Structure from Motion

Size: px
Start display at page:

Download "Structure from Motion"

Transcription

1 04/4/ Structure from Motion Comuter Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Many slides adated from Lana Lazebnik, Silvio Saverese, Steve Seitz

2 his class: structure from motion Reca of eiolar geometry Deth from two views Projective structure from motion Affine structure from motion

3 Reca: Eioles Point in left image corresonds to eiolar line l in right image Eiolar line asses through the eiole (the intersection of the cameras baseline with the image lane C C

4 Reca: Fundamental Matri Fundamental matri mas from a oint in one image to a line in the other If and corresond to the same 3d oint X:

5 Reca: Automatically Relating Projections Assume we have matched oints with outliers Homograhy (No ranslation) Corresondence Relation ' H ' H. Normalize image coordinates ~ ~ 2. RANSAC with 4 oints 3. De-normalize: 0 H ~ H Fundamental Matri (ranslation) Corresondence Relation F 0. Normalize image coordinates ~ ~ 2. RANSAC with 8 oints 3. Enforce det F by SVD ~ 4. De-normalize: 0 F ~ F

6 Reca We can get rojection matrices P and P u to a rojective ambiguity P I 0 P e F e e F 0 See HZ Code: function P = vgg_p_from_f(f) [U,S,V] = svd(f); e = U(:,3); P = [-vgg_contres(e)*f e];

7 Reca Fundamental matri song

8 riangulation: Linear Solution Generally, rays C and C will not eactly intersect Can solve via SVD, finding a least squares solution to a system of equations X ' 0 X P 0 PX AX 0 v u v u A Further reading: HZ

9 riangulation: Linear Solution Given P, P,,. Precondition oints and rojection matrices 2. Create matri A 3. [U, S, V] = svd(a) 4. X = V(:, end) Pros and Cons Works for any number of corresonding images Not rojectively invariant v u v u 3 2 P v u v u A 3 2 P Code: htt://

10 riangulation: Non-linear Solution Minimize rojected error while satisfying F=0 Solution is a 6-degree olynomial of t, minimizing Further reading: HZ. 38

11 Projective structure from motion Given: m images of n fied 3D oints ij = P i X j, i =,, m, j =,, n Problem: estimate m rojection matrices P i and n 3D oints X j from the mn corresonding oints ij X j j 3j P 2j Slides from Lana Lazebnik P 2 P 3

12 Projective structure from motion Given: m images of n fied 3D oints ij = P i X j, i =,, m, j =,, n Problem: estimate m rojection matrices P i and n 3D oints X j from the mn corresonding oints ij With no calibration info, cameras and oints can only be recovered u to a 44 rojective transformation Q: X QX, P PQ - We can solve for structure and motion when 2mn >= m +3n 5 For two cameras, at least 7 oints are needed

13 cameras Sequential structure from motion Initialize motion from two images using fundamental matri Initialize structure by triangulation oints For each additional view: Determine rojection matri of new camera using all the known 3D oints that are visible in its image calibration

14 cameras Sequential structure from motion Initialize motion from two images using fundamental matri Initialize structure by triangulation oints For each additional view: Determine rojection matri of new camera using all the known 3D oints that are visible in its image calibration Refine and etend structure: comute new 3D oints, re-otimize eisting oints that are also seen by this camera triangulation

15 cameras Sequential structure from motion Initialize motion from two images using fundamental matri Initialize structure by triangulation oints For each additional view: Determine rojection matri of new camera using all the known 3D oints that are visible in its image calibration Refine and etend structure: comute new 3D oints, re-otimize eisting oints that are also seen by this camera triangulation Refine structure and motion: bundle adjustment

16 Bundle adjustment Non-linear method for refining structure and motion Minimizing rerojection error m E( P, X) D n i j 2, P X ij i j X j P X j j 3j P P 2 X j 2j P 3 X j P 2 P 3

17 Auto-calibration Auto-calibration: determining intrinsic camera arameters directly from uncalibrated images For eamle, we can use the constraint that a moving camera has a fied intrinsic matri Comute initial rojective reconstruction and find 3D rojective transformation matri Q such that all camera matrices are in the form P i = K [R i t i ] Can use constraints on the form of the calibration matri, such as zero skew

18 Summary so far From two images, we can: Recover fundamental matri F Recover canonical cameras P and P from F Estimate 3D ositions (if K is known) that corresond to each iel For a moving camera, we can: Initialize by comuting F, P, X for two images Sequentially add new images, comuting new P, refining X, and adding oints Auto-calibrate assuming fied calibration matri to ugrade to similarity transform

19 Photo synth Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Eloring hoto collections in 3D," SIGGRAPH 2006 htt://hotosynth.net/

20 3D from multile images Building Rome in a Day: Agarwal et al. 2009

21 Structure from motion under orthograhic rojection 3D Reconstruction of a Rotating Ping-Pong Ball Reasonable choice when Change in deth of oints in scene is much smaller than distance to camera Cameras do not move towards or away from the scene C. omasi and. Kanade. Shae and motion from image streams under orthograhy: A factorization method. IJCV, 9(2):37-54, November 992.

22 Affine rojection for rotated/translated camera a 2 a X

23 Affine structure from motion Affine rojection is a linear maing + translation in inhomogeneous coordinates y a a 2 a a 2 22 a a 3 23 X t Y t Z y AX t a 2 a X Projection of world origin. We are given corresonding 2D oints () in several frames 2. We want to estimate the 3D oints (X) and the affine arameters of each camera (A)

24 Ste : Simlify by getting rid of t: shift to centroid of oints for each camera n k ik ij ij n t AX j i n k k j i n k i k i i j i n k ik ij n n n A X X X A t A X t A X j i ij X A 2d normalized oint (observed) 3d normalized oint Linear (affine) maing

25 Suose we know 3D oints and affine camera arameters then, we can comute the observed 2d ositions of each oint mn m m n n n m X X X A A A Camera Parameters (2m3) 3D Points (3n) 2D Image Points (2mn)

26 What if we instead observe corresonding 2d image oints? Can we recover the camera arameters and 3d oints? cameras (2 m) oints (n) n m mn m m n n X X X A A A D ? What rank is the matri of 2D oints?

27 Factorizing the measurement matri AX Source: M. Hebert

28 Factorizing the measurement matri Singular value decomosition of D: Source: M. Hebert

29 Factorizing the measurement matri Singular value decomosition of D: Source: M. Hebert

30 Factorizing the measurement matri Obtaining a factorization from SVD: Source: M. Hebert

31 Factorizing the measurement matri Obtaining a factorization from SVD: A ~ X ~ Source: M. Hebert

32 Affine ambiguity A ~ X ~ S he decomosition is not unique. We get the same D by using any 3 3 matri C and alying the transformations A AC, X C - X hat is because we have only an affine transformation and we have not enforced any Euclidean constraints (like forcing the image aes to be erendicular, for eamle) Source: M. Hebert

33 Eliminating the affine ambiguity Orthograhic: image aes are erendicular and of unit length a a 2 = 0 a 2 = a 2 2 = a 2 a X Source: M. Hebert

34 Solve for orthograhic constraints hree equations for each image i ~ a ~ a ~ a ~ a ~ a ~ a icc i i2cc i2 icc i2 0 where ~ A i ~ a ~ a i i2 Solve for L = CC Recover C from L by Cholesky decomosition: L = CC ~ Udate A and X: A = AC, X = C - ~ X

35 Algorithm summary Given: m images and n tracked features ij For each image i, center the feature coordinates Construct a 2m n measurement matri D: Column j contains the rojection of oint j in all views Row i contains one coordinate of the rojections of all the n oints in image i Factorize D: Comute SVD: D = U W V Create U 3 by taking the first 3 columns of U Create V 3 by taking the first 3 columns of V Create W 3 by taking the uer left 3 3 block of W Create the motion (affine) and shae (3D) matrices: A = U 3 W 3 ½ and X = W 3 ½ V 3 Eliminate affine ambiguity Source: M. Hebert

36 Dealing with missing data So far, we have assumed that all oints are visible in all views In reality, the measurement matri tyically looks something like this: cameras oints One solution: solve using a dense submatri of visible oints Iteratively add new cameras

37 A nice short elanation Class notes from Lischinksi and Gruber htt://

38 Reconstruction results (your HW 4) C. omasi and. Kanade. Shae and motion from image streams under orthograhy: A factorization method. IJCV, 9(2):37-54, November 992.

39 HW 4: Problem 2 summary. Detect interest oints (e.g., Harris) 2 I ( D) I I y ( D) ( I, D) g( I ) 2 I I y ( D) I y ( D). Image derivatives I I y det M trace M Square of derivatives 3. Gaussian filter g( I ) I 2 I y 2 I I y g(i 2 ) g(i y2 ) g(i I y ) 4. Cornerness function both eigenvalues are strong 2 har det[ (, )] [trace( (, )) ] g I D ( I ) g( I y ) [ g( I I y)] [ g( I ) g( I y I D )] 2 5. Non-maima suression 43 har

40 HW 4: Problem 2 summary 2. Corresondence via Lucas-Kanade tracking a) Initialize (,y ) = (,y) b) Comute (u,v) by Original (,y) osition I t = I(, y, t+) - I(, y, t) 2 nd moment matri for feature atch in first image dislacement c) Shift window by (u, v): = +u; y =y +v; d) Recalculate I t e) Reeat stes 2-4 until small change Use interolation for subiel values

41 HW 4: Problem 2 summary 3. Get Affine camera matri and 3D oints using omasi-kanade factorization Solve for orthograhic constraints

42 HW 4: Problem 2 summary is Helful matlab functions: inter2, meshgrid, ordfilt2 (for getting local maimum), svd, chol When selecting interest oints, must choose aroriate threshold on Harris criteria or the smaller eigenvalue, or choose to N oints Vectorize to make tracking fast (inter2 will be the bottleneck) If you get stuck on one art, can the included intermediate results Get tracking working on one oint for a few frames before trying to get it working for all oints Etra roblems Either for fun, or if you weren t able to comlete earlier homeworks Affine verification Missing track comletion Otical flow Coarse-to-fine tracking

43 See you net week Object tracking Action recognition

Structure from Motion

Structure from Motion 11/18/11 Structure from Motion Computer Vision CS 143, Brown James Hays Many slides adapted from Derek Hoiem, Lana Lazebnik, Silvio Saverese, Steve Seitz, and Martial Hebert This class: structure from

More information

Structure from Motion

Structure from Motion /8/ Structure from Motion Computer Vision CS 43, Brown James Hays Many slides adapted from Derek Hoiem, Lana Lazebnik, Silvio Saverese, Steve Seitz, and Martial Hebert This class: structure from motion

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

Structure from Motion CSC 767

Structure from Motion CSC 767 Structure from Motion CSC 767 Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R,t R 2,t 2 R 3,t 3 Camera??

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t R 2 3,t 3 Camera 1 Camera

More information

Structure from Motion

Structure from Motion Structure from Motion Computer Vision Jia-Bin Huang, Virginia Tech Many slides from S. Seitz, N Snavely, and D. Hoiem Administrative stuffs HW 3 due 11:55 PM, Oct 17 (Wed) Submit your alignment results!

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

C280, Computer Vision

C280, Computer Vision C280, Computer Vision Prof. Trevor Darrell trevor@eecs.berkeley.edu Lecture 11: Structure from Motion Roadmap Previous: Image formation, filtering, local features, (Texture) Tues: Feature-based Alignment

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. Session 4 Affine Structure from Motion Mani Golparvar-Fard Department of Civil and Environmental Engineering 329D, Newmark Civil Engineering

More information

CS 532: 3D Computer Vision 7 th Set of Notes

CS 532: 3D Computer Vision 7 th Set of Notes 1 CS 532: 3D Computer Vision 7 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Logistics No class on October

More information

CS231M Mobile Computer Vision Structure from motion

CS231M Mobile Computer Vision Structure from motion CS231M Mobile Computer Vision Structure from motion - Cameras - Epipolar geometry - Structure from motion Pinhole camera Pinhole perspective projection f o f = focal length o = center of the camera z y

More information

Structure from Motion

Structure from Motion Structure from Motion Outline Bundle Adjustment Ambguities in Reconstruction Affine Factorization Extensions Structure from motion Recover both 3D scene geoemetry and camera positions SLAM: Simultaneous

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Jia-Bin Huang, Virginia Tech Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X x

More information

Calibration Issues. Linear Models. Interest Point Detection + Description Algorithms

Calibration Issues. Linear Models. Interest Point Detection + Description Algorithms Calibration Issues Linear Models Homograhy estimation H Eiolar geometry F, E Interior camera arameters K Eterior camera arameters R,t Camera ose R,t h 2 H h 3 h 2 3 4 y ~ 2 22 23 24 3 32 33 34 Interest

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Shiv Ram Dubey, IIIT Sri City Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X

More information

Last time: Disparity. Lecture 11: Stereo II. Last time: Triangulation. Last time: Multi-view geometry. Last time: Epipolar geometry

Last time: Disparity. Lecture 11: Stereo II. Last time: Triangulation. Last time: Multi-view geometry. Last time: Epipolar geometry Last time: Disarity Lecture 11: Stereo II Thursday, Oct 4 CS 378/395T Prof. Kristen Grauman Disarity: difference in retinal osition of same item Case of stereo rig for arallel image lanes and calibrated

More information

Lecture 10: Multi view geometry

Lecture 10: Multi view geometry Lecture 10: Multi view geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision CS 1674: Intro to Computer Vision Epipolar Geometry and Stereo Vision Prof. Adriana Kovashka University of Pittsburgh October 5, 2016 Announcement Please send me three topics you want me to review next

More information

Camera Models. Acknowledgements Used slides/content with permission from

Camera Models. Acknowledgements Used slides/content with permission from Camera Models Acknowledgements Used slides/content with ermission rom Marc Polleeys or the slides Hartley and isserman: book igures rom the web Matthew Turk: or the slides Single view geometry Camera model

More information

Lecture 10: Multi-view geometry

Lecture 10: Multi-view geometry Lecture 10: Multi-view geometry Professor Stanford Vision Lab 1 What we will learn today? Review for stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

Undergrad HTAs / TAs. Help me make the course better! HTA deadline today (! sorry) TA deadline March 21 st, opens March 15th

Undergrad HTAs / TAs. Help me make the course better! HTA deadline today (! sorry) TA deadline March 21 st, opens March 15th Undergrad HTAs / TAs Help me make the course better! HTA deadline today (! sorry) TA deadline March 2 st, opens March 5th Project 2 Well done. Open ended parts, lots of opportunity for mistakes. Real implementation

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision CS 1699: Intro to Computer Vision Epipolar Geometry and Stereo Vision Prof. Adriana Kovashka University of Pittsburgh October 8, 2015 Today Review Projective transforms Image stitching (homography) Epipolar

More information

3D Computer Vision Camera Models

3D Computer Vision Camera Models 3D Comuter Vision Camera Models Nassir Navab based on a course given at UNC by Marc Pollefeys & the book Multile View Geometry by Hartley & Zisserman July 2, 202 chair for comuter aided medical rocedures

More information

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10 Structure from Motion CSE 152 Lecture 10 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 8: Structure from Motion Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley

More information

Image Formation. 2. Camera Geometry. Focal Length, Field Of View. Pinhole Camera Model. Computer Vision. Zoltan Kato

Image Formation. 2. Camera Geometry. Focal Length, Field Of View. Pinhole Camera Model. Computer Vision. Zoltan Kato Image Formation 2. amera Geometr omuter Vision oltan Kato htt://www.in.u-seged.hu/~kato seged.hu/~kato/ 3D Scene Surace Light (Energ) Source inhole Lens Imaging lane World Otics Sensor Signal amera: Sec

More information

Camera Geometry II. COS 429 Princeton University

Camera Geometry II. COS 429 Princeton University Camera Geometry II COS 429 Princeton University Outline Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence

More information

Step-by-Step Model Buidling

Step-by-Step Model Buidling Step-by-Step Model Buidling Review Feature selection Feature selection Feature correspondence Camera Calibration Euclidean Reconstruction Landing Augmented Reality Vision Based Control Sparse Structure

More information

Image correspondences and structure from motion

Image correspondences and structure from motion Image correspondences and structure from motion http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 20 Course announcements Homework 5 posted.

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who 1 in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

CS 1674: Intro to Computer Vision. Midterm Review. Prof. Adriana Kovashka University of Pittsburgh October 10, 2016

CS 1674: Intro to Computer Vision. Midterm Review. Prof. Adriana Kovashka University of Pittsburgh October 10, 2016 CS 1674: Intro to Computer Vision Midterm Review Prof. Adriana Kovashka University of Pittsburgh October 10, 2016 Reminders The midterm exam is in class on this coming Wednesday There will be no make-up

More information

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix F Fundamental

More information

Last lecture. Passive Stereo Spacetime Stereo

Last lecture. Passive Stereo Spacetime Stereo Last lecture Passive Stereo Spacetime Stereo Today Structure from Motion: Given pixel correspondences, how to compute 3D structure and camera motion? Slides stolen from Prof Yungyu Chuang Epipolar geometry

More information

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Carsten Rother 09/12/2013 Computer Vision I: Multi-View 3D reconstruction Roadmap this lecture Computer Vision I: Multi-View

More information

Lecture 6 Stereo Systems Multi- view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-24-Jan-15

Lecture 6 Stereo Systems Multi- view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-24-Jan-15 Lecture 6 Stereo Systems Multi- view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-24-Jan-15 Lecture 6 Stereo Systems Multi- view geometry Stereo systems

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Vision Lecture 2 Motion and Optical Flow Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de 28.1.216 Man slides adapted from K. Grauman, S. Seitz, R. Szeliski,

More information

Lecture 9: Epipolar Geometry

Lecture 9: Epipolar Geometry Lecture 9: Epipolar Geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Why is stereo useful? Epipolar constraints Essential and fundamental matrix Estimating F (Problem Set 2

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

Homographies and Mosaics

Homographies and Mosaics Tri reort Homograhies and Mosaics Jeffrey Martin (jeffrey-martin.com) CS94: Image Maniulation & Comutational Photograhy with a lot of slides stolen from Alexei Efros, UC Berkeley, Fall 06 Steve Seitz and

More information

Homographies and RANSAC

Homographies and RANSAC Homographies and RANSAC Computer vision 6.869 Bill Freeman and Antonio Torralba March 30, 2011 Homographies and RANSAC Homographies RANSAC Building panoramas Phototourism 2 Depth-based ambiguity of position

More information

Midterm Wed. Local features: detection and description. Today. Last time. Local features: main components. Goal: interest operator repeatability

Midterm Wed. Local features: detection and description. Today. Last time. Local features: main components. Goal: interest operator repeatability Midterm Wed. Local features: detection and description Monday March 7 Prof. UT Austin Covers material up until 3/1 Solutions to practice eam handed out today Bring a 8.5 11 sheet of notes if you want Review

More information

CS 450: COMPUTER GRAPHICS 2D TRANSFORMATIONS SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS 2D TRANSFORMATIONS SPRING 2016 DR. MICHAEL J. REALE CS 45: COMUTER GRAHICS 2D TRANSFORMATIONS SRING 26 DR. MICHAEL J. REALE INTRODUCTION Now that we hae some linear algebra under our resectie belts, we can start ug it in grahics! So far, for each rimitie,

More information

3D Reconstruction from Two Views

3D Reconstruction from Two Views 3D Reconstruction from Two Views Huy Bui UIUC huybui1@illinois.edu Yiyi Huang UIUC huang85@illinois.edu Abstract In this project, we study a method to reconstruct a 3D scene from two views. First, we extract

More information

Lecture 5 Epipolar Geometry

Lecture 5 Epipolar Geometry Lecture 5 Epipolar Geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 5-24-Jan-18 Lecture 5 Epipolar Geometry Why is stereo useful? Epipolar constraints Essential

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Local features: detection and description. Local invariant features

Local features: detection and description. Local invariant features Local features: detection and description Local invariant features Detection of interest points Harris corner detection Scale invariant blob detection: LoG Description of local patches SIFT : Histograms

More information

Remember: The equation of projection. Imaging Geometry 1. Basic Geometric Coordinate Transforms. C306 Martin Jagersand

Remember: The equation of projection. Imaging Geometry 1. Basic Geometric Coordinate Transforms. C306 Martin Jagersand Imaging Geometr 1. Basic Geometric Coordinate Transorms emember: The equation o rojection Cartesian coordinates: (,, z) ( z, z ) C36 Martin Jagersand How do we develo a consistent mathematical ramework

More information

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017 CS 277: Intro to Computer Vision Multiple Views Prof. Adriana Kovashka Universit of Pittsburgh March 4, 27 Plan for toda Affine and projective image transformations Homographies and image mosaics Stereo

More information

Lecture 8.2 Structure from Motion. Thomas Opsahl

Lecture 8.2 Structure from Motion. Thomas Opsahl Lecture 8.2 Structure from Motion Thomas Opsahl More-than-two-view geometry Correspondences (matching) More views enables us to reveal and remove more mismatches than we can do in the two-view case More

More information

EECS 442: Final Project

EECS 442: Final Project EECS 442: Final Project Structure From Motion Kevin Choi Robotics Ismail El Houcheimi Robotics Yih-Jye Jeffrey Hsu Robotics Abstract In this paper, we summarize the method, and results of our projective

More information

Projective Geometry and Camera Models

Projective Geometry and Camera Models /2/ Projective Geometry and Camera Models Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Note about HW Out before next Tues Prob: covered today, Tues Prob2: covered next Thurs Prob3:

More information

Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29,

Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29, Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29, 1209-1217. CS 4495 Computer Vision A. Bobick Sparse to Dense Correspodence Building Rome in

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

Multiple Views Geometry

Multiple Views Geometry Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in January 2, 28 Epipolar geometry Fundamental geometric relationship between two perspective

More information

Camera Calibration. COS 429 Princeton University

Camera Calibration. COS 429 Princeton University Camera Calibration COS 429 Princeton University Point Correspondences What can you figure out from point correspondences? Noah Snavely Point Correspondences X 1 X 4 X 3 X 2 X 5 X 6 X 7 p 1,1 p 1,2 p 1,3

More information

Perception of Shape from Shading

Perception of Shape from Shading 1 Percetion of Shae from Shading Continuous image brightness variation due to shae variations is called shading Our ercetion of shae deends on shading Circular region on left is erceived as a flat disk

More information

CS231A Course Notes 4: Stereo Systems and Structure from Motion

CS231A Course Notes 4: Stereo Systems and Structure from Motion CS231A Course Notes 4: Stereo Systems and Structure from Motion Kenji Hata and Silvio Savarese 1 Introduction In the previous notes, we covered how adding additional viewpoints of a scene can greatly enhance

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Perceptual Vision and Sensory WS 16/76 Augmented Computing Many slides adapted from K. Grauman, S. Seitz, R. Szeliski, M. Pollefeys, S. Lazebnik Computer Vision Lecture 20 Motion and Optical Flow

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Perceptual Vision and Sensory WS 16/17 Augmented Computing Computer Perceptual Vision and Sensory WS 16/17 Augmented Computing Computer Perceptual Vision and Sensory WS 16/17 Augmented Computing

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Multi-stable Perception Necker Cube Spinning dancer illusion, Nobuyuki Kayahara Multiple view geometry Stereo vision Epipolar geometry Lowe Hartley and Zisserman Depth map extraction Essential matrix

More information

Structure from Motion and Multi- view Geometry. Last lecture

Structure from Motion and Multi- view Geometry. Last lecture Structure from Motion and Multi- view Geometry Topics in Image-Based Modeling and Rendering CSE291 J00 Lecture 5 Last lecture S. J. Gortler, R. Grzeszczuk, R. Szeliski,M. F. Cohen The Lumigraph, SIGGRAPH,

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

CS201 Computer Vision Camera Geometry

CS201 Computer Vision Camera Geometry CS201 Computer Vision Camera Geometry John Magee 25 November, 2014 Slides Courtesy of: Diane H. Theriault (deht@bu.edu) Question of the Day: How can we represent the relationships between cameras and the

More information

Lecture 6 Stereo Systems Multi-view geometry

Lecture 6 Stereo Systems Multi-view geometry Lecture 6 Stereo Systems Multi-view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-5-Feb-4 Lecture 6 Stereo Systems Multi-view geometry Stereo systems

More information

Two-view geometry Computer Vision Spring 2018, Lecture 10

Two-view geometry Computer Vision Spring 2018, Lecture 10 Two-view geometry http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 10 Course announcements Homework 2 is due on February 23 rd. - Any questions about the homework? - How many of

More information

CS 664 Structure and Motion. Daniel Huttenlocher

CS 664 Structure and Motion. Daniel Huttenlocher CS 664 Structure and Motion Daniel Huttenlocher Determining 3D Structure Consider set of 3D points X j seen by set of cameras with projection matrices P i Given only image coordinates x ij of each point

More information

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo II CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Camera parameters A camera is described by several parameters Translation T of the optical center from the origin of world

More information

Geometry for Computer Vision

Geometry for Computer Vision Geometry for Computer Vision Lecture 5b Calibrated Multi View Geometry Per-Erik Forssén 1 Overview The 5-point Algorithm Structure from Motion Bundle Adjustment 2 Planar degeneracy In the uncalibrated

More information

Computational Optical Imaging - Optique Numerique. -- Single and Multiple View Geometry, Stereo matching --

Computational Optical Imaging - Optique Numerique. -- Single and Multiple View Geometry, Stereo matching -- Computational Optical Imaging - Optique Numerique -- Single and Multiple View Geometry, Stereo matching -- Autumn 2015 Ivo Ihrke with slides by Thorsten Thormaehlen Reminder: Feature Detection and Matching

More information

P Z. parametric surface Q Z. 2nd Image T Z

P Z. parametric surface Q Z. 2nd Image T Z Direct recovery of shae from multile views: a arallax based aroach Rakesh Kumar. Anandan Keith Hanna Abstract Given two arbitrary views of a scene under central rojection, if the motion of oints on a arametric

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Presentation Outline 1 2 3 Sample Problem

More information

CS231A Midterm Review. Friday 5/6/2016

CS231A Midterm Review. Friday 5/6/2016 CS231A Midterm Review Friday 5/6/2016 Outline General Logistics Camera Models Non-perspective cameras Calibration Single View Metrology Epipolar Geometry Structure from Motion Active Stereo and Volumetric

More information

Final project bits and pieces

Final project bits and pieces Final project bits and pieces The project is expected to take four weeks of time for up to four people. At 12 hours per week per person that comes out to: ~192 hours of work for a four person team. Capstone:

More information

Computer Vision Lecture 18

Computer Vision Lecture 18 Course Outline Computer Vision Lecture 8 Motion and Optical Flow.0.009 Bastian Leibe RWTH Aachen http://www.umic.rwth-aachen.de/multimedia leibe@umic.rwth-aachen.de Man slides adapted from K. Grauman,

More information

Wikipedia - Mysid

Wikipedia - Mysid Wikipedia - Mysid Erik Brynjolfsson, MIT Filtering Edges Corners Feature points Also called interest points, key points, etc. Often described as local features. Szeliski 4.1 Slides from Rick Szeliski,

More information

A Summary of Projective Geometry

A Summary of Projective Geometry A Summary of Projective Geometry Copyright 22 Acuity Technologies Inc. In the last years a unified approach to creating D models from multiple images has been developed by Beardsley[],Hartley[4,5,9],Torr[,6]

More information

Stereo Vision. MAN-522 Computer Vision

Stereo Vision. MAN-522 Computer Vision Stereo Vision MAN-522 Computer Vision What is the goal of stereo vision? The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in

More information

3D Photography: Epipolar geometry

3D Photography: Epipolar geometry 3D Photograph: Epipolar geometr Kalin Kolev, Marc Pollefes Spring 203 http://cvg.ethz.ch/teaching/203spring/3dphoto/ Schedule (tentative) Feb 8 Feb 25 Mar 4 Mar Mar 8 Mar 25 Apr Apr 8 Apr 5 Apr 22 Apr

More information

D - Motion. EECS 4422/5323 Computer Vision

D - Motion. EECS 4422/5323 Computer Vision 7.-7. 3D - Motion! Outline riangulation wo-frame Structure from Motion! Outline riangulation wo-frame Structure from Motion!3 Structure from Motion Pose Estimation Geometric Camera Calibration: Given known

More information

Noah Snavely Steven M. Seitz. Richard Szeliski. University of Washington. Microsoft Research. Modified from authors slides

Noah Snavely Steven M. Seitz. Richard Szeliski. University of Washington. Microsoft Research. Modified from authors slides Photo Tourism: Exploring Photo Collections in 3D Noah Snavely Steven M. Seitz University of Washington Richard Szeliski Microsoft Research 2006 2006 Noah Snavely Noah Snavely Modified from authors slides

More information

Fundamental Matrix & Structure from Motion

Fundamental Matrix & Structure from Motion Fundamental Matrix & Structure from Motion Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Transformations between images Structure from Motion The Essential Matrix The Fundamental

More information

Peripheral drift illusion

Peripheral drift illusion Peripheral drift illusion Does it work on other animals? Computer Vision Motion and Optical Flow Many slides adapted from J. Hays, S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman and others Video A video

More information

Chaplin, Modern Times, 1936

Chaplin, Modern Times, 1936 Chaplin, Modern Times, 1936 [A Bucket of Water and a Glass Matte: Special Effects in Modern Times; bonus feature on The Criterion Collection set] Multi-view geometry problems Structure: Given projections

More information

ECE Digital Image Processing and Introduction to Computer Vision

ECE Digital Image Processing and Introduction to Computer Vision ECE592-064 Digital Image Processing and Introduction to Computer Vision Depart. of ECE, NC State University Instructor: Tianfu (Matt) Wu Spring 2017 Recap, SIFT Motion Tracking Change Detection Feature

More information

Part I: Single and Two View Geometry Internal camera parameters

Part I: Single and Two View Geometry Internal camera parameters !! 43 1!???? Imaging eometry Multiple View eometry Perspective projection Richard Hartley Andrew isserman O p y VPR June 1999 where image plane This can be written as a linear mapping between homogeneous

More information

Gabriel Taubin. Desktop 3D Photography

Gabriel Taubin. Desktop 3D Photography Sring 06 ENGN50 --- D Photograhy Lecture 7 Gabriel Taubin Brown University Deskto D Photograhy htt://www.vision.caltech.edu/bouguetj/iccv98/.index.html D triangulation: ray-lane Intersection lane ray intersection

More information

Recovering structure from a single view Pinhole perspective projection

Recovering structure from a single view Pinhole perspective projection EPIPOLAR GEOMETRY The slides are from several sources through James Hays (Brown); Silvio Savarese (U. of Michigan); Svetlana Lazebnik (U. Illinois); Bill Freeman and Antonio Torralba (MIT), including their

More information

Unit 3 Multiple View Geometry

Unit 3 Multiple View Geometry Unit 3 Multiple View Geometry Relations between images of a scene Recovering the cameras Recovering the scene structure http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html 3D structure from images Recover

More information

Stereo Epipolar Geometry for General Cameras. Sanja Fidler CSC420: Intro to Image Understanding 1 / 33

Stereo Epipolar Geometry for General Cameras. Sanja Fidler CSC420: Intro to Image Understanding 1 / 33 Stereo Epipolar Geometry for General Cameras Sanja Fidler CSC420: Intro to Image Understanding 1 / 33 Stereo Epipolar geometry Case with two cameras with parallel optical axes General case Now this Sanja

More information

arxiv: v1 [cs.cv] 28 Sep 2018

arxiv: v1 [cs.cv] 28 Sep 2018 Camera Pose Estimation from Sequence of Calibrated Images arxiv:1809.11066v1 [cs.cv] 28 Sep 2018 Jacek Komorowski 1 and Przemyslaw Rokita 2 1 Maria Curie-Sklodowska University, Institute of Computer Science,

More information

C18 Computer vision. C18 Computer Vision. This time... Introduction. Outline.

C18 Computer vision. C18 Computer Vision. This time... Introduction. Outline. C18 Computer Vision. This time... 1. Introduction; imaging geometry; camera calibration. 2. Salient feature detection edges, line and corners. 3. Recovering 3D from two images I: epipolar geometry. C18

More information

3D Computer Vision. Structure from Motion. Prof. Didier Stricker

3D Computer Vision. Structure from Motion. Prof. Didier Stricker 3D Computer Vision Structure from Motion Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Structure

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Week 2: Two-View Geometry. Padua Summer 08 Frank Dellaert

Week 2: Two-View Geometry. Padua Summer 08 Frank Dellaert Week 2: Two-View Geometry Padua Summer 08 Frank Dellaert Mosaicking Outline 2D Transformation Hierarchy RANSAC Triangulation of 3D Points Cameras Triangulation via SVD Automatic Correspondence Essential

More information

Local features: detection and description May 12 th, 2015

Local features: detection and description May 12 th, 2015 Local features: detection and description May 12 th, 2015 Yong Jae Lee UC Davis Announcements PS1 grades up on SmartSite PS1 stats: Mean: 83.26 Standard Dev: 28.51 PS2 deadline extended to Saturday, 11:59

More information

Camera models and calibration

Camera models and calibration Camera models and calibration Read tutorial chapter 2 and 3. http://www.cs.unc.edu/~marc/tutorial/ Szeliski s book pp.29-73 Schedule (tentative) 2 # date topic Sep.8 Introduction and geometry 2 Sep.25

More information

Geometric camera models and calibration

Geometric camera models and calibration Geometric camera models and calibration http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 13 Course announcements Homework 3 is out. - Due October

More information

CS 4495 Computer Vision Motion and Optic Flow

CS 4495 Computer Vision Motion and Optic Flow CS 4495 Computer Vision Aaron Bobick School of Interactive Computing Administrivia PS4 is out, due Sunday Oct 27 th. All relevant lectures posted Details about Problem Set: You may *not* use built in Harris

More information

Multi-view 3D reconstruction. Problem formulation Projective ambiguity Rectification Autocalibration Feature points and their matching

Multi-view 3D reconstruction. Problem formulation Projective ambiguity Rectification Autocalibration Feature points and their matching Multi-view 3D reconstruction Problem formulation Projective ambiguity Rectification Autocalibration Feature points and their matching Problem Given m images of n scene points captured from different viewpoints,

More information