. Document Number: MC33696MODUG Rev. 0, 05/2007 Freescale Semiconductor Quick Start Guide Document Number: MC33696MODUG Rev. 0, 05/2007 MC33696MODxxx Kit by: Laurent Gauthier Toulouse, France 1 Overview This document provides introductory information

More information

Updating the Firmware on USB SPI Boards (KITUSBSPIEVME, KITUSBSPIDGLEVME)

Updating the Firmware on USB SPI Boards (KITUSBSPIEVME, KITUSBSPIDGLEVME) Freescale Semiconductor User s Guide Document Number: KTUSBSPIPRGUG Rev. 1.0, 7/2010 Updating the Firmware on USB SPI Boards (KITUSBSPIEVME, KITUSBSPIDGLEVME) Figure 1. KITUSBSPIEVME and KITUSBSPIDGLEVME

More information

MPC7410 RISC Microprocessor Hardware Specifications Addendum for the MPC7410TxxnnnLE Series

MPC7410 RISC Microprocessor Hardware Specifications Addendum for the MPC7410TxxnnnLE Series Freescale Semiconductor Technical Data Document Number: MPC7410ECS08AD Rev. 1, 11/2010 MPC7410 RISC Microprocessor Hardware Specifications Addendum for the MPC7410TxxnnnLE Series This document describes

More information

MC56F825x/MC56F824x (2M53V) Chip Errata

MC56F825x/MC56F824x (2M53V) Chip Errata Freescale Semiconductor MC56F825XE_2M53V Chip Errata Rev. 1, 05/2012 MC56F825x/MC56F824x (2M53V) Chip Errata The following errata items apply to devices of the maskset 2M53V. 2012 Freescale Semiconductor,

More information

Optically-Isolated Multilink BDM Interface for the S08/S12 Microcontrollers by Michael A. Steffen

Optically-Isolated Multilink BDM Interface for the S08/S12 Microcontrollers by Michael A. Steffen Freescale Semiconductor Application Note AN3589 Rev. 0, 02/2008 Optically-Isolated Multilink BDM Interface for the S08/S12 Microcontrollers by Michael A. Steffen 1 Introduction This application note explains

More information

SGTL5000 I 2 S DSP Mode

SGTL5000 I 2 S DSP Mode Freescale Semiconductor Application Note Document Number: AN3664 Rev. 2, 11/2008 SGTL5000 I 2 S DSP Mode by Name of Group Freescale Semiconductor, Inc. Austin, TX 1 Description SGTL5000 supports multiple

More information

Using the Project Board LCD Display at 3.3 volts

Using the Project Board LCD Display at 3.3 volts Freescale Semiconductor SLK0100AN Application Note Rev. 0, 1/2007 By: John McLellan Applications Engineering Austin, TX 1 Introduction This document guides you through the steps necessary to use the LCD

More information

USB Bootloader GUI User s Guide

USB Bootloader GUI User s Guide Freescale Semiconductor User s Guide Document Number: MC9S08JS16UG Rev. 0, 10/2008 USB Bootloader GUI User s Guide by: Derek Liu Applications Engineering China 1 Overview The MC9S08JS16 (JS16) supports

More information

MPC8349E-mITX-GP Board Errata

MPC8349E-mITX-GP Board Errata Freescale Semiconductor Document Number: MPC8349EMITX-GPBE Rev. 2, 01/2007 MPC8349E-mITX-GP Board Errata This document describes the known errata and limitations of the MPC8349E-mITX-GP reference platform.

More information

Electrode Graphing Tool IIC Driver Errata Microcontroller Division

Electrode Graphing Tool IIC Driver Errata Microcontroller Division Freescale Semiconductor User Guide Addendum TSSEGTUGAD Rev. 1, 03/2010 Electrode Graphing Tool IIC Driver Errata by: Microcontroller Division This errata document describes corrections to the Electrode

More information

MPC5200(b) ATA MDMA, UDMA Functionality BestComm Setup Recommendations

MPC5200(b) ATA MDMA, UDMA Functionality BestComm Setup Recommendations Freescale Semiconductor Engineering Bulletin Document Number: EB711 Rev. 0, 05/2009 MPC5200(b) ATA MDMA, UDMA Functionality BestComm Setup Recommendations by: Peter Kardos Application Engineer, Roznov

More information

MPR121 Jitter and False Touch Detection

MPR121 Jitter and False Touch Detection Freescale Semiconductor Application Note Rev 1, 03/2010 MPR121 Jitter and False Touch Detection INTRODUCTION Touch acquisition takes a few different parts of the system in order to detect touch. The baseline

More information

MTIM Driver for the MC9S08GW64

MTIM Driver for the MC9S08GW64 Freescale Semiconductor Application Note Document Number: AN4160 Rev. 0, 8/2010 MTIM Driver for the MC9S08GW64 by: Tanya Malik Reference Design and Applications Group India IDC MSG NOIDA 1 Introduction

More information

Using the PowerQUICC II Auto-Load Feature

Using the PowerQUICC II Auto-Load Feature Freescale Semiconductor Application Note Document Number: AN3352 Rev. 0, 01/2007 Using the PowerQUICC II Auto-Load Feature by David Smith/Patrick Billings Field Application Engineering/DSD Applications

More information

56F8300 BLDC Motor Control Application

56F8300 BLDC Motor Control Application 56F8300 BLDC Motor Control Application with Quadrature Encoder using Processor Expert TM Targeting Document 56F8300 16-bit Digital Signal Controllers 8300BLDCQETD Rev. 2 08/2005 freescale.com Document

More information

2005: 0.5 PQ-MDS-PCIEXP

2005: 0.5 PQ-MDS-PCIEXP HW Getting Started Guide PQ-MDS-PCIEXP Adaptor December 2005: Rev 0.5 PQ-MDS-PCIEXP Adaptor HW Getting Started Guide Step 1:Check HW kit contents 1.PQ-MDS-PCIEXP Adaptor 2.PIB (Platform I/O Board) to PCIEXP

More information

EchoRemote Evaluation Software for Windows

EchoRemote Evaluation Software for Windows Freescale Semiconductor Application Note Document Number: AN2953 Rev.1, 05/2007 EchoRemote Evaluation Software for Windows 1 Overview EchoRemote is a Microsoft Windows program that communicates with the

More information

etpu General Function Set (Set 1) David Paterson MCD Applications Engineer

etpu General Function Set (Set 1) David Paterson MCD Applications Engineer Freescale Semiconductor Application Note Document Number: AN2863 Rev. 0, 12/2007 etpu General Function Set (Set 1) by David Paterson MCD Applications Engineer 1 Introduction This application note complements

More information

Pad Configuration and GPIO Driver for MPC5500 Martin Kaspar, EMEAGTM, Roznov Daniel McKenna, MSG Applications, East Kilbride

Pad Configuration and GPIO Driver for MPC5500 Martin Kaspar, EMEAGTM, Roznov Daniel McKenna, MSG Applications, East Kilbride Freescale Semiconductor Application Note Document Number: AN2855 Rev. 0, 2/2008 Pad Configuration and GPIO Driver for MPC5500 by: Martin Kaspar, EMEAGTM, Roznov Daniel McKenna, MSG Applications, East Kilbride

More information

56F805. BLDC Motor Control Application with Quadrature Encoder using Processor Expert TM Targeting Document. 56F bit Digital Signal Controllers

56F805. BLDC Motor Control Application with Quadrature Encoder using Processor Expert TM Targeting Document. 56F bit Digital Signal Controllers 56F805 BLDC Motor Control Application with Quadrature Encoder using Processor Expert TM Targeting Document 56F800 6-bit Digital Signal Controllers 805BLDCQETD Rev. 08/2005 freescale.com BLDC Motor Control

More information

Migrating from the MPC852T to the MPC875

Migrating from the MPC852T to the MPC875 Freescale Semiconductor Application Note Document Number: AN2584 Rev. 1, 1/2007 Migrating from the MPC852T to the MPC875 by Ned Reinhold NCSD Applications Freescale Semiconductor, Inc. Austin, TX This

More information

Gallium Arsenide PHEMT RF Power Field Effect Transistor

Gallium Arsenide PHEMT RF Power Field Effect Transistor Technical Data Available at http://www.freescale.com/rf, Go to Tools Rev., 6/2005 Reference Design Library Gallium Arsenide PHEMT Power Field Effect Transistor Device Characteristics (From Device Data

More information

HC912D60A / HC912Dx128A 0.5µ Microcontrollers Mask sets 2K38K, 1L02H/2L02H/3L02H & K91D, 0L05H/1L05H/2L05H

HC912D60A / HC912Dx128A 0.5µ Microcontrollers Mask sets 2K38K, 1L02H/2L02H/3L02H & K91D, 0L05H/1L05H/2L05H Freescale Semiconductor Engineering Bulletin EB664 Rev. 6, 08/2006 HC912D60A / HC912Dx128A 0.5µ Microcontrollers Mask sets 2K38K, 1L02H/2L02H/3L02H & K91D, 0L05H/1L05H/2L05H by: Devaganesan Rajoo HC12

More information

Using the CAU and mmcau in ColdFire, ColdFire+ and Kinetis

Using the CAU and mmcau in ColdFire, ColdFire+ and Kinetis Freescale Semiconductor Document Number: AN4307 Application Note Rev. Rev.0, 5/ 2011 Using the CAU and mmcau in ColdFire, ColdFire+ and Kinetis by: Paolo Alcantara RTAC Americas Mexico 1 Introduction This

More information

ColdFire Convert 1.0 Users Manual by: Ernest Holloway

ColdFire Convert 1.0 Users Manual by: Ernest Holloway Freescale Semiconductor CFCONVERTUG Users Guide Rev.0, 09/2006 ColdFire Convert 1.0 Users Manual by: Ernest Holloway The ColdFire Convert 1.0 (CF) is a free engineering tool developed to generate data

More information

Component Development Environment Installation Guide

Component Development Environment Installation Guide Freescale Semiconductor Document Number: PEXCDEINSTALLUG Rev. 1, 03/2012 Component Development Environment Installation Guide 1. Introduction The Component Development Environment (CDE) is available as

More information

Rating Symbol Value Unit Drain-Source Voltage V DSS 15 Vdc Total Device T C = 25 C Derate above 25 C

Rating Symbol Value Unit Drain-Source Voltage V DSS 15 Vdc Total Device T C = 25 C Derate above 25 C Technical Data Document Number: MRFG35003N Rev. 5, 1/2008 replaced by MRFG35003ANT1. Gallium Arsenide PHEMT RF Power Field Effect Transistor Designed for WLL/MMDS/BWA or UMTS driver applications with frequencies

More information

Freescale Semiconductor, I

Freescale Semiconductor, I SEMICONDUCTOR APPLICATION NOTE Order this document by AN65/D Prepared by: Bill Lucas and Warren Schultz A plug in module that is part of a systems development tool set for pressure sensors is presented

More information

Utilizing Extra FC Credits for PCI Express Inbound Posted Memory Write Transactions in PowerQUICC III Devices

Utilizing Extra FC Credits for PCI Express Inbound Posted Memory Write Transactions in PowerQUICC III Devices Freescale Semiconductor Application Note Document Number: AN3781 Rev. 0, 06/2009 Utilizing Extra FC Credits for PCI Express Inbound Posted Memory Write Transactions in PowerQUICC III Devices This application

More information

MC33897 Single-Wire CAN Transceiver Reliability and Quality Documents

MC33897 Single-Wire CAN Transceiver Reliability and Quality Documents Freescale Semiconductor Reliability & Qualifications RQA33897 Rev. 2.0, 8/2006 MC33897 Single-Wire CAN Transceiver Reliability and Quality Documents The device(s) in this document successfully completed

More information

Functional Differences Between the DSP56307 and DSP56L307

Functional Differences Between the DSP56307 and DSP56L307 Freescale Semiconductor Engineering Bulletin EB361 Rev. 3, 10/2005 Functional Differences Between the DSP56307 and DSP56L307 The DSP56307 and DSP56L307, two members of the Freescale DSP56300 family of

More information

Ordering Information Industry standard SOT343R package Device weight = g (typical) Available only in tape and reel packaging Available only in

Ordering Information Industry standard SOT343R package Device weight = g (typical) Available only in tape and reel packaging Available only in Freescale Semiconductor Technical Data Document Number: MBC13916/D Rev. 2.2, 05/2006 MBC13916 MBC13916 General Purpose SiGe:C RF Cascode Low Noise Amplifier 1 Introduction The MBC13916 is a costeffective,

More information

Managing Failure Detections and Using Required Components to Meet ISO7637 pulse 1 on MC33903/4/5 Common Mode Choke Implementation

Managing Failure Detections and Using Required Components to Meet ISO7637 pulse 1 on MC33903/4/5 Common Mode Choke Implementation Freescale Semiconductor Application Note AN3865 Rev. 1.0, 2/2010 Managing Failure Detections and Using Required Components to Meet ISO7637 pulse 1 on MC33903/4/5 Common Mode Choke Implementation 1 Overview

More information

MPR121 Proximity Detection

MPR121 Proximity Detection Freescale Semiconductor Application Note Rev 0, 03/2010 MPR121 Proximity Detection INTRODUCTION MPR121 is a feature rich, second generation touch sensor controller after Freescale s initial release of

More information

Using IIC to Read ADC Values on MC9S08QG8

Using IIC to Read ADC Values on MC9S08QG8 Freescale Semiconductor Application Note AN3048 Rev. 1.00, 11/2005 Using IIC to Read ADC Values on MC9S08QG8 by Donnie Garcia Application Engineering Microcontroller Division 1 Introduction The MC9S08QG8

More information

Differences Between the DSP56301, DSP56311, and DSP56321

Differences Between the DSP56301, DSP56311, and DSP56321 Freescale Semiconductor Engineering Bulletin Document Number: EB724 Rev. 0, 11/2009 Differences Between the DSP56301, DSP56311, and DSP56321 This engineering bulletin discusses the differences between

More information

High Volume Pressure Sensor for Disposable Applications

High Volume Pressure Sensor for Disposable Applications Freescale Semiconductor Data Sheet: Technical Data Pressure Rev 9, 10/2012 High Volume Pressure Sensor for Disposable Applications Freescale Semiconductor has developed a low cost, high volume, miniature

More information

PQ-MDS-QOC3 Module. HW Getting Started Guide. Contents. About This Document. Required Reading. Definitions, Acronyms, and Abbreviations

PQ-MDS-QOC3 Module. HW Getting Started Guide. Contents. About This Document. Required Reading. Definitions, Acronyms, and Abbreviations HW Getting Started Guide PQ-MDS-QOC3 Module July 2006: Rev. A Contents Contents........................................................................................ 1 About This Document..............................................................................

More information

Introduction to the S12G Family EEPROM Including a Comparison between the S08DZ, S12XE, and S12P Families

Introduction to the S12G Family EEPROM Including a Comparison between the S08DZ, S12XE, and S12P Families Freescale Semiconductor Application Note Document Number: AN4302 Rev. 0, 04/2011 Introduction to the S12G Family EEPROM Including a Comparison between the S08DZ, S12XE, and S12P Families by: Victor Hugo

More information

Mask Set Errata for Mask 2M40J

Mask Set Errata for Mask 2M40J Mask Set Errata MSE9S08QE8_2M40J Rev. 3, 8/2010 Mask Set Errata for Mask 2M40J Introduction This report applies to mask 2M40J for these products: MC9S08QE8 MCU device mask set identification The mask set

More information

Use of PGA on MC56F800x Interaction of PDB, PGA and ADC

Use of PGA on MC56F800x Interaction of PDB, PGA and ADC Freescale Semiconductor Document Number: AN4334 Application Note Rev. 0, 03/2012 Use of PGA on MC56F800x Interaction of PDB, PGA and ADC by: William Jiang System and Application, Microcontroller Solutions

More information

MSC8144AMC-S Getting Started Guide

MSC8144AMC-S Getting Started Guide Freescale Semiconductor Hardware Getting Started Guide Document Number: MSC8144AMCSHWGSG Rev. 2, 07/2008 MSC8144AMC-S Getting Started Guide This document describes how to connect the MSC8144AMC-S card

More information

MC33794 Touch Panel System Using E-Field Sensor Setup Instructions

MC33794 Touch Panel System Using E-Field Sensor Setup Instructions Freescale Semiconductor MC33794SIUG User s Guide Rev. 1.0, 09/2005 MC33794 Touch Panel System Using E-Field Sensor Setup Instructions Reference Design Documentation for RDMC33794 This document contains

More information

IIC Driver for the MC9S08GW64

IIC Driver for the MC9S08GW64 Freescale Semiconductor Application Note Document Number: AN4158 Rev. 0, 8/2010 IIC Driver for the MC9S08GW64 by: Tanya Malik Reference Design and Applications Group Noida India 1 Introduction This document

More information

MCF5445x Configuration and Boot Options Michael Norman Microcontroller Division

MCF5445x Configuration and Boot Options Michael Norman Microcontroller Division Freescale Semiconductor Application Note Document Number: AN3515 Rev. 1, 04/2008 MCF5445x Configuration and Boot Options by: Michael Norman Microcontroller Division 1 Configuration Modes The Freescale

More information

Using DMA to Emulate ADC Flexible Scan Mode on Kinetis K Series

Using DMA to Emulate ADC Flexible Scan Mode on Kinetis K Series Freescale Semiconductor Document Number: AN4590 Application Note Rev 0, 9/2012 Using DMA to Emulate ADC Flexible Scan Mode on Kinetis K Series by: Lukas Vaculik Rožnov pod Radhoštem Czech Republic 1 Introduction

More information

Using the Asynchronous DMA features of the Kinetis L Series

Using the Asynchronous DMA features of the Kinetis L Series Freescale Semiconductor Document Number:AN4631 Application Note Rev. 0, 12/2012 Using the Asynchronous DMA features of the Kinetis L Series by: Chris Brown 1 Introduction The power consumption of devices

More information

MCF5216 Device Errata

MCF5216 Device Errata Freescale Semiconductor Device Errata MCF5216DE Rev. 1.7, 09/2004 MCF5216 Device Errata This document identifies implementation differences between the MCF5216 processor and the description contained in

More information

MPC8260 IDMA Timing Diagrams

MPC8260 IDMA Timing Diagrams Freescale Semiconductor Application Note Document Number: AN2177 Rev. 4, 07/2006 MPC8260 IDMA Timing Diagrams By DSD Applications, NCSG Freescale Semiconductor, Inc. The MPC8260 PowerQUICC II integrated

More information

Using the ColdFire+ Family Enhanced EEPROM Functionality Melissa Hunter Derrick Klotz

Using the ColdFire+ Family Enhanced EEPROM Functionality Melissa Hunter Derrick Klotz Freescale Semiconductor Application Note Document Number: AN4306 Rev. 0, 05/2011 Using the ColdFire+ Family Enhanced EEPROM Functionality by: Melissa Hunter Derrick Klotz 1 Introduction The ColdFire+ family

More information

Interfacing MPC5xx Microcontrollers to the MFR4310 FlexRay Controller David Paterson MCD Applications, East Kilbride

Interfacing MPC5xx Microcontrollers to the MFR4310 FlexRay Controller David Paterson MCD Applications, East Kilbride Freescale Semiconductor Application Note Document Number: AN3256 Rev. 2, 2/2008 Interfacing MPC5xx Microcontrollers to the MFR4310 FlexRay Controller by: David Paterson MCD Applications, East Kilbride

More information

MBC13720 SiGe:C Low Noise Amplifier with Bypass Switch Device

MBC13720 SiGe:C Low Noise Amplifier with Bypass Switch Device Freescale Semiconductor Data Sheet: Technical Data Document Number: MBC13720 Rev. 4, 09/2011 MBC13720 MBC13720 SiGe:C Low Noise Amplifier with Bypass Switch Device MBC13720NT1 1 1 Refer to Table 1. Package

More information

MCF54451, MCF54452, MCF54453, MCF54454,

MCF54451, MCF54452, MCF54453, MCF54454, Chip Errata MCF54455DE Rev. 5, 8/21 MCF54455 Chip Errata Revision: All Supports: MCF5445, MCF54451, MCF54452, MCF54453, MCF54454, and MCF54455 Summary of MCF5445x Errata The latest mask of the MCF5445x

More information

16-bit MCU: S12XHY256 Automotive Cluster Demo by: Jose M. Cisneros Steven McLaughlin Applications Engineer Microcontroller Solutions Group, Scotland

16-bit MCU: S12XHY256 Automotive Cluster Demo by: Jose M. Cisneros Steven McLaughlin Applications Engineer Microcontroller Solutions Group, Scotland Freescale Semiconductor Users Guide Document Number: S12XHY256ACDUG Rev. 0, 10/2010 16-bit MCU: S12XHY256 Automotive Cluster Demo by: Jose M. Cisneros Steven McLaughlin Applications Engineer Microcontroller

More information

MPR083 Proximity Evaluation Kit User s Guide

MPR083 Proximity Evaluation Kit User s Guide Freescale Semiconductor User s Guide Rev 2, 04/2008 MPR083 Proximity Evaluation Kit User s Guide by: Laura Salhuana Introduction This guide will aid you in connecting the MPR083 Evaluation Kit Board to

More information

Symphony SoundBite: Quick Start with Symphony Studio. Installation and Configuration

Symphony SoundBite: Quick Start with Symphony Studio. Installation and Configuration Symphony SoundBite: Quick Start with Symphony Studio Installation and Configuration Document Number: DSPB56371UGQS Rev. 2 September 2008 How to Reach Us: Home Page: www.freescale.com E-mail: support@freescale.com

More information

Low Pressure Digital & Analog Sensor

Low Pressure Digital & Analog Sensor Low Pressure Digital & Analog Sensor SM6291, SM6391, SM6491 Gauge and Differential Pressure Sensor FEATURES Pressure range from 0.3 to 0.79 psi; gauge, differential or asymmetric differential outputs Digital

More information

Using the Kinetis Family Enhanced EEPROM Functionality

Using the Kinetis Family Enhanced EEPROM Functionality Freescale Semiconductor Application Note Document Number: AN4282 Rev. 1, 03/2015 Using the Kinetis Family Enhanced EEPROM Functionality by: Melissa Hunter Derrick Klotz 1 Introduction Some of the Kinetis

More information

Functional Differences Between DSP56302 and DSP56309 (formerly DSP56302A)

Functional Differences Between DSP56302 and DSP56309 (formerly DSP56302A) Freescale Semiconductor Engineering Bulletin EB346 Rev. 3, 10/2005 Functional Differences Between DSP56302 and DSP56309 (formerly DSP56302A) To meet the increasing demands for higher performance and lower

More information

etpu Automotive Function Set (Set 2)

etpu Automotive Function Set (Set 2) Freescale Semiconductor Application Note Document Number: AN3768 Rev. 0, 05/2009 etpu Automotive Function Set (Set 2) by: Geoff Emerson East Kilbride U.K. 1 Introduction This application note complements

More information

PDB Driver for the MC9S08GW64

PDB Driver for the MC9S08GW64 Freescale Semiconductor Application Note Document Number: AN4163 Rev. 0, 8/2010 PDB Driver for the MC9S08GW64 by: Tanya Malik Reference Design and Applications Group Noida India 1 Introduction This document

More information

Using GCR4 to Adjust Ethernet Timing in MSC8144 DSPs

Using GCR4 to Adjust Ethernet Timing in MSC8144 DSPs Freescale Semiconductor Application Note Document Number: AN3811 Rev. 0, 4/2009 Using GCR4 to Adjust Ethernet Timing in MSC8144 DSPs This application note assists board designers to implement Ethernet

More information

Interfacing MPC5500 Microcontrollers to the MFR4310 FlexRay Controller Robert Moran MCD Applications, East Kilbride, Scotland

Interfacing MPC5500 Microcontrollers to the MFR4310 FlexRay Controller Robert Moran MCD Applications, East Kilbride, Scotland Freescale Semiconductor Application Note Document Number: AN3269 Rev. 3, 02/2010 Interfacing MPC5500 Microcontrollers to the MFR4310 FlexRay Controller by: Robert Moran MCD Applications, East Kilbride,

More information

Freescale BeeStack Documentation Overview Document Number: BSDO Rev /2008

Freescale BeeStack Documentation Overview Document Number: BSDO Rev /2008 Freescale BeeStack Documentation Overview Document Number: BSDO Rev. 1.0 04/2008 How to Reach Us: Home Page: www.freescale.com E-mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale

More information

PowerQUICC HDLC Support and Example Code

PowerQUICC HDLC Support and Example Code Freescale Semiconductor Application Note Document Number: AN3966 Rev. 0, 11/2009 PowerQUICC HDLC Support and Example Code High-level data link control (HDLC) is a bit-oriented protocol that falls within

More information

Contact Monitoring and Dual Low-Side Protected Driver

Contact Monitoring and Dual Low-Side Protected Driver Freescale Semiconductor Technical Data Contact Monitoring and Dual Low-Side Protected Driver The interfaces between switch contacts and a microcontroller. Eight switch-to-battery (or switch-to-ground)

More information

56F805. Digital Power Factor Correction using Processor Expert TM Targeting Document. 56F bit Digital Signal Controllers. freescale.

56F805. Digital Power Factor Correction using Processor Expert TM Targeting Document. 56F bit Digital Signal Controllers. freescale. 56F805 Digital Power Factor Correction using Processor Expert TM Targeting Document 56F800 6-bit Digital Signal Controllers 805DPFCTD Rev. 0 08/2005 freescale.com Digital Power Factor Correction This

More information

Introduction to LIN 2.0 Connectivity Using Volcano LTP

Introduction to LIN 2.0 Connectivity Using Volcano LTP Freescale Semiconductor White Paper LIN2VOLCANO Rev. 0, 12/2004 Introduction to LIN 2.0 Connectivity Using Volcano LTP by: Zdenek Kaspar, Jiri Kuhn 8/16-bit Systems Engineering Roznov pod Radhostem, Czech

More information

i.mx31 PDK Power Measurement with GUI

i.mx31 PDK Power Measurement with GUI Freescale Semiconductor Application Note Document Number: AN4061 Rev. 0, 02/2010 i.mx31 PDK Power Measurement with GUI by Multimedia Application Division Freescale Semiconductor, Inc. Austin, TX This application

More information

CM1219. Low Capacitance Transient Voltage Suppressors / ESD Protectors

CM1219. Low Capacitance Transient Voltage Suppressors / ESD Protectors Low Capacitance Transient Voltage Suppressors / ESD Protectors Description The family of devices features transient voltage suppressor arrays that provide a very high level of protection for sensitive

More information

Interrupts in Decoupled Parallel Mode for MPC5675K Configuration and Usage

Interrupts in Decoupled Parallel Mode for MPC5675K Configuration and Usage Freescale Semiconductor Document Number: AN4495 Application Note Rev. 0, 3/2012 Interrupts in Decoupled Parallel Mode for MPC5675K Configuration and Usage by: Tomas Kulig Automotive and Industrial Solutions

More information