Gabriel Taubin. Desktop 3D Photography

Size: px
Start display at page:

Download "Gabriel Taubin. Desktop 3D Photography"

Transcription

1 Sring 06 ENGN D Photograhy Lecture 7 Gabriel Taubin Brown University Deskto D Photograhy htt://

2 D triangulation: ray-lane Intersection lane ray intersection oint rojector / coordinate world systems coordinate system D Triangulation by Ray-Plane intersection illuminated oint on object object being scanned rojected light lane camera ray q n image lane world coordinate system intersection of light lane with object v center of rojection ray direction vector

3 If camera and rojector are calibrated illuminated oint on object object being scanned rojected light lane camera ray q n ray direction vector from detected ixel common world coordinate system intersection of light lane with object v q L center of rojection D Triangulation by Ray-Ray Intersection object being scanned lines may not intersect! rojected light ray v camera ray

4 Imlicit equation of the lane A fixed oint on the lane P t = { : n ( q ) = 0} q n v world coordinate system Plane normal vector (unit length) Parametric equation of the ray L = { = q L + λv : λ > 0} camera ray q n world coordinate system v v q L ray direction vector (unit length)

5 Triangulation by Line-Plane Intersection rojected light lane P t = { : n ( q ) = 0} q n world coordinate system Comose imlicit and arametric equations v q L camera ray L = { = ql + λv} Triangulation by Line-Plane Intersection rojected light lane P t = { : n ( q ) = 0} q n world coordinate system Relace comuted λ in arametric equation v q L camera ray L = { = ql + λv}

6 Triangulation by Line-Plane Intersection rojected light lane P t = { : n ( q ) = 0} q n world coordinate system Eliminate arameter λ v q L camera ray L = { = ql + λv} Triangulation by Line-Line Intersection object being scanned lines may not intersect! rojected light ray L = { = q + λ } v q v v q L camera ray = { = q + λ } v

7 Triangulation by Line-Line Intersection = q + λ v L = { = q + λ v } L = { = q + λ v } Minimize E(λ, λ ) = dist( ) Necessary conditions v t ( ) = 0 v t ( ) = 0 q v = q + λ v v q = ( + ) / Aroximate Line-Line Intersection Midoint of segment joining arbitrary oints in the two lines Least-squares aroach = q + λv v q ( λ, ) λ = q + λv v q q v ( λ, ) λ v q Find arameters which minimize

8 Aroximate Line-Line Intersection = q + λv = q + λv Camera and laser are attached: use camera coordinate system D Laser Scanner What is the equation of the lane in the camera coordinate system?

9 Plane defined by image line and center of rojection center of rojection q n Imlicit equation of line in image coordinates L = { u : l u = 0} t t P = { : n ( q) = 0} image lane Triangulation by Laser Striing Manually or mechanically translated laser strie Per-ixel deth by ray-lane triangulation Requires accurate camera and laser lane calibration Poular solution for commercial and DIY D scanners M. J. Leotta, A. Vandergon, and G. Taubin. D Slit Scanning With Planar Constraints. Comuter Grahics Forum, 008

10 D Photograhy on Your Desk: Bouguet and Perona [ICCV 998] DIY scanner using only a camera, a halogen lam, and a stick Per-ixel deth by ray-lane triangulation Requires accurate camera and shadow lane calibration J.-Y. Bouguet and P. Perona. D hotograhy on your desk. Intl. Conf. Com. Vision, 998 D Photograhy on Your Desk: Bouguet and Perona [ICCV 998] J.-Y. Bouguet and P. Perona. D hotograhy on your desk. Intl. Conf. Com. Vision, 998

11 Assembling Your Own Scanner Parts: camera (QuickCam 9000), lam, stick, two lanar objects [~$00] Ste : Build the calibration boards (include fiducials and chessboard) Ste : Build the oint light source (remove reflector and lace in scene) Ste : Arrange the camera, light source, and calibration boards Assembling Your Own Scanner Parts: camera (QuickCam 9000), lam, stick, two lanar objects [~$00] Ste : Build the calibration boards (include fiducials and chessboard) Ste : Build the oint light source (remove reflector and lace in scene) Ste : Arrange the camera, light source, and calibration boards

12 Assembling Your Own Scanner Parts: camera (QuickCam 9000), lam, stick, two lanar objects [~$00] Ste : Build the calibration boards (include fiducials and chessboard) Ste : Build the oint light source (remove reflector and lace in scene) Ste : Arrange the camera, light source, and calibration boards Assembling Your Own Scanner Parts: camera (QuickCam 9000), lam, stick, two lanar objects [~$00] Ste : Build the calibration boards (include fiducials and chessboard) Ste : Build the oint light source (remove reflector and lace in scene) Ste : Arrange the camera, light source, and calibration boards

13 Swet-Plane Reconstruction Geometry Π l (t ) Π l (t ) Λ C ( x, y ) P Λ C ( x, y ) ΧC Demo: Data Cature P = ΛC ( x, y ) Π l (t )

14 Video Processing: Assigning Per-Pixel Shadow Thresholds Im in (x, y) = min I(x, y, t) t Im ax (x, y) = max I(x, y, t) t Convert from RGB to grayscale (for luminance-domain rocessing) Determine er-ixel minimum and maximum value over sequence Video Processing: Assigning Per-Pixel Shadow Thresholds Ishadow (x, y) = I m a x ( x ;y ) + I m i n ( x ;y ) Convert from RGB to grayscale (for luminance-domain rocessing) Determine er-ixel minimum and maximum value over sequence Evaluate er-ixel shadow threshold as average of min. and max.

15 Video Processing: Satial Shadow Edge Localization I (x,y) - I (x,y) 60 shadow column index Select region of interest on each calibration lane (occlusion-free) Estimate zero-crossings to find leading and trailing shadow boundaries Fit a line to the set of oints along each shadow boundary è Result: Best-fit D lines for each shadow edge (in image coordinates) Video Processing: Temoral Shadow Edge Localization crossing frame index for leading trailing shadow Tabulate er-ixel temoral sequence (minus shadow threshold) Estimate zero-crossings to find shadow-crossing times I(x,y,t) - I shadow (x,y) frame index è Result: Use shadow-crossing time to looku corresonding D lane frame index

16 Intrinsic Camera Calibration world coordinate system camera coordinate system ΧC 4 u ΧW ΧC = RX W + T Camera Calibration Inut intrinsic arameters Estimated Camera Lens Distortion Ma extrinsic arameters How to estimate intrinsic arameters and distortion model? focal length, skew, scale, rincial oint, and distortion coeffs.) (unknowns: Poular solution: Observe a known calibration object (Zhang [000]) Each D chessboard corner yields two constraints on the 6- unknowns But, must also find 6 extrinsic arameters er image (rotation/translation) è Result: Two or more images of a chessboard are sufficient Demo: Camera Calibration in Matlab J.-Y. Bouguet. Camera Calibration Toolbox for Matlab. htt://

17 Extrinsic Camera Calibration Χ v Χh w Πv h Πh ΧC =ΧRCv =X vr+ T h X vh + Th ΧW ΧC ΧC = RX W + T {R, T }? Demo: Maing Pixels to Otical Rays P Λ C ( x, y ) n ΧC λ = K ( RP + T ) How to ma an image ixel to an otical ray? Solution: Invert the calibrated camera rojection model But, also requires inversion of distortion model (which is non-linear) Maing imlemented in Camera Calibration Toolbox with normalize.m è Result: After calibration, ixels can be converted to otical rays

18 Shadow Plane Calibration Λ v (t ) Π l (t ) P(t ) Π l (t ) Λ h (t ) λv (t ) n(t ) Πv Πh λv (t ) λh (t ) ΧC λh (t ) P(t ) = Λ h (t ) Λ v (t ) n(t ) = Λ h (t ) Λ v (t ) Alternatives for Shadow Plane Calibration L T h B ts b ΧC Ts J.-Y. Bouguet and P. Perona. D hotograhy on your desk. Intl. Conf. Com. Vision, 998

ENGN2911I: 3D Photography and Geometry Processing Assignment 1: 3D Photography using Planar Shadows

ENGN2911I: 3D Photography and Geometry Processing Assignment 1: 3D Photography using Planar Shadows ENGN2911I: 3D Photography and Geometry Processing Assignment 1: 3D Photography using Planar Shadows Instructor: Gabriel Taubin Assignment written by: Douglas Lanman 29 January 2009 Figure 1: 3D Photography

More information

AUTOMATIC 3D SURFACE RECONSTRUCTION BY COMBINING STEREOVISION WITH THE SLIT-SCANNER APPROACH

AUTOMATIC 3D SURFACE RECONSTRUCTION BY COMBINING STEREOVISION WITH THE SLIT-SCANNER APPROACH AUTOMATIC 3D SURFACE RECONSTRUCTION BY COMBINING STEREOVISION WITH THE SLIT-SCANNER APPROACH A. Prokos 1, G. Karras 1, E. Petsa 2 1 Deartment of Surveying, National Technical University of Athens (NTUA),

More information

ENGN D Photography / Spring 2018 / SYLLABUS

ENGN D Photography / Spring 2018 / SYLLABUS ENGN 2502 3D Photography / Spring 2018 / SYLLABUS Description of the proposed course Over the last decade digital photography has entered the mainstream with inexpensive, miniaturized cameras routinely

More information

ENGN 2911 I: 3D Photography and Geometry Processing Assignment 2: Structured Light for 3D Scanning

ENGN 2911 I: 3D Photography and Geometry Processing Assignment 2: Structured Light for 3D Scanning ENGN 2911 I: 3D Photography and Geometry Processing Assignment 2: Structured Light for 3D Scanning Instructor: Gabriel Taubin Assignment written by: Douglas Lanman 26 February 2009 Figure 1: Structured

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

Structured Light. Tobias Nöll Thanks to Marc Pollefeys, David Nister and David Lowe

Structured Light. Tobias Nöll Thanks to Marc Pollefeys, David Nister and David Lowe Structured Light Tobias Nöll tobias.noell@dfki.de Thanks to Marc Pollefeys, David Nister and David Lowe Introduction Previous lecture: Dense reconstruction Dense matching of non-feature pixels Patch-based

More information

Last time: Disparity. Lecture 11: Stereo II. Last time: Triangulation. Last time: Multi-view geometry. Last time: Epipolar geometry

Last time: Disparity. Lecture 11: Stereo II. Last time: Triangulation. Last time: Multi-view geometry. Last time: Epipolar geometry Last time: Disarity Lecture 11: Stereo II Thursday, Oct 4 CS 378/395T Prof. Kristen Grauman Disarity: difference in retinal osition of same item Case of stereo rig for arallel image lanes and calibrated

More information

3D Computer Vision. Structured Light I. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light I. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light I Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

Camera Model and Calibration

Camera Model and Calibration Camera Model and Calibration Lecture-10 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

Pin Hole Cameras & Warp Functions

Pin Hole Cameras & Warp Functions Pin Hole Cameras & Warp Functions Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Pinhole Camera. Homogenous Coordinates. Planar Warp Functions. Motivation Taken from: http://img.gawkerassets.com/img/18w7i1umpzoa9jpg/original.jpg

More information

Homographies and Mosaics

Homographies and Mosaics Tri reort Homograhies and Mosaics Jeffrey Martin (jeffrey-martin.com) CS94: Image Maniulation & Comutational Photograhy with a lot of slides stolen from Alexei Efros, UC Berkeley, Fall 06 Steve Seitz and

More information

AUTOMATIC EXTRACTION OF BUILDING OUTLINE FROM HIGH RESOLUTION AERIAL IMAGERY

AUTOMATIC EXTRACTION OF BUILDING OUTLINE FROM HIGH RESOLUTION AERIAL IMAGERY AUTOMATIC EXTRACTION OF BUILDING OUTLINE FROM HIGH RESOLUTION AERIAL IMAGERY Yandong Wang EagleView Technology Cor. 5 Methodist Hill Dr., Rochester, NY 1463, the United States yandong.wang@ictometry.com

More information

P Z. parametric surface Q Z. 2nd Image T Z

P Z. parametric surface Q Z. 2nd Image T Z Direct recovery of shae from multile views: a arallax based aroach Rakesh Kumar. Anandan Keith Hanna Abstract Given two arbitrary views of a scene under central rojection, if the motion of oints on a arametric

More information

Pin Hole Cameras & Warp Functions

Pin Hole Cameras & Warp Functions Pin Hole Cameras & Warp Functions Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Pinhole Camera. Homogenous Coordinates. Planar Warp Functions. Example of SLAM for AR Taken from:

More information

Vision Review: Image Formation. Course web page:

Vision Review: Image Formation. Course web page: Vision Review: Image Formation Course web page: www.cis.udel.edu/~cer/arv September 10, 2002 Announcements Lecture on Thursday will be about Matlab; next Tuesday will be Image Processing The dates some

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia MERGING POINT CLOUDS FROM MULTIPLE KINECTS Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia Introduction What do we want to do? : Use information (point clouds) from multiple (2+) Kinects

More information

Geometric camera models and calibration

Geometric camera models and calibration Geometric camera models and calibration http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 13 Course announcements Homework 3 is out. - Due October

More information

Camera Model and Calibration. Lecture-12

Camera Model and Calibration. Lecture-12 Camera Model and Calibration Lecture-12 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

Image Formation. 2. Camera Geometry. Focal Length, Field Of View. Pinhole Camera Model. Computer Vision. Zoltan Kato

Image Formation. 2. Camera Geometry. Focal Length, Field Of View. Pinhole Camera Model. Computer Vision. Zoltan Kato Image Formation 2. amera Geometr omuter Vision oltan Kato htt://www.in.u-seged.hu/~kato seged.hu/~kato/ 3D Scene Surace Light (Energ) Source inhole Lens Imaging lane World Otics Sensor Signal amera: Sec

More information

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2009 Today From 2D to 3D using multiple views Introduction Geometry of two views Stereo matching Other applications Multiview geometry

More information

CSCI 5980: Assignment #3 Homography

CSCI 5980: Assignment #3 Homography Submission Assignment due: Feb 23 Individual assignment. Write-up submission format: a single PDF up to 3 pages (more than 3 page assignment will be automatically returned.). Code and data. Submission

More information

521493S Computer Graphics Exercise 3 (Chapters 6-8)

521493S Computer Graphics Exercise 3 (Chapters 6-8) 521493S Comuter Grahics Exercise 3 (Chaters 6-8) 1 Most grahics systems and APIs use the simle lighting and reflection models that we introduced for olygon rendering Describe the ways in which each of

More information

Robot Vision: Camera calibration

Robot Vision: Camera calibration Robot Vision: Camera calibration Ass.Prof. Friedrich Fraundorfer SS 201 1 Outline Camera calibration Cameras with lenses Properties of real lenses (distortions, focal length, field-of-view) Calibration

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

DESIGN AND EVALUATION OF A PHOTOGRAMMETRIC 3D SURFACE SCANNER

DESIGN AND EVALUATION OF A PHOTOGRAMMETRIC 3D SURFACE SCANNER DESIGN AND EVALUATION OF A PHOTOGRAMMETRIC 3D SURFACE SCANNER A. Prokos 1, G. Karras 1, L. Grammatikopoulos 2 1 Department of Surveying, National Technical University of Athens (NTUA), GR-15780 Athens,

More information

Structure from Motion

Structure from Motion 04/4/ Structure from Motion Comuter Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Many slides adated from Lana Lazebnik, Silvio Saverese, Steve Seitz his class: structure from motion Reca

More information

Tracking Under Low-light Conditions Using Background Subtraction

Tracking Under Low-light Conditions Using Background Subtraction Tracking Under Low-light Conditions Using Background Subtraction Matthew Bennink Clemson University Clemson, South Carolina Abstract A low-light tracking system was developed using background subtraction.

More information

Depth from two cameras: stereopsis

Depth from two cameras: stereopsis Depth from two cameras: stereopsis Epipolar Geometry Canonical Configuration Correspondence Matching School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture

More information

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, School of Computer Science and Communication, KTH Danica Kragic EXAM SOLUTIONS Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, 14.00 19.00 Grade table 0-25 U 26-35 3 36-45

More information

Projector Calibration for Pattern Projection Systems

Projector Calibration for Pattern Projection Systems Projector Calibration for Pattern Projection Systems I. Din *1, H. Anwar 2, I. Syed 1, H. Zafar 3, L. Hasan 3 1 Department of Electronics Engineering, Incheon National University, Incheon, South Korea.

More information

Camera Models. Acknowledgements Used slides/content with permission from

Camera Models. Acknowledgements Used slides/content with permission from Camera Models Acknowledgements Used slides/content with ermission rom Marc Polleeys or the slides Hartley and isserman: book igures rom the web Matthew Turk: or the slides Single view geometry Camera model

More information

Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models

Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models Cameras and Radiometry Last lecture in a nutshell CSE 252A Lecture 5 Conversion Euclidean -> Homogenous -> Euclidean In 2-D Euclidean -> Homogenous: (x, y) -> k (x,y,1) Homogenous -> Euclidean: (x, y,

More information

Depth from two cameras: stereopsis

Depth from two cameras: stereopsis Depth from two cameras: stereopsis Epipolar Geometry Canonical Configuration Correspondence Matching School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture

More information

Multiple Views Geometry

Multiple Views Geometry Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in January 2, 28 Epipolar geometry Fundamental geometric relationship between two perspective

More information

3D Computer Vision Camera Models

3D Computer Vision Camera Models 3D Comuter Vision Camera Models Nassir Navab based on a course given at UNC by Marc Pollefeys & the book Multile View Geometry by Hartley & Zisserman July 2, 202 chair for comuter aided medical rocedures

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Sameer Agarwal LECTURE 1 Image Formation 1.1. The geometry of image formation We begin by considering the process of image formation when a

More information

Perception of Shape from Shading

Perception of Shape from Shading 1 Percetion of Shae from Shading Continuous image brightness variation due to shae variations is called shading Our ercetion of shae deends on shading Circular region on left is erceived as a flat disk

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Jia-Bin Huang, Virginia Tech Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X x

More information

Agenda. Rotations. Camera models. Camera calibration. Homographies

Agenda. Rotations. Camera models. Camera calibration. Homographies Agenda Rotations Camera models Camera calibration Homographies D Rotations R Y = Z r r r r r r r r r Y Z Think of as change of basis where ri = r(i,:) are orthonormal basis vectors r rotated coordinate

More information

L2 Data Acquisition. Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods

L2 Data Acquisition. Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods L2 Data Acquisition Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods 1 Coordinate Measurement Machine Touch based Slow Sparse Data Complex planning Accurate 2

More information

An Efficient and Highly Accurate Technique for Periodic Planar Scanner Calibration with the Antenna Under Test in Situ

An Efficient and Highly Accurate Technique for Periodic Planar Scanner Calibration with the Antenna Under Test in Situ An Efficient and Highly Accurate echnique for Periodic Planar Scanner Calibration with the Antenna Under est in Situ Scott Pierce I echnologies 1125 Satellite Boulevard, Suite 100 Suwanee, Georgia 30024

More information

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: ,

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: , 3D Sensing and Reconstruction Readings: Ch 12: 12.5-6, Ch 13: 13.1-3, 13.9.4 Perspective Geometry Camera Model Stereo Triangulation 3D Reconstruction by Space Carving 3D Shape from X means getting 3D coordinates

More information

Surround Structured Lighting for Full Object Scanning

Surround Structured Lighting for Full Object Scanning Surround Structured Lighting for Full Object Scanning Douglas Lanman, Daniel Crispell, and Gabriel Taubin Brown University, Dept. of Engineering August 21, 2007 1 Outline Introduction and Related Work

More information

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman Stereo 11/02/2012 CS129, Brown James Hays Slides by Kristen Grauman Multiple views Multi-view geometry, matching, invariant features, stereo vision Lowe Hartley and Zisserman Why multiple views? Structure

More information

CS201 Computer Vision Camera Geometry

CS201 Computer Vision Camera Geometry CS201 Computer Vision Camera Geometry John Magee 25 November, 2014 Slides Courtesy of: Diane H. Theriault (deht@bu.edu) Question of the Day: How can we represent the relationships between cameras and the

More information

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah Camera Models and Image Formation Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu Reference Most slides are adapted from the following notes: Some lecture notes on geometric

More information

More Single View Geometry

More Single View Geometry More Single View Geometry 5-463: Rendering and Image rocessing Alexei Efros with a lot of slides stolen from Steve Seitz and Antonio Criminisi Quiz! Image B Image A Image C How can we model this scene?.

More information

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah Camera Models and Image Formation Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu VisualFunHouse.com 3D Street Art Image courtesy: Julian Beaver (VisualFunHouse.com) 3D

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Shiv Ram Dubey, IIIT Sri City Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X

More information

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy 1 Machine vision Summary # 11: Stereo vision and epipolar geometry STEREO VISION The goal of stereo vision is to use two cameras to capture 3D scenes. There are two important problems in stereo vision:

More information

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important.

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important. Homogeneous Coordinates Overall scaling is NOT important. CSED44:Introduction to Computer Vision (207F) Lecture8: Camera Models Bohyung Han CSE, POSTECH bhhan@postech.ac.kr (",, ) ()", ), )) ) 0 It is

More information

CS 450: COMPUTER GRAPHICS 2D TRANSFORMATIONS SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS 2D TRANSFORMATIONS SPRING 2016 DR. MICHAEL J. REALE CS 45: COMUTER GRAHICS 2D TRANSFORMATIONS SRING 26 DR. MICHAEL J. REALE INTRODUCTION Now that we hae some linear algebra under our resectie belts, we can start ug it in grahics! So far, for each rimitie,

More information

Introduction to 3D Machine Vision

Introduction to 3D Machine Vision Introduction to 3D Machine Vision 1 Many methods for 3D machine vision Use Triangulation (Geometry) to Determine the Depth of an Object By Different Methods: Single Line Laser Scan Stereo Triangulation

More information

Pattern Feature Detection for Camera Calibration Using Circular Sample

Pattern Feature Detection for Camera Calibration Using Circular Sample Pattern Feature Detection for Camera Calibration Using Circular Sample Dong-Won Shin and Yo-Sung Ho (&) Gwangju Institute of Science and Technology (GIST), 13 Cheomdan-gwagiro, Buk-gu, Gwangju 500-71,

More information

Remember: The equation of projection. Imaging Geometry 1. Basic Geometric Coordinate Transforms. C306 Martin Jagersand

Remember: The equation of projection. Imaging Geometry 1. Basic Geometric Coordinate Transforms. C306 Martin Jagersand Imaging Geometr 1. Basic Geometric Coordinate Transorms emember: The equation o rojection Cartesian coordinates: (,, z) ( z, z ) C36 Martin Jagersand How do we develo a consistent mathematical ramework

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely, Zhengqi Li Stereo Single image stereogram, by Niklas Een Mark Twain at Pool Table", no date, UCR Museum of Photography Stereo Given two images from different viewpoints

More information

Grouping of Patches in Progressive Radiosity

Grouping of Patches in Progressive Radiosity Grouing of Patches in Progressive Radiosity Arjan J.F. Kok * Abstract The radiosity method can be imroved by (adatively) grouing small neighboring atches into grous. Comutations normally done for searate

More information

Stereo Vision. MAN-522 Computer Vision

Stereo Vision. MAN-522 Computer Vision Stereo Vision MAN-522 Computer Vision What is the goal of stereo vision? The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in

More information

3D shape from the structure of pencils of planes and geometric constraints

3D shape from the structure of pencils of planes and geometric constraints 3D shape from the structure of pencils of planes and geometric constraints Paper ID: 691 Abstract. Active stereo systems using structured light has been used as practical solutions for 3D measurements.

More information

Perspective Projection [2 pts]

Perspective Projection [2 pts] Instructions: CSE252a Computer Vision Assignment 1 Instructor: Ben Ochoa Due: Thursday, October 23, 11:59 PM Submit your assignment electronically by email to iskwak+252a@cs.ucsd.edu with the subject line

More information

Robotics - Single view, Epipolar geometry, Image Features. Simone Ceriani

Robotics - Single view, Epipolar geometry, Image Features. Simone Ceriani Robotics - Single view, Epipolar geometry, Image Features Simone Ceriani ceriani@elet.polimi.it Dipartimento di Elettronica e Informazione Politecnico di Milano 12 April 2012 2/67 Outline 1 Pin Hole Model

More information

Image Transformations & Camera Calibration. Mašinska vizija, 2018.

Image Transformations & Camera Calibration. Mašinska vizija, 2018. Image Transformations & Camera Calibration Mašinska vizija, 2018. Image transformations What ve we learnt so far? Example 1 resize and rotate Open warp_affine_template.cpp Perform simple resize

More information

Calibration Issues. Linear Models. Interest Point Detection + Description Algorithms

Calibration Issues. Linear Models. Interest Point Detection + Description Algorithms Calibration Issues Linear Models Homograhy estimation H Eiolar geometry F, E Interior camera arameters K Eterior camera arameters R,t Camera ose R,t h 2 H h 3 h 2 3 4 y ~ 2 22 23 24 3 32 33 34 Interest

More information

Dr Pavan Chakraborty IIIT-Allahabad

Dr Pavan Chakraborty IIIT-Allahabad GVC-43 Lecture - 5 Ref: Donald Hearn & M. Pauline Baker, Comuter Grahics Foley, van Dam, Feiner & Hughes, Comuter Grahics Princiles & Practice Dr Pavan Chakraborty IIIT-Allahabad Summary of line drawing

More information

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation.

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation. 3D Sensing 3D Shape from X Perspective Geometry Camera Model Camera Calibration General Stereo Triangulation 3D Reconstruction 3D Shape from X shading silhouette texture stereo light striping motion mainly

More information

Surround Structured Lighting for Full Object Scanning

Surround Structured Lighting for Full Object Scanning Surround Structured Lighting for Full Object Scanning Douglas Lanman, Daniel Crispell, and Gabriel Taubin Department of Engineering, Brown University {dlanman,daniel crispell,taubin}@brown.edu Abstract

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

PHOTOGRAMMETRIC TECHNIQUES FOR ROAD SURFACE ANALYSIS

PHOTOGRAMMETRIC TECHNIQUES FOR ROAD SURFACE ANALYSIS The International Archives of the Photogrammetry, Remote Sensing and Satial Information Sciences, Volume XLI-B5, 6 XXIII ISPRS Congress, 9 July 6, Prague, Czech Reublic PHOTOGRAMMETRIC TECHNIQUES FOR ROAD

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

INFO - H Pattern recognition and image analysis. Vision

INFO - H Pattern recognition and image analysis. Vision INFO - H - 501 Pattern recognition and image analysis Vision Stereovision digital elevation model obstacle avoidance 3D model scanner human machine interface (HMI)... Stereovision image of the same point

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry CS 6320, Spring 2013 Guest Lecture Marcel Prastawa adapted from Pollefeys, Shah, and Zisserman Single view computer vision Projective actions of cameras Camera callibration Photometric

More information

EECS 4330/7330 Introduction to Mechatronics and Robotic Vision, Fall Lab 1. Camera Calibration

EECS 4330/7330 Introduction to Mechatronics and Robotic Vision, Fall Lab 1. Camera Calibration 1 Lab 1 Camera Calibration Objective In this experiment, students will use stereo cameras, an image acquisition program and camera calibration algorithms to achieve the following goals: 1. Develop a procedure

More information

11/2/2010. In the last lecture. Monte-Carlo Ray Tracing : Path Tracing. Today. Shadow ray towards the light at each vertex. Path Tracing : algorithm

11/2/2010. In the last lecture. Monte-Carlo Ray Tracing : Path Tracing. Today. Shadow ray towards the light at each vertex. Path Tracing : algorithm Comuter Grahics Global Illumination: Monte-Carlo Ray Tracing and Photon Maing Lecture 11 In the last lecture We did ray tracing and radiosity Ray tracing is good to render secular objects but cannot handle

More information

Agenda. Rotations. Camera calibration. Homography. Ransac

Agenda. Rotations. Camera calibration. Homography. Ransac Agenda Rotations Camera calibration Homography Ransac Geometric Transformations y x Transformation Matrix # DoF Preserves Icon translation rigid (Euclidean) similarity affine projective h I t h R t h sr

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

Lecture 10: Multi view geometry

Lecture 10: Multi view geometry Lecture 10: Multi view geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

Global Illumination with Photon Map Compensation

Global Illumination with Photon Map Compensation Institut für Comutergrahik und Algorithmen Technische Universität Wien Karlslatz 13/186/2 A-1040 Wien AUSTRIA Tel: +43 (1) 58801-18688 Fax: +43 (1) 58801-18698 Institute of Comuter Grahics and Algorithms

More information

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo II CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Camera parameters A camera is described by several parameters Translation T of the optical center from the origin of world

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe : Martin Stiaszny and Dana Qu LECTURE 0 Camera Calibration 0.. Introduction Just like the mythical frictionless plane, in real life we will

More information

Structured light 3D reconstruction

Structured light 3D reconstruction Structured light 3D reconstruction Reconstruction pipeline and industrial applications rodola@dsi.unive.it 11/05/2010 3D Reconstruction 3D reconstruction is the process of capturing the shape and appearance

More information

Stereo Observation Models

Stereo Observation Models Stereo Observation Models Gabe Sibley June 16, 2003 Abstract This technical report describes general stereo vision triangulation and linearized error modeling. 0.1 Standard Model Equations If the relative

More information

Lecture 8 Active stereo & Volumetric stereo

Lecture 8 Active stereo & Volumetric stereo Lecture 8 Active stereo & Volumetric stereo In this lecture, we ll first discuss another framework for describing stereo systems called active stereo, and then introduce the problem of volumetric stereo,

More information

Epipolar Geometry and the Essential Matrix

Epipolar Geometry and the Essential Matrix Epipolar Geometry and the Essential Matrix Carlo Tomasi The epipolar geometry of a pair of cameras expresses the fundamental relationship between any two corresponding points in the two image planes, and

More information

CS 229 Final Project: Single Image Depth Estimation From Predicted Semantic Labels

CS 229 Final Project: Single Image Depth Estimation From Predicted Semantic Labels CS 229 Final Project: Single Image Deth Estimation From Predicted Semantic Labels Beyang Liu beyangl@cs.stanford.edu Stehen Gould sgould@stanford.edu Prof. Dahne Koller koller@cs.stanford.edu December

More information

Ellipse Centroid Targeting in 3D Using Machine Vision Calibration and Triangulation (Inspired by NIST Pixel Probe)

Ellipse Centroid Targeting in 3D Using Machine Vision Calibration and Triangulation (Inspired by NIST Pixel Probe) Ellipse Centroid Targeting in 3D Using Machine Vision Calibration and Triangulation (Inspired by NIST Pixel Probe) Final Project EENG 510 December 7, 2015 Steven Borenstein 1 Background NIST Pixel Probe[1]

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Q K 1 u v 1 What is pose estimation?

More information

Two-view geometry Computer Vision Spring 2018, Lecture 10

Two-view geometry Computer Vision Spring 2018, Lecture 10 Two-view geometry http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 10 Course announcements Homework 2 is due on February 23 rd. - Any questions about the homework? - How many of

More information

Chapters 1 7: Overview

Chapters 1 7: Overview Chapters 1 7: Overview Chapter 1: Introduction Chapters 2 4: Data acquisition Chapters 5 7: Data manipulation Chapter 5: Vertical imagery Chapter 6: Image coordinate measurements and refinements Chapter

More information

Mosaics. Today s Readings

Mosaics. Today s Readings Mosaics VR Seattle: http://www.vrseattle.com/ Full screen panoramas (cubic): http://www.panoramas.dk/ Mars: http://www.panoramas.dk/fullscreen3/f2_mars97.html Today s Readings Szeliski and Shum paper (sections

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Today: dense 3D reconstruction The matching problem

More information

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz Epipolar Geometry Prof. D. Stricker With slides from A. Zisserman, S. Lazebnik, Seitz 1 Outline 1. Short introduction: points and lines 2. Two views geometry: Epipolar geometry Relation point/line in two

More information

Project Title: Welding Machine Monitoring System Phase II. Name of PI: Prof. Kenneth K.M. LAM (EIE) Progress / Achievement: (with photos, if any)

Project Title: Welding Machine Monitoring System Phase II. Name of PI: Prof. Kenneth K.M. LAM (EIE) Progress / Achievement: (with photos, if any) Address: Hong Kong Polytechnic University, Phase 8, Hung Hom, Kowloon, Hong Kong. Telephone: (852) 3400 8441 Email: cnerc.steel@polyu.edu.hk Website: https://www.polyu.edu.hk/cnerc-steel/ Project Title:

More information

3D Camera for a Cellular Phone. Deborah Cohen & Dani Voitsechov Supervisor : Raja Giryes 2010/11

3D Camera for a Cellular Phone. Deborah Cohen & Dani Voitsechov Supervisor : Raja Giryes 2010/11 3D Camera for a Cellular Phone Deborah Cohen & Dani Voitsechov Supervisor : Raja Giryes 2010/11 1 Contents Why 3D? Project definition and goals Projective model of a structured light system Algorithm (3

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Presentation Outline 1 2 3 Sample Problem

More information

Camera models and calibration

Camera models and calibration Camera models and calibration Read tutorial chapter 2 and 3. http://www.cs.unc.edu/~marc/tutorial/ Szeliski s book pp.29-73 Schedule (tentative) 2 # date topic Sep.8 Introduction and geometry 2 Sep.25

More information

C / 35. C18 Computer Vision. David Murray. dwm/courses/4cv.

C / 35. C18 Computer Vision. David Murray.   dwm/courses/4cv. C18 2015 1 / 35 C18 Computer Vision David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/4cv Michaelmas 2015 C18 2015 2 / 35 Computer Vision: This time... 1. Introduction; imaging geometry;

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Stereo Vision 2 Inferring 3D from 2D Model based pose estimation single (calibrated) camera > Can

More information