Computer Memory Basic Concepts. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University

Size: px
Start display at page:

Download "Computer Memory Basic Concepts. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University"

Transcription

1 Computer Memory Basic Concepts Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University

2 The Memory Component The memory stores the instructions and data for an executing program. At this level, we are considering memory as a unit without structure. Cache memory will be covered fully in a future lecture.

3 Memory Addressability Memory is characterized by the smallest addressable unit: Byte addressable the smallest unit is an 8 bit byte. Word addressable the smallest unit is a word, usually 16 or 32 bits. Almost all modern computers use byte addressability to simplifies processing of character data.

4 Memory Control The CPU has 2 registers dedicated to handling memory. The MAR (Memory Address Register) holds the address being accessed. The MBR (Memory Buffer Register) holds the data being written to the memory or being read from the memory. This is sometimes called the Memory Data Register.

5 Memory Control Signals Read / Write Memory must do three actions: 1. READ copy contents of an addressed word into the MBR 2. WRITE copy contents of the MBR into the location being addresses. 3. NOTHING the memory is expected to retain the contents written into it until those contents have been rewritten.

6 One Option for Memory Control The CPU can issue one of two control signals. These are usually asserted high. READ WRIT E Action 0 0 Nothing. The memory is not active. 0 1 The CPU writes to memory 1 0 The CPU reads from memory 1 1 This is a problem, which must be solved by a design decision.

7 Asserting Control Signals A control signal is a binary signal with only two values: 0 (logic low) and 1 (logic high). When a control signal is to activate some circuit element, it is said to be asserted. An active high signal is asserted when its value is 1. It is denoted by the signal name. An active low signal is asserted when its value is 0. It is denoted by appending a # to its name, as in Select#.

8 Alternate Notation for Active Low A signal asserted low might be denoted as The first notation is older, and harder to depict using word processors. A two-value control signal enables one of two actions depending on its value. A signal to indicate either read or write might be denoted

9 Modern Memory Control Most modern designs avoid the READ and WRITE control signals, using Select# and R/W# If R/W# = 0, a memory write is called for. If R/W# = 1, a memory read is called for. Select# R/W# Action 1 0 Memory contents are not changed. 1 1 Memory contents are not changed. 0 0 CPU writes data to the memory. 0 1 CPU reads data from the memory.

10 (Classical) Memory Timings Memory Access Time is defined in terms of reading from memory. It is the time between the address becoming stable in the MAR and the data becoming available in the MBR. Memory cycle time is the minimum time interval between two independent memory accesses.

11 Synchronous Memory Timings Synchronous memory, typically SDRAM, is rated by the speed of the memory bus. The speed is normally quoted in megahertz, as in 166 MHz or 250 MHz, or some other value. A 250 MHz memory can be attached to a 250 MHz synchronous memory bus, and transfer data at the rate of 250 million transfers/sec. This is one transfer every 4 nanoseconds. The data transfer rate depends on the width of the data bus, often as high as 64 bits.

12 RAM and ROM Technically, the term RAM stands for random access memory with no further connotations. In common usage, the term RAM refers to memory that is read/write ; the CPU can both read from and write to RAM. The term ROM stands for read only memory. In standard operations, the CPU cannot change the values stored in ROM.

13 Varieties of ROM 1. Plain ROM The contents of the memory are set at manufacture and cannot be changed without destroying the chip. 2. PROM The contents of the chip are set by a special device called a PROM Programmer. Once programmed the contents are fixed. 3. EPROM is same as a PROM, but that the contents can be erased and reprogrammed by the PROM Programmer device.

14 Memory Mapped Input / Output The old PDP 11/20 supported a 16 bit address space. This supported addresses in the range 0 through 65,535 or 0 through in octal. Addresses 0 though 61,439 were reserved for physical memory. In octal these addresses are given by 0 through 167,777. Addresses 61,440 through 65,535 (octal 170,000 through 177,777) were reserved for registers associated with Input / Output devices. Examples: CR11 Card Reader 177,160 Control & Status Register 177,162 Data buffer 1 177,164 Data buffer 2 Reading from address would access the card reader data buffer.

15 Memory Mapped I/O in the MIPS

16 The Linear View of Memory This logical view is not easily implemented.

17 Standard Memory Organization Modern computer memory is organized as a collection of modules connected to a bus. Each module comprises 8 or 9 data chips.

18 Module Organization A standard module will have 8 data chips, one for each bit in the Memory Buffer. Assigning one bit per chip is more efficient.

19 Memory Chip Organization As an example, here is a 4 megabit chip. It is organized as a 2-D array.

20 Two Options for Addressing The option at left has 28 pins, the option at right has 19 pins. The signals RAS# and CAS# indicate the meaning of the 11-bit address.

21 Memory Interleaving Suppose a 64MB memory made up of the 4Mb chips discussed above. We organize the memory into 4MB banks. The memory thus has 16 banks, each of 4MB. 16 = 2 4 4M = 2 22 Not surprisingly, 64M = bits to select the bank 22 bits address to each chip

22 Two Interleaving Options The type of interleaving dictates how the memory address is divided. Low-order interleaving Bits Use Address to the chip Bank Select High-order interleaving (banking) Bits Use Bank Select Address to the chip

23 Speed Up Access by Interleaving Memory Suppose an 8 way low order interleaved memory. The chip timings are: 80 nanosecond cycle time, and 40 nanosecond access time. Each chip has the following timing diagram.

24 Timings for the Interleaved Memory

25 Faster Memory Chips After the row address is asserted, a number of column reads may proceed.

26 SDRAM SDRAM is synchronous dynamic RAM. In SDRAM, the memory transfers take place on a timing dictated by the memory bus clock rate. In plain SDRAM, the transfers all take place on the rising edge of the bus clock. In DDR SDRAM (Double Data Rate), the transfers take place on both the rising and falling clock edges.

27 A Synchronous Bus Timing Diagram

28 SDRAM with a Wide Bus DDR SDRAM makes two transfers for every cycle of the memory bus, 1 on the rising edge of the clock cycle 1 on the falling edge of the clock cycle. For a 100 MHz memory bus, DDR SDRAM would have 200 million transfers per second. Now consider a 64 bit data bus, which can transfer 64 bits (8 bytes) at a time. Thus our sample DDR SDRAM bus would transfer 1,600 million bytes per second. This is 1.49 GB / second, as 1 GB = 2 32 bytes.

29 Word Addressing in a Byte Addressable Machine Each 8 bit byte has a distinct address. A 16-bit word at address Z contains bytes at addresses Z and Z + 1. A 32-bit word at address Z contains bytes at addresses Z, Z + 1, Z + 2, and Z + 3. Question: How is the value stored in a 32-bit register stored in computer memory?

30 Big Endian vs. Little Endian Address Big-Endian Little-Endian Z Z Z Z

31 Big Endian vs. Little Endian

32 Example: Core Dump at Address 0x200 Here is a sample memory map. Address 0x200 0x201 0x202 0x203 Contents What is the 32-bit integer stored at address 0x200? Big Endian: The number is 0x Its decimal value is = 33,818,120 Little Endian: The number is 0x Its decimal value is = 134,611,970.

33 Another Core Dump Here is the same memory map. Address 0x200 0x201 0x202 0x203 Contents The 16 bit integer stored at address 0x200 is stored in the two bytes at addresses 0x200 and 0x201. Big Endian: The value is 0x0204. The decimal value is = 516 Little Endian: The value is 0x0402. The decimal value s = 1,026

34 Evolution of Modern Memory Year Cost per MB Actual component Speed Type in US $ Size (KB) Cost nsec ,041, ,000 transistors ,947, ,000 vacuum tubes ,642, ,000 core , core , ?? static RAM , ?? dynamic RAM , ?? DRAM , SIMM , pin SIMM MB MHz DIMM ,048 MB MHz DIMM DDR ,096 MB MHz DIMM DDR ,192 MB MHz DIMM DDR2

The Memory Component

The Memory Component The Computer Memory Chapter 6 forms the first of a two chapter sequence on computer memory. Topics for this chapter include. 1. A functional description of primary computer memory, sometimes called by

More information

Computer Organization & Architecture M. A, El-dosuky

Computer Organization & Architecture M. A, El-dosuky 4.1-storage systems and technology Memory as a Linear Array Computer Organization & Architecture M. A, El-dosuky A byte-addressable memory with N bytes is the logical equivalent of a C++ array, declared

More information

Functional Units of a Modern Computer

Functional Units of a Modern Computer Functional Units of a Modern Computer We begin this lecture by repeating a figure from a previous lecture. Logically speaking a computer has four components. Connecting the Components Early schemes for

More information

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing Microcontroller Systems ELET 3232 Topic 11: General Memory Interfacing 1 Objectives To become familiar with the concepts of memory expansion and the data and address bus To design embedded systems circuits

More information

Computer Systems Laboratory Sungkyunkwan University

Computer Systems Laboratory Sungkyunkwan University DRAMs Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Main Memory & Caches Use DRAMs for main memory Fixed width (e.g., 1 word) Connected by fixed-width

More information

Memory classification:- Topics covered:- types,organization and working

Memory classification:- Topics covered:- types,organization and working Memory classification:- Topics covered:- types,organization and working 1 Contents What is Memory? Cache Memory PC Memory Organisation Types 2 Memory what is it? Usually we consider this to be RAM, ROM

More information

Computer Organization. 8th Edition. Chapter 5 Internal Memory

Computer Organization. 8th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 8th Edition Chapter 5 Internal Memory Semiconductor Memory Types Memory Type Category Erasure Write Mechanism Volatility Random-access memory (RAM)

More information

Chapter 9: A Closer Look at System Hardware

Chapter 9: A Closer Look at System Hardware Chapter 9: A Closer Look at System Hardware CS10001 Computer Literacy Chapter 9: A Closer Look at System Hardware 1 Topics Discussed Digital Data and Switches Manual Electrical Digital Data Representation

More information

Introduction read-only memory random access memory

Introduction read-only memory random access memory Memory Interface Introduction Simple or complex, every microprocessorbased system has a memory system. Almost all systems contain two main types of memory: read-only memory (ROM) and random access memory

More information

Chapter 9: A Closer Look at System Hardware 4

Chapter 9: A Closer Look at System Hardware 4 Chapter 9: A Closer Look at System Hardware CS10001 Computer Literacy Topics Discussed Digital Data and Switches Manual Electrical Digital Data Representation Decimal to Binary (Numbers) Characters and

More information

The Memory Hierarchy. Cache, Main Memory, and Virtual Memory (Part 2)

The Memory Hierarchy. Cache, Main Memory, and Virtual Memory (Part 2) The Memory Hierarchy Cache, Main Memory, and Virtual Memory (Part 2) Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Cache Line Replacement The cache

More information

Chapter 5 Internal Memory

Chapter 5 Internal Memory Chapter 5 Internal Memory Memory Type Category Erasure Write Mechanism Volatility Random-access memory (RAM) Read-write memory Electrically, byte-level Electrically Volatile Read-only memory (ROM) Read-only

More information

Lecture 18: DRAM Technologies

Lecture 18: DRAM Technologies Lecture 18: DRAM Technologies Last Time: Cache and Virtual Memory Review Today DRAM organization or, why is DRAM so slow??? Lecture 18 1 Main Memory = DRAM Lecture 18 2 Basic DRAM Architecture Lecture

More information

CS 320 February 2, 2018 Ch 5 Memory

CS 320 February 2, 2018 Ch 5 Memory CS 320 February 2, 2018 Ch 5 Memory Main memory often referred to as core by the older generation because core memory was a mainstay of computers until the advent of cheap semi-conductor memory in the

More information

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 7: Memory Organization Part II

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 7: Memory Organization Part II ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 7: Organization Part II Ujjwal Guin, Assistant Professor Department of Electrical and Computer Engineering Auburn University, Auburn,

More information

ECSE-2610 Computer Components & Operations (COCO)

ECSE-2610 Computer Components & Operations (COCO) ECSE-2610 Computer Components & Operations (COCO) Part 18: Random Access Memory 1 Read-Only Memories 2 Why ROM? Program storage Boot ROM for personal computers Complete application storage for embedded

More information

The Central Processing Unit

The Central Processing Unit The Central Processing Unit All computers derive from the same basic design, usually referred to as the von Neumann architecture. This concept involves solving a problem by defining a sequence of commands

More information

Main Memory (RAM) Organisation

Main Memory (RAM) Organisation Main Memory (RAM) Organisation Computers employ many different types of memory (semi-conductor, magnetic disks, USB sticks, DVDs etc.) to hold data and programs. Each type has its own characteristics and

More information

Contents. Main Memory Memory access time Memory cycle time. Types of Memory Unit RAM ROM

Contents. Main Memory Memory access time Memory cycle time. Types of Memory Unit RAM ROM Memory Organization Contents Main Memory Memory access time Memory cycle time Types of Memory Unit RAM ROM Memory System Virtual Memory Cache Memory - Associative mapping Direct mapping Set-associative

More information

CS650 Computer Architecture. Lecture 9 Memory Hierarchy - Main Memory

CS650 Computer Architecture. Lecture 9 Memory Hierarchy - Main Memory CS65 Computer Architecture Lecture 9 Memory Hierarchy - Main Memory Andrew Sohn Computer Science Department New Jersey Institute of Technology Lecture 9: Main Memory 9-/ /6/ A. Sohn Memory Cycle Time 5

More information

Memory Overview. Overview - Memory Types 2/17/16. Curtis Nelson Walla Walla University

Memory Overview. Overview - Memory Types 2/17/16. Curtis Nelson Walla Walla University Memory Overview Curtis Nelson Walla Walla University Overview - Memory Types n n n Magnetic tape (used primarily for long term archive) Magnetic disk n Hard disk (File, Directory, Folder) n Floppy disks

More information

Chapter 6 Basics of the Memory System

Chapter 6 Basics of the Memory System We now give an overview of RAM Random Access Memory. This is the memory called primary memory or core memory. The term core is a reference to an earlier memory technology in which magnetic cores were used

More information

Internal Memory. Computer Architecture. Outline. Memory Hierarchy. Semiconductor Memory Types. Copyright 2000 N. AYDIN. All rights reserved.

Internal Memory. Computer Architecture. Outline. Memory Hierarchy. Semiconductor Memory Types. Copyright 2000 N. AYDIN. All rights reserved. Computer Architecture Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr nizamettinaydin@gmail.com Internal Memory http://www.yildiz.edu.tr/~naydin 1 2 Outline Semiconductor main memory Random Access Memory

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 5: Zeshan Chishti DRAM Basics DRAM Evolution SDRAM-based Memory Systems Electrical and Computer Engineering Dept. Maseeh College of Engineering and Computer Science

More information

William Stallings Computer Organization and Architecture 8th Edition. Chapter 5 Internal Memory

William Stallings Computer Organization and Architecture 8th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 8th Edition Chapter 5 Internal Memory Semiconductor Memory The basic element of a semiconductor memory is the memory cell. Although a variety of

More information

CS 261 Fall Mike Lam, Professor. Memory

CS 261 Fall Mike Lam, Professor. Memory CS 261 Fall 2016 Mike Lam, Professor Memory Topics Memory hierarchy overview Storage technologies SRAM DRAM PROM / flash Disk storage Tape and network storage I/O architecture Storage trends Latency comparisons

More information

machine cycle, the CPU: (a) Fetches an instruction, (b) Decodes the instruction, (c) Executes the instruction, and (d) Stores the result.

machine cycle, the CPU: (a) Fetches an instruction, (b) Decodes the instruction, (c) Executes the instruction, and (d) Stores the result. Central Processing Unit (CPU) A processor is also called the CPU, and it works hand in hand with other circuits known as main memory to carry out processing. The CPU is the "brain" of the computer; it

More information

Large and Fast: Exploiting Memory Hierarchy

Large and Fast: Exploiting Memory Hierarchy CSE 431: Introduction to Operating Systems Large and Fast: Exploiting Memory Hierarchy Gojko Babić 10/5/018 Memory Hierarchy A computer system contains a hierarchy of storage devices with different costs,

More information

EEM 486: Computer Architecture. Lecture 9. Memory

EEM 486: Computer Architecture. Lecture 9. Memory EEM 486: Computer Architecture Lecture 9 Memory The Big Picture Designing a Multiple Clock Cycle Datapath Processor Control Memory Input Datapath Output The following slides belong to Prof. Onur Mutlu

More information

Concept of Memory. The memory of computer is broadly categories into two categories:

Concept of Memory. The memory of computer is broadly categories into two categories: Concept of Memory We have already mentioned that digital computer works on stored programmed concept introduced by Von Neumann. We use memory to store the information, which includes both program and data.

More information

Summer 2003 Lecture 18 07/09/03

Summer 2003 Lecture 18 07/09/03 Summer 2003 Lecture 18 07/09/03 NEW HOMEWORK Instruction Execution Times: The 8088 CPU is a synchronous machine that operates at a particular clock frequency. In the case of the original IBM PC, that clock

More information

EE414 Embedded Systems Ch 5. Memory Part 2/2

EE414 Embedded Systems Ch 5. Memory Part 2/2 EE414 Embedded Systems Ch 5. Memory Part 2/2 Byung Kook Kim School of Electrical Engineering Korea Advanced Institute of Science and Technology Overview 6.1 introduction 6.2 Memory Write Ability and Storage

More information

CREATED BY M BILAL & Arslan Ahmad Shaad Visit:

CREATED BY M BILAL & Arslan Ahmad Shaad Visit: CREATED BY M BILAL & Arslan Ahmad Shaad Visit: www.techo786.wordpress.com Q1: Define microprocessor? Short Questions Chapter No 01 Fundamental Concepts Microprocessor is a program-controlled and semiconductor

More information

CENG3420 Lecture 08: Memory Organization

CENG3420 Lecture 08: Memory Organization CENG3420 Lecture 08: Memory Organization Bei Yu byu@cse.cuhk.edu.hk (Latest update: February 22, 2018) Spring 2018 1 / 48 Overview Introduction Random Access Memory (RAM) Interleaving Secondary Memory

More information

Computer Systems Architecture I. CSE 560M Lecture 18 Guest Lecturer: Shakir James

Computer Systems Architecture I. CSE 560M Lecture 18 Guest Lecturer: Shakir James Computer Systems Architecture I CSE 560M Lecture 18 Guest Lecturer: Shakir James Plan for Today Announcements No class meeting on Monday, meet in project groups Project demos < 2 weeks, Nov 23 rd Questions

More information

Figure 1 Logical view of the system memory.

Figure 1 Logical view of the system memory. Memory Addressing The memory of a computer system consists of tiny electronic switches, with each switch in one of two states: open or closed. It is, however, more convenient to think of these states as

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. 1 Part 2: Introduction to Computer Architecture Our goal: have a basic look at architecture of computer, its functions and structure, its history and

More information

Chapter 8 Memory Basics

Chapter 8 Memory Basics Logic and Computer Design Fundamentals Chapter 8 Memory Basics Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Overview Memory definitions Random Access

More information

COSC 6385 Computer Architecture - Memory Hierarchies (III)

COSC 6385 Computer Architecture - Memory Hierarchies (III) COSC 6385 Computer Architecture - Memory Hierarchies (III) Edgar Gabriel Spring 2014 Memory Technology Performance metrics Latency problems handled through caches Bandwidth main concern for main memory

More information

CENG4480 Lecture 09: Memory 1

CENG4480 Lecture 09: Memory 1 CENG4480 Lecture 09: Memory 1 Bei Yu byu@cse.cuhk.edu.hk (Latest update: November 8, 2017) Fall 2017 1 / 37 Overview Introduction Memory Principle Random Access Memory (RAM) Non-Volatile Memory Conclusion

More information

Basic Organization Memory Cell Operation. CSCI 4717 Computer Architecture. ROM Uses. Random Access Memory. Semiconductor Memory Types

Basic Organization Memory Cell Operation. CSCI 4717 Computer Architecture. ROM Uses. Random Access Memory. Semiconductor Memory Types CSCI 4717/5717 Computer Architecture Topic: Internal Memory Details Reading: Stallings, Sections 5.1 & 5.3 Basic Organization Memory Cell Operation Represent two stable/semi-stable states representing

More information

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory 5.1 Semiconductor Main Memory 5.2 Error Correction 5.3 Advanced DRAM Organization 5.1 Semiconductor Main Memory

More information

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory Semiconductor Memory Types Semiconductor Memory RAM Misnamed as all semiconductor memory is random access

More information

Chapter 7: Processor and Memory

Chapter 7: Processor and Memory Slide 1/27 Learning Objectives In this chapter you will learn about: Internal structure of processor Memory structure Determining the speed of a processor Different types of processors available Determining

More information

ECEN 449 Microprocessor System Design. Memories. Texas A&M University

ECEN 449 Microprocessor System Design. Memories. Texas A&M University ECEN 449 Microprocessor System Design Memories 1 Objectives of this Lecture Unit Learn about different types of memories SRAM/DRAM/CAM Flash 2 SRAM Static Random Access Memory 3 SRAM Static Random Access

More information

COMP2121: Microprocessors and Interfacing. Introduction to Microprocessors

COMP2121: Microprocessors and Interfacing. Introduction to Microprocessors COMP2121: Microprocessors and Interfacing Introduction to Microprocessors http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 2, 2017 1 1 Contents Processor architectures Bus Memory hierarchy 2

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 4: Memory Hierarchy Memory Taxonomy SRAM Basics Memory Organization DRAM Basics Zeshan Chishti Electrical and Computer Engineering Dept Maseeh College of Engineering

More information

UMBC. Select. Read. Write. Output/Input-output connection. 1 (Feb. 25, 2002) Four commonly used memories: Address connection ... Dynamic RAM (DRAM)

UMBC. Select. Read. Write. Output/Input-output connection. 1 (Feb. 25, 2002) Four commonly used memories: Address connection ... Dynamic RAM (DRAM) Memory Types Two basic types: ROM: Read-only memory RAM: Read-Write memory Four commonly used memories: ROM Flash (EEPROM) Static RAM (SRAM) Dynamic RAM (DRAM) Generic pin configuration: Address connection

More information

Memories: Memory Technology

Memories: Memory Technology Memories: Memory Technology Z. Jerry Shi Assistant Professor of Computer Science and Engineering University of Connecticut * Slides adapted from Blumrich&Gschwind/ELE475 03, Peh/ELE475 * Memory Hierarchy

More information

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology 1 Multilevel Memories Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology Based on the material prepared by Krste Asanovic and Arvind CPU-Memory Bottleneck 6.823

More information

Overview. Memory Classification Read-Only Memory (ROM) Random Access Memory (RAM) Functional Behavior of RAM. Implementing Static RAM

Overview. Memory Classification Read-Only Memory (ROM) Random Access Memory (RAM) Functional Behavior of RAM. Implementing Static RAM Memories Overview Memory Classification Read-Only Memory (ROM) Types of ROM PROM, EPROM, E 2 PROM Flash ROMs (Compact Flash, Secure Digital, Memory Stick) Random Access Memory (RAM) Types of RAM Static

More information

ECE7995 (4) Basics of Memory Hierarchy. [Adapted from Mary Jane Irwin s slides (PSU)]

ECE7995 (4) Basics of Memory Hierarchy. [Adapted from Mary Jane Irwin s slides (PSU)] ECE7995 (4) Basics of Memory Hierarchy [Adapted from Mary Jane Irwin s slides (PSU)] Major Components of a Computer Processor Devices Control Memory Input Datapath Output Performance Processor-Memory Performance

More information

Spring 2018 :: CSE 502. Main Memory & DRAM. Nima Honarmand

Spring 2018 :: CSE 502. Main Memory & DRAM. Nima Honarmand Main Memory & DRAM Nima Honarmand Main Memory Big Picture 1) Last-level cache sends its memory requests to a Memory Controller Over a system bus of other types of interconnect 2) Memory controller translates

More information

Memory Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Memory Pearson Education, Inc., Hoboken, NJ. All rights reserved. 1 Memory + 2 Location Internal (e.g. processor registers, cache, main memory) External (e.g. optical disks, magnetic disks, tapes) Capacity Number of words Number of bytes Unit of Transfer Word Block Access

More information

ECE 485/585 Midterm Exam

ECE 485/585 Midterm Exam ECE 485/585 Midterm Exam Time allowed: 100 minutes Total Points: 65 Points Scored: Name: Problem No. 1 (12 points) For each of the following statements, indicate whether the statement is TRUE or FALSE:

More information

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Informática Architectures for Embedded Computing MEIC-A, MEIC-T, MERC Lecture Slides Version 3.0 - English Lecture 16

More information

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (5 th Week)

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (5 th Week) + (Advanced) Computer Organization & Architechture Prof. Dr. Hasan Hüseyin BALIK (5 th Week) + Outline 2. The computer system 2.1 A Top-Level View of Computer Function and Interconnection 2.2 Cache Memory

More information

Computer System Components

Computer System Components Computer System Components CPU Core 1 GHz - 3.2 GHz 4-way Superscaler RISC or RISC-core (x86): Deep Instruction Pipelines Dynamic scheduling Multiple FP, integer FUs Dynamic branch prediction Hardware

More information

Computer Memory.

Computer Memory. Computer Memory varady.geza@mik.pte.hu Memories - storages Speed Price Capacity (felejtő) Memory Storage (nem felejtő) Memory Control Unit Arithmetical Logical Unit (ALU) Main memory Programs Data Without

More information

a) Memory management unit b) CPU c) PCI d) None of the mentioned

a) Memory management unit b) CPU c) PCI d) None of the mentioned 1. CPU fetches the instruction from memory according to the value of a) program counter b) status register c) instruction register d) program status word 2. Which one of the following is the address generated

More information

CS311 Lecture 21: SRAM/DRAM/FLASH

CS311 Lecture 21: SRAM/DRAM/FLASH S 14 L21-1 2014 CS311 Lecture 21: SRAM/DRAM/FLASH DARM part based on ISCA 2002 tutorial DRAM: Architectures, Interfaces, and Systems by Bruce Jacob and David Wang Jangwoo Kim (POSTECH) Thomas Wenisch (University

More information

Memory systems. Memory technology. Memory technology Memory hierarchy Virtual memory

Memory systems. Memory technology. Memory technology Memory hierarchy Virtual memory Memory systems Memory technology Memory hierarchy Virtual memory Memory technology DRAM Dynamic Random Access Memory bits are represented by an electric charge in a small capacitor charge leaks away, need

More information

CSEE W4824 Computer Architecture Fall 2012

CSEE W4824 Computer Architecture Fall 2012 CSEE W4824 Computer Architecture Fall 2012 Lecture 8 Memory Hierarchy Design: Memory Technologies and the Basics of Caches Luca Carloni Department of Computer Science Columbia University in the City of

More information

The Memory Hierarchy 1

The Memory Hierarchy 1 The Memory Hierarchy 1 What is a cache? 2 What problem do caches solve? 3 Memory CPU Abstraction: Big array of bytes Memory memory 4 Performance vs 1980 Processor vs Memory Performance Memory is very slow

More information

COMPUTER ARCHITECTURES

COMPUTER ARCHITECTURES COMPUTER ARCHITECTURES Random Access Memory Technologies Gábor Horváth BUTE Department of Networked Systems and Services ghorvath@hit.bme.hu Budapest, 2019. 02. 24. Department of Networked Systems and

More information

TECHNOLOGY BRIEF. Double Data Rate SDRAM: Fast Performance at an Economical Price EXECUTIVE SUMMARY C ONTENTS

TECHNOLOGY BRIEF. Double Data Rate SDRAM: Fast Performance at an Economical Price EXECUTIVE SUMMARY C ONTENTS TECHNOLOGY BRIEF June 2002 Compaq Computer Corporation Prepared by ISS Technology Communications C ONTENTS Executive Summary 1 Notice 2 Introduction 3 SDRAM Operation 3 How CAS Latency Affects System Performance

More information

Technology in Action

Technology in Action Technology in Action Chapter 9 Behind the Scenes: A Closer Look at System Hardware 1 Binary Language Computers work in binary language. Consists of two numbers: 0 and 1 Everything a computer does is broken

More information

UNIT V (PROGRAMMABLE LOGIC DEVICES)

UNIT V (PROGRAMMABLE LOGIC DEVICES) UNIT V (PROGRAMMABLE LOGIC DEVICES) Introduction There are two types of memories that are used in digital systems: Random-access memory(ram): perform both the write and read operations. Read-only memory(rom):

More information

CS 261 Fall Mike Lam, Professor. Memory

CS 261 Fall Mike Lam, Professor. Memory CS 261 Fall 2017 Mike Lam, Professor Memory Topics Memory hierarchy overview Storage technologies I/O architecture Storage trends Latency comparisons Locality Memory Until now, we've referred to memory

More information

Storage Technologies and the Memory Hierarchy

Storage Technologies and the Memory Hierarchy Storage Technologies and the Memory Hierarchy 198:231 Introduction to Computer Organization Lecture 12 Instructor: Nicole Hynes nicole.hynes@rutgers.edu Credits: Slides courtesy of R. Bryant and D. O Hallaron,

More information

Mainstream Computer System Components

Mainstream Computer System Components Mainstream Computer System Components Double Date Rate (DDR) SDRAM One channel = 8 bytes = 64 bits wide Current DDR3 SDRAM Example: PC3-12800 (DDR3-1600) 200 MHz (internal base chip clock) 8-way interleaved

More information

Address connections Data connections Selection connections

Address connections Data connections Selection connections Interface (cont..) We have four common types of memory: Read only memory ( ROM ) Flash memory ( EEPROM ) Static Random access memory ( SARAM ) Dynamic Random access memory ( DRAM ). Pin connections common

More information

Design with Microprocessors

Design with Microprocessors Design with Microprocessors Year III Computer Sci. English 1-st Semester Lecture 12: Memory interfacing Typical Memory Hierarchy [1] On-Chip Components Control edram Datapath RegFile ITLB DTLB Instr Data

More information

COMP3221: Microprocessors and. and Embedded Systems. Overview. Lecture 23: Memory Systems (I)

COMP3221: Microprocessors and. and Embedded Systems. Overview. Lecture 23: Memory Systems (I) COMP3221: Microprocessors and Embedded Systems Lecture 23: Memory Systems (I) Overview Memory System Hierarchy RAM, ROM, EPROM, EEPROM and FLASH http://www.cse.unsw.edu.au/~cs3221 Lecturer: Hui Wu Session

More information

EE 457 Unit 7b. Main Memory Organization

EE 457 Unit 7b. Main Memory Organization 1 EE 457 Unit 7b Main Memory Organization 2 Motivation Organize main memory to Facilitate byte-addressability while maintaining Efficient fetching of the words in a cache block Low order interleaving (L.O.I)

More information

Chapter One. Introduction to Computer System

Chapter One. Introduction to Computer System Principles of Programming-I / 131101 Prepared by: Dr. Bahjat Qazzaz -------------------------------------------------------------------------------------------- Chapter One Introduction to Computer System

More information

MEMORY SYSTEM MEMORY TECHNOLOGY SUMMARY DESIGNING MEMORY SYSTEM. The goal in designing any memory system is to provide

MEMORY SYSTEM MEMORY TECHNOLOGY SUMMARY DESIGNING MEMORY SYSTEM. The goal in designing any memory system is to provide SUMMARY MEMORY SYSTEM ORGANIZATION Memory technology Hierarchical memory systems Characteristics of the storage-device Main memory organization SRAM DRAM Cache memory COMPUTER ARCHITECTURE 2 MEMORY TECHNOLOGY

More information

Where We Are in This Course Right Now. ECE 152 Introduction to Computer Architecture. This Unit: Main Memory. Readings

Where We Are in This Course Right Now. ECE 152 Introduction to Computer Architecture. This Unit: Main Memory. Readings Introduction to Computer Architecture Main Memory and Virtual Memory Copyright 2012 Daniel J. Sorin Duke University Slides are derived from work by Amir Roth (Penn) Spring 2012 Where We Are in This Course

More information

Chapter 1 Microprocessor architecture ECE 3120 Dr. Mohamed Mahmoud http://iweb.tntech.edu/mmahmoud/ mmahmoud@tntech.edu Outline 1.1 Computer hardware organization 1.1.1 Number System 1.1.2 Computer hardware

More information

Internal Memory Cache Stallings: Ch 4, Ch 5 Key Characteristics Locality Cache Main Memory

Internal Memory Cache Stallings: Ch 4, Ch 5 Key Characteristics Locality Cache Main Memory Lecture 3 Internal Memory Cache Stallings: Ch 4, Ch 5 Key Characteristics Locality Cache Main Memory Key Characterics of Memories / Storage (Sta06 Table 4.1) 26.1.2010 2 Goals I want my memory lightning

More information

ECE 250 / CS250 Introduction to Computer Architecture

ECE 250 / CS250 Introduction to Computer Architecture ECE 250 / CS250 Introduction to Computer Architecture Main Memory Benjamin C. Lee Duke University Slides from Daniel Sorin (Duke) and are derived from work by Amir Roth (Penn) and Alvy Lebeck (Duke) 1

More information

Contents Slide Set 9. Final Notes on Textbook Chapter 7. Outline of Slide Set 9. More about skipped sections in Chapter 7. Outline of Slide Set 9

Contents Slide Set 9. Final Notes on Textbook Chapter 7. Outline of Slide Set 9. More about skipped sections in Chapter 7. Outline of Slide Set 9 slide 2/41 Contents Slide Set 9 for ENCM 369 Winter 2014 Lecture Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2014

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: November 28, 2017 at 14:31 CS429 Slideset 18: 1 Random-Access Memory

More information

So computers can't think in the same way that people do. But what they do, they do excellently well and very, very fast.

So computers can't think in the same way that people do. But what they do, they do excellently well and very, very fast. Input What is Processing? Processing Output Processing is the thinking that the computer does - the calculations, comparisons, and decisions. Storage People also process data. What you see and hear and

More information

registers data 1 registers MEMORY ADDRESS on-chip cache off-chip cache main memory: real address space part of virtual addr. sp.

registers data 1 registers MEMORY ADDRESS on-chip cache off-chip cache main memory: real address space part of virtual addr. sp. 13 1 CMPE110 Computer Architecture, Winter 2009 Andrea Di Blas 110 Winter 2009 CMPE Cache Direct-mapped cache Reads and writes Cache associativity Cache and performance Textbook Edition: 7.1 to 7.3 Third

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: April 9, 2018 at 12:16 CS429 Slideset 17: 1 Random-Access Memory

More information

TSEA22, DIGITALTEKNIK LECTURE 7

TSEA22, DIGITALTEKNIK LECTURE 7 LINKÖPING UNIVERSITY Department of Electrical Engineering TSEA22, DIGITALTEKNIK LECTURE 7 Mario Garrido Gálvez mario.garrido.galvez@liu.se Linköping, 2018 1 FEEDBACK: POSITIVE Course: Good / Interesting

More information

chapter 8 The Memory System Chapter Objectives

chapter 8 The Memory System Chapter Objectives chapter 8 The Memory System Chapter Objectives In this chapter you will learn about: Basic memory circuits Organization of the main memory Memory technology Direct memory access as an I/O mechanism Cache

More information

Chapter 4 Main Memory

Chapter 4 Main Memory Chapter 4 Main Memory Course Outcome (CO) - CO2 Describe the architecture and organization of computer systems Program Outcome (PO) PO1 Apply knowledge of mathematics, science and engineering fundamentals

More information

,e-pg PATHSHALA- Computer Science Computer Architecture Module 25 Memory Hierarchy Design - Basics

,e-pg PATHSHALA- Computer Science Computer Architecture Module 25 Memory Hierarchy Design - Basics ,e-pg PATHSHALA- Computer Science Computer Architecture Module 25 Memory Hierarchy Design - Basics The objectives of this module are to discuss about the need for a hierarchical memory system and also

More information

Computers Are Your Future

Computers Are Your Future Computers Are Your Future Twelfth Edition Chapter 2: Inside the System Unit Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall 1 Inside the Computer System Copyright 2012 Pearson Education,

More information

k -bit address bus n-bit data bus Control lines ( R W, MFC, etc.)

k -bit address bus n-bit data bus Control lines ( R W, MFC, etc.) THE MEMORY SYSTEM SOME BASIC CONCEPTS Maximum size of the Main Memory byte-addressable CPU-Main Memory Connection, Processor MAR MDR k -bit address bus n-bit data bus Memory Up to 2 k addressable locations

More information

Random Access Memory (RAM)

Random Access Memory (RAM) Random Access Memory (RAM) best known form of computer memory. "random access" because you can access any memory cell directly if you know the row and column that intersect at that cell. 72 Magnetic-core

More information

Module 5a: Introduction To Memory System (MAIN MEMORY)

Module 5a: Introduction To Memory System (MAIN MEMORY) Module 5a: Introduction To Memory System (MAIN MEMORY) R E F E R E N C E S : S T A L L I N G S, C O M P U T E R O R G A N I Z A T I O N A N D A R C H I T E C T U R E M O R R I S M A N O, C O M P U T E

More information

CpE 442. Memory System

CpE 442. Memory System CpE 442 Memory System CPE 442 memory.1 Outline of Today s Lecture Recap and Introduction (5 minutes) Memory System: the BIG Picture? (15 minutes) Memory Technology: SRAM and Register File (25 minutes)

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and Computer Engineering Lecture 30 Random Access Memory (RAM) Overview Memory is a collection of storage cells with associated input and output circuitry Possible to read

More information

Chapter Two. Hardware Basics: Inside the Box

Chapter Two. Hardware Basics: Inside the Box Chapter Two Hardware Basics: Inside the Box After reading this chapter, you should be able to: Explain general terms how computers store and manipulate information. Describe the basic structure of a computer

More information

Mainstream Computer System Components CPU Core 2 GHz GHz 4-way Superscaler (RISC or RISC-core (x86): Dynamic scheduling, Hardware speculation

Mainstream Computer System Components CPU Core 2 GHz GHz 4-way Superscaler (RISC or RISC-core (x86): Dynamic scheduling, Hardware speculation Mainstream Computer System Components CPU Core 2 GHz - 3.0 GHz 4-way Superscaler (RISC or RISC-core (x86): Dynamic scheduling, Hardware speculation One core or multi-core (2-4) per chip Multiple FP, integer

More information

7/28/ Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc.

7/28/ Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc. Technology in Action Technology in Action Chapter 9 Behind the Scenes: A Closer Look a System Hardware Chapter Topics Computer switches Binary number system Inside the CPU Cache memory Types of RAM Computer

More information

Mark Redekopp, All rights reserved. EE 352 Unit 10. Memory System Overview SRAM vs. DRAM DMA & Endian-ness

Mark Redekopp, All rights reserved. EE 352 Unit 10. Memory System Overview SRAM vs. DRAM DMA & Endian-ness EE 352 Unit 10 Memory System Overview SRAM vs. DRAM DMA & Endian-ness The Memory Wall Problem: The Memory Wall Processor speeds have been increasing much faster than memory access speeds (Memory technology

More information