For the following, find the equation, roots, axis of symmetry, vertex, and graph that go together. i (1,2) F X = -2, -2. ii (3,13) iii (1, -5)

Size: px
Start display at page:

Download "For the following, find the equation, roots, axis of symmetry, vertex, and graph that go together. i (1,2) F X = -2, -2. ii (3,13) iii (1, -5)"

Transcription

1 Name: Date: Hour: Practice with Quadratics and Parabolas (40 Formative Points) For the following, find the equation, roots, axis of symmetry, vertex, and graph that go together. Equation A y = x 2 + 4x + 4 Axis of Symmetry a X=3 Vertex Roots Graph i (1,2) E X = 0.184, e B y = 3x 2 + 6x 1 b X=1 ii (3,13) F X = -2, -2 f C c X=1 iii (1, -5) G X = , g y = 2x 2 4x 3 D d X= -2 iv (-2, 0) H X = 2.581, h y = x 2 + 6x + 4 Final Matches Equation Axis of Symmetry Vertex Roots Graph A B C D

2 A new movie: Skyscraper starring Dwayne The Rock Johnson is coming out this summer; and the poster is totally absurd (see right): On Twitter, writer James Smythe kicked off a long discussion thread with some different parabolic arcs Johnson might follow depending on the momentum he starts the jump with: Stating, I ve mocked up some parabolas for The Rock s SKYSCRAPER jump. [One] assuming he jumped up for a bit first; [one] assuming he ran forward and somehow didn t lose momentum; [and a third] for a sort of squat-thrust thing. Whichever you choose, rest in peace The Rock, as you are dead now. Today, we are going to take some real world applications of parabolas and with a little help from physics, determine what velocity The Rock would need to be running at when he jumps off the scaffolding in order to make it to the window; if it is even possible! Our equation that we will be using today is a few of the kinematics equations used in physics to describe the motion of objects, lucky for us there s a quadratic and a linear equation!!! d = 1 2 at2 + v o t d = v 0 t d = Distance Traveled a = Acceleration of Gravity (9.81m/s 2 ) t = Time v0 = Initial Velocity

3 Vertical Distance (in Meters) Algebra 2 in the Workplace The coordinate plane below was obtained by using Dwayne The Rock Johnson s known height. The distance in meters represented by the coordinate plane is proportionate to The Rock s height as portrayed in the poster. You will be using this image to determine if The Rock could actually make this jump Horizontal Distance (in Meters) Step 1: On the coordinate plane, do your best to SKETCH the graph of a parabola (a smooth curve) where the scaffolding The Rock jumped off is the vertex. Be sure your graph goes through The Rock (after all it is his path) and that it makes it to the base of the window (so The Rock does not fall to his death!) In order to determine the initial velocity (v0) The Rock will need to have jumping off the scaffolding, we will need to determine the additional variables in our kinematics equation. Step 2: We need to determine the VERTICAL and HORIZONTAL distances that The Rock needs to travel from the scaffolding he jumped off of to the open window in the side of the building. Use the given coordinate play to determine the: Vertical Distance: Horizontal Distance:

4 Step 3: We now need to determine HOW LONG it would take The Rock to vertically fall the vertical distance you identified in Step 2; assuming that The Rock did not jump up when he jumped from the scaffolding. THIS ONE NOT This one To find this time we can use one of our kinematics equations! d = 1 2 at2 + v o t We are trying to find t in this equation, so that is our unknown variable. That means that we need to find values of d, a, and v0. Since we are trying to find the time it takes to fall VERTICALLY all of our other variables have to be in terms of vertical distance/velocity/acceleration: d = The total vertical distance The Rock needs to travel a = The vertical acceleration of The Rock (Gravity) v0 = Initial vertical velocity You have found the value of d already in Step 2; the acceleration of gravity (a) is a known constant of 9.81m/s 2. For the initial vertical velocity, we need to consider how The Rock is leaving the scaffolding. Is he jumping up first to gain additional vertical velocity? Is he starting from a resting position and just jumping off (not up)? Based on your answer to those questions, what do you believe the value of v0 will be? Record the following values you will use for the vertical fall situation: d = a = v0 = t =??? Step 4: Plug in the values that you know into the kinematics equation: d = 1 2 at2 + v o t and SOLVE for the unknown value of t.

5 Step 5: We are now going to determine the initial HORIZONTAL velocity (v0) that The Rock must have in order to make the necessary HORIZONTAL distance from the scaffolding to the window. This makes v0 the unknown variable. To do this, we will use our second kinematics linear equation: d = v 0 t Since we are talking about HORIZONTAL distance, all of our variables will be in terms of horizontal distance/initial velocity. d = Horizontal distance v0 = Initial horizontal velocity t = Time to travel horizontal distance You have already calculated the horizontal distance The Rock needs to travel in Step 2 and you have already calculated the time The Rock has to travel this horizontal distance in Step 4 (This is the same as the time to drop the vertical distance, because when The Rock is done dropping vertically, he better have reached the window or he s a goner!) Record the following values you will use for the horizontal situation: d = t = v0 =??? Step 6: Plug in the values that you know into the kinematics equation: d = v 0 t and SOLVE for the unknown value of v0. Step 7: Does The Rock live?!?!?! In Step 6, you have calculated the necessary initial velocity (in meters per second) convert meters per second to miles per hour. There are meters in 1 mile and 3600 seconds in 1 hour. The MINIMUM initial velocity The Rock MUST have to make the jump (in mph): For comparison, Usain Bolt s (the fastest man alive) top speed is 27.4 mph. Based on this, do you believe that The Rock would survive the jump? Why or why not?

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0).

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0). Quadratics Vertex Form 1. Part of the graph of the function y = d (x m) + p is given in the diagram below. The x-intercepts are (1, 0) and (5, 0). The vertex is V(m, ). (a) Write down the value of (i)

More information

Unit 1 Quadratic Functions

Unit 1 Quadratic Functions Unit 1 Quadratic Functions This unit extends the study of quadratic functions to include in-depth analysis of general quadratic functions in both the standard form f ( x) = ax + bx + c and in the vertex

More information

9.1: GRAPHING QUADRATICS ALGEBRA 1

9.1: GRAPHING QUADRATICS ALGEBRA 1 9.1: GRAPHING QUADRATICS ALGEBRA 1 OBJECTIVES I will be able to graph quadratics: Given in Standard Form Given in Vertex Form Given in Intercept Form What does the graph of a quadratic look like? https://www.desmos.com/calculator

More information

6.4 Vertex Form of a Quadratic Function

6.4 Vertex Form of a Quadratic Function 6.4 Vertex Form of a Quadratic Function Recall from 6.1 and 6.2: Standard Form The standard form of a quadratic is: f(x) = ax 2 + bx + c or y = ax 2 + bx + c where a, b, and c are real numbers and a 0.

More information

Properties of Quadratic functions

Properties of Quadratic functions Name Today s Learning Goals: #1 How do we determine the axis of symmetry and vertex of a quadratic function? Properties of Quadratic functions Date 5-1 Properties of a Quadratic Function A quadratic equation

More information

NOTES: ALGEBRA FUNCTION NOTATION

NOTES: ALGEBRA FUNCTION NOTATION STARTER: 1. Graph f by completing the table. f, y -1 0 1 4 5 NOTES: ALGEBRA 4.1 FUNCTION NOTATION y. Graph f 4 4 f 4 4, y --5-4 - - -1 0 1 y A Brief Review of Function Notation We will be using function

More information

Section 9.3 Graphing Quadratic Functions

Section 9.3 Graphing Quadratic Functions Section 9.3 Graphing Quadratic Functions A Quadratic Function is an equation that can be written in the following Standard Form., where a 0. Every quadratic function has a U-shaped graph called a. If the

More information

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Guided Practice Example 1 Find the y-intercept and vertex of the function f(x) = 2x 2 + x + 3. Determine whether the vertex is a minimum or maximum point on the graph. 1. Determine the y-intercept. The

More information

Quadratics. March 18, Quadratics.notebook. Groups of 4:

Quadratics. March 18, Quadratics.notebook. Groups of 4: Quadratics Groups of 4: For your equations: a) make a table of values b) plot the graph c) identify and label the: i) vertex ii) Axis of symmetry iii) x- and y-intercepts Group 1: Group 2 Group 3 1 What

More information

UNIT 3B CREATING AND GRAPHING EQUATIONS Lesson 4: Solving Systems of Equations Instruction

UNIT 3B CREATING AND GRAPHING EQUATIONS Lesson 4: Solving Systems of Equations Instruction Prerequisite Skills This lesson requires the use of the following skills: graphing multiple equations on a graphing calculator graphing quadratic equations graphing linear equations Introduction A system

More information

This is called the vertex form of the quadratic equation. To graph the equation

This is called the vertex form of the quadratic equation. To graph the equation Name Period Date: Topic: 7-5 Graphing ( ) Essential Question: What is the vertex of a parabola, and what is its axis of symmetry? Standard: F-IF.7a Objective: Graph linear and quadratic functions and show

More information

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10 Quadratic Modeling STEM 10 Today we are going to put together an understanding of the two physics equations we have been using. Distance: Height : Recall the variables: o acceleration o gravitation force

More information

4-1 (Part 2) Graphing Quadratics, Interpreting Parabolas

4-1 (Part 2) Graphing Quadratics, Interpreting Parabolas 4-1 (Part 2) Graphing Quadratics, Interpreting Parabolas Objectives Students will be able to: Find the vertex and y-intercept of a parabola Graph a parabola Use quadratic models to analyze problem situations.

More information

Review for Quarter 3 Cumulative Test

Review for Quarter 3 Cumulative Test Review for Quarter 3 Cumulative Test I. Solving quadratic equations (LT 4.2, 4.3, 4.4) Key Facts To factor a polynomial, first factor out any common factors, then use the box method to factor the quadratic.

More information

8.2 Graph and Write Equations of Parabolas

8.2 Graph and Write Equations of Parabolas 8.2 Graph and Write Equations of Parabolas Where is the focus and directrix compared to the vertex? How do you know what direction a parabola opens? How do you write the equation of a parabola given the

More information

Precalculus 2 Section 10.6 Parametric Equations

Precalculus 2 Section 10.6 Parametric Equations Precalculus 2 Section 10.6 Parametric Equations Parametric Equations Write parametric equations. Graph parametric equations. Determine an equivalent rectangular equation for parametric equations. Determine

More information

Final Exam Review Algebra Semester 1

Final Exam Review Algebra Semester 1 Final Exam Review Algebra 015-016 Semester 1 Name: Module 1 Find the inverse of each function. 1. f x 10 4x. g x 15x 10 Use compositions to check if the two functions are inverses. 3. s x 7 x and t(x)

More information

Algebra II Chapter 5

Algebra II Chapter 5 Algebra II Chapter 5 5.1 Quadratic Functions The graph of a quadratic function is a parabola, as shown at rig. Standard Form: f ( x) = ax2 + bx + c vertex: b 2a, f b 2a a < 0 graph opens down a > 0 graph

More information

Section 6.2: Properties of Graphs of Quadratic Functions. Vertex:

Section 6.2: Properties of Graphs of Quadratic Functions. Vertex: Section 6.2: Properties of Graphs of Quadratic Functions determine the vertex of a quadratic in standard form sketch the graph determine the y intercept, x intercept(s), the equation of the axis of symmetry,

More information

Types of Functions Here are six common types of functions and examples of each. Linear Quadratic Absolute Value Square Root Exponential Reciprocal

Types of Functions Here are six common types of functions and examples of each. Linear Quadratic Absolute Value Square Root Exponential Reciprocal Topic 2.0 Review Concepts What are non linear equations? Student Notes Unit 2 Non linear Equations Types of Functions Here are six common types of functions and examples of each. Linear Quadratic Absolute

More information

Unit 2: Functions and Graphs

Unit 2: Functions and Graphs AMHS Precalculus - Unit 16 Unit : Functions and Graphs Functions A function is a rule that assigns each element in the domain to exactly one element in the range. The domain is the set of all possible

More information

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical With no gravity the projectile would follow the straight-line path (dashed line).

More information

II. Functions. 61. Find a way to graph the line from the problem 59 on your calculator. Sketch the calculator graph here, including the window values:

II. Functions. 61. Find a way to graph the line from the problem 59 on your calculator. Sketch the calculator graph here, including the window values: II Functions Week 4 Functions: graphs, tables and formulas Problem of the Week: The Farmer s Fence A field bounded on one side by a river is to be fenced on three sides so as to form a rectangular enclosure

More information

Chapter 6 Practice Test

Chapter 6 Practice Test MPM2D Mr. Jensen Chapter 6 Practice Test Name: Standard Form 2 y= ax + bx+ c Factored Form y= a( x r)( x s) Vertex Form 2 y= a( x h) + k Quadratic Formula ± x = 2 b b 4ac 2a Section 1: Multiply Choice

More information

Vector Decomposition

Vector Decomposition Projectile Motion AP Physics 1 Vector Decomposition 1 Coordinate Systems A coordinate system is an artificially imposed grid that you place on a problem. You are free to choose: Where to place the origin,

More information

Two-Dimensional Motion

Two-Dimensional Motion Two-Dimensional Motion Objects don't always move in a straight line. When an object moves in two dimensions, we must look at vector components. The most common kind of two dimensional motion you will encounter

More information

Exploring Quadratic Graphs

Exploring Quadratic Graphs Exploring Quadratic Graphs The general quadratic function is y=ax 2 +bx+c It has one of two basic graphs shapes, as shown below: It is a symmetrical "U"-shape or "hump"-shape, depending on the sign of

More information

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31 CHAPTER Quadratic Functions Arches are used to support the weight of walls and ceilings in buildings. Arches were first used in architecture by the Mesopotamians over 4000 years ago. Later, the Romans

More information

Algebra II Quadratic Functions

Algebra II Quadratic Functions 1 Algebra II Quadratic Functions 2014-10-14 www.njctl.org 2 Ta b le o f C o n te n t Key Terms click on the topic to go to that section Explain Characteristics of Quadratic Functions Combining Transformations

More information

Module 1. Name: Date: Period: Find the following function values. 4. Find the following: Domain. Range. The graph is increasing over the interval

Module 1. Name: Date: Period: Find the following function values. 4. Find the following: Domain. Range. The graph is increasing over the interval Name: Date: Period: Algebra Fall Final Exam Review My Exam Date Is : Module 1 Find the following function values. f(x) = 3x + g(x) = x h(x) = x 3 1. g(f(x)). h(3) g(3) 3. g(f()) 4. Find the following:

More information

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS 3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS Finding the Zeros of a Quadratic Function Examples 1 and and more Find the zeros of f(x) = x x 6. Solution by Factoring f(x) = x x 6 = (x 3)(x + )

More information

Properties of Graphs of Quadratic Functions

Properties of Graphs of Quadratic Functions H e i g h t (f t ) Lesson 2 Goal: Properties of Graphs of Quadratic Functions Identify the characteristics of graphs of quadratic functions: Vertex Intercepts Domain and Range Axis of Symmetry and use

More information

Writing Equivalent Forms of Quadratic Functions Adapted from Walch Education

Writing Equivalent Forms of Quadratic Functions Adapted from Walch Education Writing Equivalent Forms of Quadratic Functions Adapted from Walch Education Recall The standard form, or general form, of a quadratic function is written as f(x) = ax 2 + bx + c, where a is the coefficient

More information

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7 Warm-Up Exercises Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; 3 2. y = 2x + 7 7 2 ANSWER ; 7 Chapter 1.1 Graph Quadratic Functions in Standard Form A quadratic function is a function that

More information

Amplifying an Instructional Task Algebra II Example

Amplifying an Instructional Task Algebra II Example Original Task The student is expected to write the equation of a parabola using given attributes, including vertex, focus, directrix, axis of symmetry, and direction of opening. A(4)(B) Write the equations

More information

Quadratic Functions (Section 2-1)

Quadratic Functions (Section 2-1) Quadratic Functions (Section 2-1) Section 2.1, Definition of Polynomial Function f(x) = a is the constant function f(x) = mx + b where m 0 is a linear function f(x) = ax 2 + bx + c with a 0 is a quadratic

More information

Algebra II Lesson 10-5: Hyperbolas Mrs. Snow, Instructor

Algebra II Lesson 10-5: Hyperbolas Mrs. Snow, Instructor Algebra II Lesson 10-5: Hyperbolas Mrs. Snow, Instructor In this section, we will look at the hyperbola. A hyperbola is a set of points P in a plane such that the absolute value of the difference between

More information

Transformations with Quadratic Functions KEY

Transformations with Quadratic Functions KEY Algebra Unit: 05 Lesson: 0 TRY THIS! Use a calculator to generate a table of values for the function y = ( x 3) + 4 y = ( x 3) x + y 4 Next, simplify the function by squaring, distributing, and collecting

More information

Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form

Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form Imagine the path of a basketball as it leaves a player s hand and swooshes through the net. Or, imagine the path of an Olympic diver

More information

Section 7.2 Characteristics of Quadratic Functions

Section 7.2 Characteristics of Quadratic Functions Section 7. Characteristics of Quadratic Functions A QUADRATIC FUNCTION is a function of the form " # $ N# 1 & ;# & 0 Characteristics Include:! Three distinct terms each with its own coefficient:! An x

More information

Student Exploration: Quadratics in Polynomial Form

Student Exploration: Quadratics in Polynomial Form Name: Date: Student Exploration: Quadratics in Polynomial Form Vocabulary: axis of symmetry, parabola, quadratic function, vertex of a parabola Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

Section 6.2 Properties of Graphs of Quadratic Functions soln.notebook January 12, 2017

Section 6.2 Properties of Graphs of Quadratic Functions soln.notebook January 12, 2017 Section 6.2: Properties of Graphs of Quadratic Functions 1 Properties of Graphs of Quadratic Functions A quadratic equation can be written in three different ways. Each version of the equation gives information

More information

Factor Quadratic Expressions

Factor Quadratic Expressions Factor Quadratic Expressions BLM 6... BLM 6 Factor Quadratic Expressions Get Ready BLM 6... Graph Quadratic Relations of the Form y = a(x h) + k. Sketch each parabola. Label the vertex, the axis of symmetry,

More information

Lesson 17: Graphing Quadratic Functions from the Standard Form,

Lesson 17: Graphing Quadratic Functions from the Standard Form, : Graphing Quadratic Functions from the Standard Form, Student Outcomes Students graph a variety of quadratic functions using the form 2 (standard form). Students analyze and draw conclusions about contextual

More information

Algebra 2 Chapter 2 Practice Test

Algebra 2 Chapter 2 Practice Test Algebra 2 Chapter 2 Practice Test 1. Compare the graph of with the graph of. a. The graph of g(x) is a translation 6 units left and 10 units up from the graph of f(x). b. The graph of g(x) is a translation

More information

CHAPTER 2 - QUADRATICS

CHAPTER 2 - QUADRATICS CHAPTER 2 - QUADRATICS VERTEX FORM (OF A QUADRATIC FUNCTION) f(x) = a(x - p) 2 + q Parameter a determines orientation and shape of the parabola Parameter p translates the parabola horizontally Parameter

More information

Step 2: Find the coordinates of the vertex (h, k) Step 5: State the zeros and interpret what they mean. Step 6: Make sure you answered all questions.

Step 2: Find the coordinates of the vertex (h, k) Step 5: State the zeros and interpret what they mean. Step 6: Make sure you answered all questions. Chapter 4 No Problem Word Problems! Name: Algebra 2 Period: 1 2 3 4 5 6 A. Solving from Standard Form 1. A ball is thrown so its height, h, in feet, is given by the equation h = 16t! + 10t where t is the

More information

Detailed instructions for video analysis using Logger Pro.

Detailed instructions for video analysis using Logger Pro. Detailed instructions for video analysis using Logger Pro. 1. Begin by locating or creating a video of a projectile (or any moving object). Save it to your computer. Most video file types are accepted,

More information

Learning Objectives. Math Prerequisites. Technology Prerequisites. Materials. Math Objectives. Technology Objectives

Learning Objectives. Math Prerequisites. Technology Prerequisites. Materials. Math Objectives. Technology Objectives Learning Objectives Parametric Functions Lesson 2: Dude, Where s My Football? Level: Algebra 2 Time required: 60 minutes Many students expect a falling object graph to look just like the path of the falling

More information

3.1 Investigating Quadratic Functions in Vertex Form

3.1 Investigating Quadratic Functions in Vertex Form Math 2200 Date: 3.1 Investigating Quadratic Functions in Vertex Form Degree of a Function - refers to the highest exponent on the variable in an expression or equation. In Math 1201, you learned about

More information

Sample: Do Not Reproduce QUAD4 STUDENT PAGES. QUADRATIC FUNCTIONS AND EQUATIONS Student Pages for Packet 4: Quadratic Functions and Applications

Sample: Do Not Reproduce QUAD4 STUDENT PAGES. QUADRATIC FUNCTIONS AND EQUATIONS Student Pages for Packet 4: Quadratic Functions and Applications Name Period Date QUADRATIC FUNCTIONS AND EQUATIONS Student Pages for Packet 4: Quadratic Functions and Applications QUAD 4.1 Vertex Form of a Quadratic Function 1 Explore how changing the values of h and

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 7: Building Functions Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 7: Building Functions Instruction Prerequisite Skills This lesson requires the use of the following skills: multiplying linear expressions factoring quadratic equations finding the value of a in the vertex form of a quadratic equation

More information

Today is the last day to register for CU Succeed account AND claim your account. Tuesday is the last day to register for my class

Today is the last day to register for CU Succeed account AND claim your account. Tuesday is the last day to register for my class Today is the last day to register for CU Succeed account AND claim your account. Tuesday is the last day to register for my class Back board says your name if you are on my roster. I need parent financial

More information

Yimin Math Centre. Year 10 Term 2 Homework. 3.1 Graphs in the number plane The minimum and maximum value of a quadratic function...

Yimin Math Centre. Year 10 Term 2 Homework. 3.1 Graphs in the number plane The minimum and maximum value of a quadratic function... Year 10 Term 2 Homework Student Name: Grade: Date: Score: Table of contents 3 Year 10 Term 2 Week 3 Homework 1 3.1 Graphs in the number plane................................. 1 3.1.1 The parabola....................................

More information

Advanced Math Quadratics Review Name: Dec. 2016

Advanced Math Quadratics Review Name: Dec. 2016 Advanced Math Quadratics Review Name: Dec. 2016 Graph the given quadratic by finding the vertex and building a table around it. Identify the axis of symmetry, maximum or minimum value, domain and range

More information

Section 3.3. Analyzing Graphs of Quadratic Functions

Section 3.3. Analyzing Graphs of Quadratic Functions Section 3.3 Analyzing Graphs of Quadratic Functions Introduction Definitions A quadratic function is a function with the form f (x) = ax 2 + bx + c, where a 0. Definitions A quadratic function is a function

More information

Chapter 2: Polynomial and Rational Functions Power Standard #7

Chapter 2: Polynomial and Rational Functions Power Standard #7 Chapter 2: Polynomial and Rational s Power Standard #7 2.1 Quadratic s Lets glance at the finals. Learning Objective: In this lesson you learned how to sketch and analyze graphs of quadratic functions.

More information

WK # Given: f(x) = ax2 + bx + c

WK # Given: f(x) = ax2 + bx + c Alg2H Chapter 5 Review 1. Given: f(x) = ax2 + bx + c Date or y = ax2 + bx + c Related Formulas: y-intercept: ( 0, ) Equation of Axis of Symmetry: x = Vertex: (x,y) = (, ) Discriminant = x-intercepts: When

More information

Quadratic Functions. Full Set of Notes. No Solutions

Quadratic Functions. Full Set of Notes. No Solutions Quadratic Functions Full Set of Notes No Solutions Graphing Quadratic Functions The graph of a quadratic function is called a parabola. Applications of Parabolas: http://www.doe.virginia.gov/div/winchester/jhhs/math/lessons/calc2004/appparab.html

More information

Math 2201 Unit 4: Quadratic Functions. 16 Hours

Math 2201 Unit 4: Quadratic Functions. 16 Hours Math 2201 Unit 4: Quadratic Functions 16 Hours 6.1: Exploring Quadratic Relations Quadratic Relation: A relation that can be written in the standard form y = ax 2 + bx + c Ex: y = 4x 2 + 2x + 1 ax 2 is

More information

Slide 2 / 222. Algebra II. Quadratic Functions

Slide 2 / 222. Algebra II. Quadratic Functions Slide 1 / 222 Slide 2 / 222 Algebra II Quadratic Functions 2014-10-14 www.njctl.org Slide 3 / 222 Table of Contents Key Terms Explain Characteristics of Quadratic Functions Combining Transformations (review)

More information

Unit 5: Quadratic Functions

Unit 5: Quadratic Functions Unit 5: Quadratic Functions LESSON #5: THE PARABOLA GEOMETRIC DEFINITION DIRECTRIX FOCUS LATUS RECTUM Geometric Definition of a Parabola Quadratic Functions Geometrically, a parabola is the set of all

More information

Plot the points (-1,9) (4,-3), estimate (put a dot) where you think the midpoint is

Plot the points (-1,9) (4,-3), estimate (put a dot) where you think the midpoint is Algebra Review while 9 th graders are at Club Getaway 1-1 dist and mid pt cw. p. 4 (1,3,5,6,7,8, Hw p. 5 (1-10) Plot the points (-1,9) (4,-3), estimate (put a dot) where you think the midpoint is Find

More information

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion 3-7 A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola. 3-7 It can be understood by analyzing the horizontal and vertical motions separately.

More information

6.3 Creating and Comparing Quadratics

6.3 Creating and Comparing Quadratics 6.3 Creating and Comparing Quadratics Just like with exponentials and linear functions, to be able to compare quadratics, we ll need to be able to create equation forms of the quadratic functions. Let

More information

Section 18-1: Graphical Representation of Linear Equations and Functions

Section 18-1: Graphical Representation of Linear Equations and Functions Section 18-1: Graphical Representation of Linear Equations and Functions Prepare a table of solutions and locate the solutions on a coordinate system: f(x) = 2x 5 Learning Outcome 2 Write x + 3 = 5 as

More information

Quadratic Functions. Chapter Properties of Quadratic Functions... p Investigating Quadratic Functions... p. 6 in Vertex Form: Part 1

Quadratic Functions. Chapter Properties of Quadratic Functions... p Investigating Quadratic Functions... p. 6 in Vertex Form: Part 1 Chapter 3 Quadratic Functions 3. Properties of Quadratic Functions........... p. 1 3.1 Investigating Quadratic Functions........... p. 6 in Vertex Form: Part 1 3.1 Investigating Quadratic Functions...........

More information

Falling Balls. Names: Date: About this Laboratory

Falling Balls. Names: Date: About this Laboratory Falling Balls Names: Date: About this Laboratory In this laboratory,1 we will explore quadratic functions and how they relate to the motion of an object that is dropped from a specified height above ground

More information

3 3.2 Investigating Quadratic Functions in Standard Form

3 3.2 Investigating Quadratic Functions in Standard Form Chapter 3 3.2 Investigating Quadratic Functions in Standard Form Focus On... identifying quadratic functions in standard form determining the vertex, domain and range, axis of symmetry, maximum or minimum

More information

Quadratic Functions, Part 1

Quadratic Functions, Part 1 Quadratic Functions, Part 1 A2.F.BF.A.1 Write a function that describes a relationship between two quantities. A2.F.BF.A.1a Determine an explicit expression, a recursive process, or steps for calculation

More information

7. r = r = r = r = r = 2 5

7. r = r = r = r = r = 2 5 Exercise a: I. Write the equation in standard form of each circle with its center at the origin and the given radius.. r = 4. r = 6 3. r = 7 r = 5 5. r = 6. r = 6 7. r = 0.3 8. r =.5 9. r = 4 0. r = 3.

More information

1.1 Graphing Quadratic Functions (p. 2) Definitions Standard form of quad. function Steps for graphing Minimums and maximums

1.1 Graphing Quadratic Functions (p. 2) Definitions Standard form of quad. function Steps for graphing Minimums and maximums 1.1 Graphing Quadratic Functions (p. 2) Definitions Standard form of quad. function Steps for graphing Minimums and maximums Quadratic Function A function of the form y=ax 2 +bx+c where a 0 making a u-shaped

More information

Name: Date: 1. Match the equation with its graph. Page 1

Name: Date: 1. Match the equation with its graph. Page 1 Name: Date: 1. Match the equation with its graph. y 6x A) C) Page 1 D) E) Page . Match the equation with its graph. ( x3) ( y3) A) C) Page 3 D) E) Page 4 3. Match the equation with its graph. ( x ) y 1

More information

Quadratic Forms Formula Vertex Axis of Symmetry. 2. Write the equation in intercept form. 3. Identify the Vertex. 4. Identify the Axis of Symmetry.

Quadratic Forms Formula Vertex Axis of Symmetry. 2. Write the equation in intercept form. 3. Identify the Vertex. 4. Identify the Axis of Symmetry. CC Algebra II Test # Quadratic Functions - Review **Formulas Name Quadratic Forms Formula Vertex Axis of Symmetry Vertex Form f (x) = a(x h) + k Standard Form f (x) = ax + b x + c x = b a Intercept Form

More information

Lesson 1: Analyzing Quadratic Functions

Lesson 1: Analyzing Quadratic Functions UNIT QUADRATIC FUNCTIONS AND MODELING Lesson 1: Analyzing Quadratic Functions Common Core State Standards F IF.7 F IF.8 Essential Questions Graph functions expressed symbolically and show key features

More information

Section 4.4: Parabolas

Section 4.4: Parabolas Objective: Graph parabolas using the vertex, x-intercepts, and y-intercept. Just as the graph of a linear equation y mx b can be drawn, the graph of a quadratic equation y ax bx c can be drawn. The graph

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.1 Quadratic Functions Copyright Cengage Learning. All rights reserved. What You Should Learn Analyze graphs of quadratic

More information

MATHS METHODS QUADRATICS REVIEW. A reminder of some of the laws of expansion, which in reverse are a quick reference for rules of factorisation

MATHS METHODS QUADRATICS REVIEW. A reminder of some of the laws of expansion, which in reverse are a quick reference for rules of factorisation MATHS METHODS QUADRATICS REVIEW LAWS OF EXPANSION A reminder of some of the laws of expansion, which in reverse are a quick reference for rules of factorisation a) b) c) d) e) FACTORISING Exercise 4A Q6ace,7acegi

More information

Algebra II Chapter 4: Quadratic Functions and Factoring Part 1

Algebra II Chapter 4: Quadratic Functions and Factoring Part 1 Algebra II Chapter 4: Quadratic Functions and Factoring Part 1 Chapter 4 Lesson 1 Graph Quadratic Functions in Standard Form Vocabulary 1 Example 1: Graph a Function of the Form y = ax 2 Steps: 1. Make

More information

2.3 Projectile Motion

2.3 Projectile Motion Figure 1 An Olympic ski jumper uses his own body as a projectile. projectile an object that moves along a two-dimensional curved trajectory in response to gravity projectile motion the motion of a projectile

More information

3.1 Quadratic Functions in Vertex Form

3.1 Quadratic Functions in Vertex Form 3.1 Quadratic Functions in Vertex Form 1) Identify quadratic functions in vertex form. 2) Determine the effect of a, p, and q on the graph of a quadratic function in vertex form where y = a(x p)² + q 3)

More information

Honors Algebra 2 Function Transformations Discovery

Honors Algebra 2 Function Transformations Discovery Honors Algebra Function Transformations Discovery Name: Date: Parent Polynomial Graphs Using an input-output table, make a rough sketch and compare the graphs of the following functions. f x x. f x x.

More information

Standard Form v. Vertex Form

Standard Form v. Vertex Form Standard Form v. Vertex Form The Standard Form of a quadratic equation is:. The Vertex Form of a quadratic equation is where represents the vertex of an equation and is the same a value used in the Standard

More information

Chapter 10. Exploring Conic Sections

Chapter 10. Exploring Conic Sections Chapter 10 Exploring Conic Sections Conics A conic section is a curve formed by the intersection of a plane and a hollow cone. Each of these shapes are made by slicing the cone and observing the shape

More information

Chapter 3 Practice Test

Chapter 3 Practice Test 1. Complete parts a c for each quadratic function. a. Find the y-intercept, the equation of the axis of symmetry, and the x-coordinate of the vertex. b. Make a table of values that includes the vertex.

More information

February 8 th February 12 th. Unit 6: Polynomials & Introduction to Quadratics

February 8 th February 12 th. Unit 6: Polynomials & Introduction to Quadratics Algebra I February 8 th February 12 th Unit 6: Polynomials & Introduction to Quadratics Jump Start 1) Use the elimination method to solve the system of equations below. x + y = 2 3x + y = 8 2) Solve: 13

More information

Test 3 review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Test 3 review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Test 3 review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Approximate the coordinates of each turning point by graphing f(x) in the standard viewing

More information

Y. Butterworth Lehmann & 9.2 Page 1 of 11

Y. Butterworth Lehmann & 9.2 Page 1 of 11 Pre Chapter 9 Coverage Quadratic (2 nd Degree) Form a type of graph called a parabola Form of equation we'll be dealing with in this chapter: y = ax 2 + c Sign of a determines opens up or down "+" opens

More information

KEY Algebra: Unit 10 Graphing Quadratic Equations & other Relations

KEY Algebra: Unit 10 Graphing Quadratic Equations & other Relations Name: KEY Algebra: Unit 10 Graphing Quadratic Equations & other Relations Date: Test Bank Part I: Answer all 15 questions in this part. Each correct answer will receive credits. No partial credit will

More information

9.1 Linear Inequalities in Two Variables Date: 2. Decide whether to use a solid line or dotted line:

9.1 Linear Inequalities in Two Variables Date: 2. Decide whether to use a solid line or dotted line: 9.1 Linear Inequalities in Two Variables Date: Key Ideas: Example Solve the inequality by graphing 3y 2x 6. steps 1. Rearrange the inequality so it s in mx ± b form. Don t forget to flip the inequality

More information

3.7. Vertex and tangent

3.7. Vertex and tangent 3.7. Vertex and tangent Example 1. At the right we have drawn the graph of the cubic polynomial f(x) = x 2 (3 x). Notice how the structure of the graph matches the form of the algebraic expression. The

More information

Lesson 3: Exploring Quadratic Relations Graphs Unit 5 Quadratic Relations

Lesson 3: Exploring Quadratic Relations Graphs Unit 5 Quadratic Relations (A) Lesson Context BIG PICTURE of this UNIT: CONTEXT of this LESSON: How do we analyze and then work with a data set that shows both increase and decrease What is a parabola and what key features do they

More information

Projectile Motion SECTION 3. Two-Dimensional Motion. Objectives. Use of components avoids vector multiplication.

Projectile Motion SECTION 3. Two-Dimensional Motion. Objectives. Use of components avoids vector multiplication. Projectile Motion Key Term projectile motion Two-Dimensional Motion Previously, we showed how quantities such as displacement and velocity were vectors that could be resolved into components. In this section,

More information

MATH 111 QUADRATICS WORKSHEET. Solution. We can put f(x) into vertex form by completing the square:

MATH 111 QUADRATICS WORKSHEET. Solution. We can put f(x) into vertex form by completing the square: MATH 111 QUADRATICS WORKSHEET BLAKE FARMAN UNIVERSITY OF SOUTH CAROLINA Name: Let f(x) = 3x 2 + 6x + 9. Use this function to answer questions Problems 1-3. 1. Write f(x) in vertex form. Solution. We can

More information

Algebra II Quadratic Functions and Equations - Extrema Unit 05b

Algebra II Quadratic Functions and Equations - Extrema Unit 05b Big Idea: Quadratic Functions can be used to find the maximum or minimum that relates to real world application such as determining the maximum height of a ball thrown into the air or solving problems

More information

Chapter 8.1 Conic Sections/Parabolas. Honors Pre-Calculus Rogers High School

Chapter 8.1 Conic Sections/Parabolas. Honors Pre-Calculus Rogers High School Chapter 8.1 Conic Sections/Parabolas Honors Pre-Calculus Rogers High School Introduction to Conic Sections Conic sections are defined geometrically as the result of the intersection of a plane with a right

More information

Quadratics Functions: Review

Quadratics Functions: Review Quadratics Functions: Review Name Per Review outline Quadratic function general form: Quadratic function tables and graphs (parabolas) Important places on the parabola graph [see chart below] vertex (minimum

More information

Ball Toss. Data Pro program. 2. Make a sketch of your prediction for the velocity vs. time graph. Describe in words what this graph means.

Ball Toss. Data Pro program. 2. Make a sketch of your prediction for the velocity vs. time graph. Describe in words what this graph means. Ball Toss Experiment 34 When a juggler tosses a ball straight upward, the ball slows down until it reaches the top of its path. The ball then speeds up on its way back down. A graph of its velocity vs.

More information

QUADRATIC FUNCTIONS: MINIMUM/MAXIMUM POINTS, USE OF SYMMETRY. 7.1 Minimum/Maximum, Recall: Completing the square

QUADRATIC FUNCTIONS: MINIMUM/MAXIMUM POINTS, USE OF SYMMETRY. 7.1 Minimum/Maximum, Recall: Completing the square CHAPTER 7 QUADRATIC FUNCTIONS: MINIMUM/MAXIMUM POINTS, USE OF SYMMETRY 7.1 Minimum/Maximum, Recall: Completing the square The completing the square method uses the formula x + y) = x + xy + y and forces

More information

x y 2 2 CONIC SECTIONS Problem 1

x y 2 2 CONIC SECTIONS Problem 1 CONIC SECTIONS Problem For the equations below, identify each conic section If it s a parabola, specify its vertex, focus and directrix If it s an ellipse, specify its center, vertices and foci If it s

More information