GPU 3 Smith-Waterman

Size: px
Start display at page:

Download "GPU 3 Smith-Waterman"

Transcription

1 GPU 3 Smith-Waterman Saori SUDO 1 GPU Graphic Processing Unit GPU GPGPUGeneral-purpose computing on GPU 1) CPU GPU GPU GPGPU NVIDIA C CUDACompute Unified Device Architecture 2) OpenCL 3) DNA 4) SWSmith-Waterman 5) 6) 7) 8) SW 9) SW 1 SW 2 SW GPU SW GPU 3 SW GPU Fig.1 CPU GPU (pair-wise sequence alignment) 3 multiple sequence alignment global sequence alignment local sequence alignment SW 2.2 SWSmith-Waterman SW 2 2 X Y 2 SW 3 SW 1

2 matchmismatchgap match 2 mismatch gap 2 mn SW O(mn) 2.3 SWSmith-Waterman SW match = 1mismatch = -1gap = -1 m X = x 1 x 2...x m n Y = y 1 y 2...y n SW Step1 XY Step2 i j SW (i, j) k m l n SW (k, l) = SW (k, ) = SW (, l) = Step3 1 Step4 Fig.2 Fig.3 SW SW (i, j) 8 j SW (i 1, j 1) + match if(xi = y j ) >< SW (i 1, j 1) + mismatch else = max SW (i 1, j) + gap >: SW (i, j 1) + gap (1) Fig.4 ACAC AGCA SW 4 5 (i, j) = (4, 3) (i, j) = (4, 3), (i, j) = (3, 2), (i, j) = (2, 1) ACAC AGCA CA 3 CUDA 3.1 CUDA NVIDIA GPU CUDA CUDA GPU CUDA C GPU CUDA kernel Fig.5 kernel 3.2 GPU gridblockthread 3 thread block block grid 1 grid 1 GPU GPU Streaming Multi Processor( SM) 1 SM 1 block SM Streaming Processor( 2

3 SP) 1 SP 1 thread thread warp 1warp 32 thread thread 32 warp thread GPU warp divergent 4 SW BLAST(Basic Local Alignment Search Tool) 1) FASTA(FAST-ALL) 4) DP 3 11) 3 CLUSTALW 12) MAFFT 13) MAVID 14) T-COFFEE 15) SW n GPU 16) 17) CUDAlign 5) CUDASW++2. 6) SW GPU SW SW 5 3 SW SW SW 3 SW Fig.6 3DSW SW m X = x 1 x 2...x m n Y = y 1 y 2...y n l Z = z 1 z 2...z l 3 SW Step1 Step2 Step3 Step4 XY Z xyz i, j, k SW (i, j, k) p m q n r l SW (p, q, r) = SW (p,, ) = SW (, q, ) = SW (,, r) = SW (i, j, k) 8 j SW (i 1, j 1, k 1) + match if(xi = y j = z k ) SW (i 1, j 1, k 1) + mismatch else SW (i 1, j 1, k) + gap >< SW (i, j 1, k 1) + gap = max SW (i 1, j, k 1) + gap (2) SW (i 1, j, k) + gap SW (i, j 1, k) + gap >: SW (i, j, k 1) + gap 6 (i, j, k) = (3, 3, 3) x 3 =Ty 3 = Tz 3 =T 3 3 SW (3, 3, 3) 2 SW (2, 2, 2) = SW (3, 3, 3) = SW GPU 3 GPU 3 SW GPU-3DSWT GPU CPU 3 SW GPU-3DSW 3

4 Fig.7 Fig.8 CPU 3 SW CPU-3DSW 6.1 GPU 3 SW SW CUDA 3 SW GPU 6.2 GPU 9 CUDA thread 1 thread 1 step=3 7 block thread block 11 block x y step 6.3 GPU SW GPU CPU SW 1 SW 3 Fig.9 Fig.1 GPU-3DSW thread Table1 1 2 CPU Intel Xeon W GHz Intel Core i GHz GPU Tesla C25 GeForce GTX 46 Memory 6GB 8GB OS Debian 5..6 Ubuntu 11.4 CUDA 3.1 CUDA 3.2 -O3 -O3 GPU DNA 3 SW CPU-3DSWGPU-3DSWGPU-3DSWT 4

5 me[msec] 1E+4 1E+3 1E+2 1E+1 1E+ CPU-3DSW GPU-3DSW GPU-3DSWT CPU- 3DSW/GPU- 3DSWT Fig.11 GPU-3DSW block 1E E-2 1E me[msec] 1E+3 1E+2 1E+1 1E+ 1E-1 1E-2 1E-3 Fig.12 CPU-3DSW GPU-3DSW GPU-3DSWT CPU- 3DSW/GPU- 3DSWT length of strings 1 CPU-3DSW GPU-3DSWT CPU CPU.8 GPU-3DSW GPU-3DSWT GPU-3DSWT GPU warp divergent 8 3 SW CUDA 3 SW GPU CPU 3 SW 1.5 kernel kernel 3 n SW n SW SW E length of strings Fig ) John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Kruger, Aaron Lefohn, and Timothy J. Purcell. A Survey of General-Purpose Computation on Graphics Hardware. In Eurographics 25, State of the Art Reports, pp , August 25. 2) NVIDIA. Compute Unified Device Architecture Programming Guide ) John E Stone, David Gohara, and Guochun Shi. OpenCL: A parallel Programming Standard for Heterogenous Computing Systems. Computing in Science Engineering. 4) David W Mount. 2., 25. 5) Edans Flavius de O Sandes and Alba Cristina M A de Melo. Smith-Waterman Alignment of Huge Sequences with GPU in Linear Space. 211 IEEE International Parallel & Distributed Processing Symposium, Vol. 25, pp , May ) Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. CUDASW++2.: enhanced Smith- Waterman protein database search on CUDAenabled GPUs based on SIMT and virtualized SIMD abstractions. BMC Research Notes, Vol. 3, No. 1, pp. 1 12, April 21. 5

6 7),. ().. A,, Vol. 88, No. 8, pp , ),,,,. 2 DTW.. MPS,, Vol. 21, No. 24, pp. 1 6, ) Tomoyuki Hiroyasu, Takuma Nishii, Masato Yoshimi, Mitsunori Miki, and Hisatake Yokouchi. The proposal of optical topograhy analizing sysytem and evaluation., August ) NCBI. BLAST Basic Local Alignment Search Tool ) Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell. MSA-CUDA: Multiple Sequence Alignment on Graphics Processing Units with CUDA. Application-Specific Systems, Architectures and Processors, IEEE International Conference on, Vol., pp , ) Julie D Thompson, Desmond G Higgins, and Toby J Gibson. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, Vol. 22, No. 22, pp , April ) Kazutaka Katoh, Kazuharu Misawa, Keiichi Kuma, and Takashi Miyata. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, Vol. 3, No. 14, pp , July ) Nicolas Bray and Lior Pachter. MAVID: constrained ancestral alignment of multiple sequences. Genome Research, Vol. 14, No. 4, pp , April ) C Notredame, Desmond G. Higgins, and Jaap Heringa. T-Coffee: A Novel Method for Fast and Accurate Multiple Sequence Alignment. Journal of Molecular Biology, Vol. 14, No. 4, pp , April ),,,,. GPU Smith-Waterman. SACSIS21, Vol. 21, No. 5, pp , April ),,. CUDA GPU., Vol. 114, No. 19, pp , March 28. 6

Keywords -Bioinformatics, sequence alignment, Smith- waterman (SW) algorithm, GPU, CUDA

Keywords -Bioinformatics, sequence alignment, Smith- waterman (SW) algorithm, GPU, CUDA Volume 5, Issue 5, May 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Accelerating Smith-Waterman

More information

Fast Sequence Alignment Method Using CUDA-enabled GPU

Fast Sequence Alignment Method Using CUDA-enabled GPU Fast Sequence Alignment Method Using CUDA-enabled GPU Yeim-Kuan Chang Department of Computer Science and Information Engineering National Cheng Kung University Tainan, Taiwan ykchang@mail.ncku.edu.tw De-Yu

More information

PoMSA: An Efficient and Precise Position-based Multiple Sequence Alignment Technique

PoMSA: An Efficient and Precise Position-based Multiple Sequence Alignment Technique PoMSA: An Efficient and Precise Position-based Multiple Sequence Alignment Technique Sara Shehab 1,a, Sameh Shohdy 1,b, Arabi E. Keshk 1,c 1 Department of Computer Science, Faculty of Computers and Information,

More information

CMSA: a heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment

CMSA: a heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment Chen et al. BMC Bioinformatics (2017) 18:315 DOI 10.1186/s12859-017-1725-6 SOFTWARE Open Access CMSA: a heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment Xi Chen, Chen

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

A GPU Algorithm for Comparing Nucleotide Histograms

A GPU Algorithm for Comparing Nucleotide Histograms A GPU Algorithm for Comparing Nucleotide Histograms Adrienne Breland Harpreet Singh Omid Tutakhil Mike Needham Dickson Luong Grant Hennig Roger Hoang Torborn Loken Sergiu M. Dascalu Frederick C. Harris,

More information

Comparative Analysis of Protein Alignment Algorithms in Parallel environment using CUDA

Comparative Analysis of Protein Alignment Algorithms in Parallel environment using CUDA Comparative Analysis of Protein Alignment Algorithms in Parallel environment using BLAST versus Smith-Waterman Shadman Fahim shadmanbracu09@gmail.com Shehabul Hossain rudrozzal@gmail.com Gulshan Jubaed

More information

In this section we describe how to extend the match refinement to the multiple case and then use T-Coffee to heuristically compute a multiple trace.

In this section we describe how to extend the match refinement to the multiple case and then use T-Coffee to heuristically compute a multiple trace. 5 Multiple Match Refinement and T-Coffee In this section we describe how to extend the match refinement to the multiple case and then use T-Coffee to heuristically compute a multiple trace. This exposition

More information

THE Smith-Waterman (SW) algorithm [1] is a wellknown

THE Smith-Waterman (SW) algorithm [1] is a wellknown Design and Implementation of the Smith-Waterman Algorithm on the CUDA-Compatible GPU Yuma Munekawa, Fumihiko Ino, Member, IEEE, and Kenichi Hagihara Abstract This paper describes a design and implementation

More information

Lecture 5: Multiple sequence alignment

Lecture 5: Multiple sequence alignment Lecture 5: Multiple sequence alignment Introduction to Computational Biology Teresa Przytycka, PhD (with some additions by Martin Vingron) Why do we need multiple sequence alignment Pairwise sequence alignment

More information

Evaluation Of The Performance Of GPU Global Memory Coalescing

Evaluation Of The Performance Of GPU Global Memory Coalescing Evaluation Of The Performance Of GPU Global Memory Coalescing Dae-Hwan Kim Department of Computer and Information, Suwon Science College, 288 Seja-ro, Jeongnam-myun, Hwaseong-si, Gyeonggi-do, Rep. of Korea

More information

Harnessing Associative Computing for Sequence Alignment with Parallel Accelerators

Harnessing Associative Computing for Sequence Alignment with Parallel Accelerators Harnessing Associative Computing for Sequence Alignment with Parallel Accelerators Shannon I. Steinfadt Doctoral Research Showcase III Room 17 A / B 4:00-4:15 International Conference for High Performance

More information

Biological Sequence Comparison on Hybrid Platforms with Dynamic Workload Adjustment

Biological Sequence Comparison on Hybrid Platforms with Dynamic Workload Adjustment 2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum Biological Sequence Comparison on Hybrid Platforms with Dynamic Workload Adjustment Fernando Machado

More information

Comparison of Phylogenetic Trees of Multiple Protein Sequence Alignment Methods

Comparison of Phylogenetic Trees of Multiple Protein Sequence Alignment Methods Comparison of Phylogenetic Trees of Multiple Protein Sequence Alignment Methods Khaddouja Boujenfa, Nadia Essoussi, and Mohamed Limam International Science Index, Computer and Information Engineering waset.org/publication/482

More information

Sequence Alignment with GPU: Performance and Design Challenges

Sequence Alignment with GPU: Performance and Design Challenges Sequence Alignment with GPU: Performance and Design Challenges Gregory M. Striemer and Ali Akoglu Department of Electrical and Computer Engineering University of Arizona, 85721 Tucson, Arizona USA {gmstrie,

More information

PROTEIN MULTIPLE ALIGNMENT MOTIVATION: BACKGROUND: Marina Sirota

PROTEIN MULTIPLE ALIGNMENT MOTIVATION: BACKGROUND: Marina Sirota Marina Sirota MOTIVATION: PROTEIN MULTIPLE ALIGNMENT To study evolution on the genetic level across a wide range of organisms, biologists need accurate tools for multiple sequence alignment of protein

More information

Exploring the Problem of GPU Programming for Data-Intensive Applications: A Case Study of Multiple Expectation Maximization for Motif Elicitation

Exploring the Problem of GPU Programming for Data-Intensive Applications: A Case Study of Multiple Expectation Maximization for Motif Elicitation Exploring the Problem of GPU Programming for Data-Intensive Applications: A Case Study of Multiple Expectation Maximization for Motif Elicitation ABSTRACT Yuki Kitsukawa yuki@ertl.jp Shinpei Kato shinpei@is.nagoyau.ac.jp

More information

General-purpose computing on graphics processing units (GPGPU)

General-purpose computing on graphics processing units (GPGPU) General-purpose computing on graphics processing units (GPGPU) Thomas Ægidiussen Jensen Henrik Anker Rasmussen François Rosé November 1, 2010 Table of Contents Introduction CUDA CUDA Programming Kernels

More information

Accelerating Smith-Waterman Algorithm for Biological Database Search on CUDA-Compatible GPUs

Accelerating Smith-Waterman Algorithm for Biological Database Search on CUDA-Compatible GPUs IEICE TRANS. INF. & SYST., VOL.E93 D, NO.6 JUNE 2010 1479 PAPER Special Section on Info-Plosion Accelerating Smith-Waterman Algorithm for Biological Database Search on CUDA-Compatible GPUs Yuma MUNEKAWA,

More information

3 College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA.

3 College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA. A Tile-based Parallel Viterbi Algorithm for Biological Sequence Alignment on GPU with CUDA Zhihui Du 1+, Zhaoming Yin 2, and David A. Bader 3 1 Tsinghua National Laboratory for Information Science and

More information

Algorithms and Tools for Bioinformatics on GPUs. Bertil SCHMIDT

Algorithms and Tools for Bioinformatics on GPUs. Bertil SCHMIDT Algorithms and Tools for Bioinformatics on GPUs Bertil SCHMIDT Contents Motivation Pairwise Sequence Alignment Multiple Sequence Alignment Short Read Error Correction using CUDA Some other CUDA-enabled

More information

An Ultrafast Scalable Many-core Motif Discovery Algorithm for Multiple GPUs

An Ultrafast Scalable Many-core Motif Discovery Algorithm for Multiple GPUs 2011 IEEE International Parallel & Distributed Processing Symposium An Ultrafast Scalable Many-core Motif Discovery Algorithm for Multiple GPUs Yongchao Liu, Bertil Schmidt, Douglas L. Maskell School of

More information

INVESTIGATION STUDY: AN INTENSIVE ANALYSIS FOR MSA LEADING METHODS

INVESTIGATION STUDY: AN INTENSIVE ANALYSIS FOR MSA LEADING METHODS INVESTIGATION STUDY: AN INTENSIVE ANALYSIS FOR MSA LEADING METHODS MUHANNAD A. ABU-HASHEM, NUR'AINI ABDUL RASHID, ROSNI ABDULLAH, AWSAN A. HASAN AND ATHEER A. ABDULRAZZAQ School of Computer Sciences, Universiti

More information

Research Article GPU-Based Cloud Service for Smith-Waterman Algorithm Using Frequency Distance Filtration Scheme

Research Article GPU-Based Cloud Service for Smith-Waterman Algorithm Using Frequency Distance Filtration Scheme BioMed Research International Volume 2013, Article ID 721738, 8 pages http://dx.doi.org/10.1155/2013/721738 Research Article GPU-Based Cloud Service for Smith-Waterman Algorithm Using Frequency Distance

More information

Mathematical computations with GPUs

Mathematical computations with GPUs Master Educational Program Information technology in applications Mathematical computations with GPUs GPU architecture Alexey A. Romanenko arom@ccfit.nsu.ru Novosibirsk State University GPU Graphical Processing

More information

Accelerated GPU Based Protein Sequence Alignment An optimized database sequences approach

Accelerated GPU Based Protein Sequence Alignment An optimized database sequences approach IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 231 Accelerated GPU Based Protein Sequence Alignment An optimized database sequences approach Muhammad

More information

OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT

OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT Asif Ali Khan*, Laiq Hassan*, Salim Ullah* ABSTRACT: In bioinformatics, sequence alignment is a common and insistent task. Biologists align

More information

Numerical Simulation on the GPU

Numerical Simulation on the GPU Numerical Simulation on the GPU Roadmap Part 1: GPU architecture and programming concepts Part 2: An introduction to GPU programming using CUDA Part 3: Numerical simulation techniques (grid and particle

More information

Introduction to GPGPU and GPU-architectures

Introduction to GPGPU and GPU-architectures Introduction to GPGPU and GPU-architectures Henk Corporaal Gert-Jan van den Braak http://www.es.ele.tue.nl/ Contents 1. What is a GPU 2. Programming a GPU 3. GPU thread scheduling 4. GPU performance bottlenecks

More information

GPU-Supercomputer Acceleration of Pattern Matching

GPU-Supercomputer Acceleration of Pattern Matching CHAPTER GPU-Supercomputer Acceleration of Pattern Matching 13 Ali Khajeh-Saeed, J. Blair Perot This chapter describes the solution of a single very large pattern-matching search using a supercomputing

More information

Accelerating the Smith-Waterman algorithm with interpair pruning and band optimization for the all-pairs comparison of base sequences

Accelerating the Smith-Waterman algorithm with interpair pruning and band optimization for the all-pairs comparison of base sequences Okada et al. BMC Bioinformatics (2015) 16:321 DOI 10.1186/s12859-015-0744-4 METHODOLOGY ARTICLE Open Access Accelerating the Smith-Waterman algorithm with interpair pruning and band optimization for the

More information

Improving CUDASW++, a Parallelization of Smith-Waterman for CUDA Enabled Devices

Improving CUDASW++, a Parallelization of Smith-Waterman for CUDA Enabled Devices 2011 IEEE International Parallel & Distributed Processing Symposium Improving CUDASW++, a Parallelization of Smith-Waterman for CUDA Enabled Devices Doug Hains, Zach Cashero, Mark Ottenberg, Wim Bohm and

More information

High Performance Technique for Database Applications Using a Hybrid GPU/CPU Platform

High Performance Technique for Database Applications Using a Hybrid GPU/CPU Platform High Performance Technique for Database Applications Using a Hybrid GPU/CPU Platform M. Affan Zidan, Talal Bonny, and Khaled N. Salama Electrical Engineering Program King Abdullah University of Science

More information

GPU Accelerated API for Alignment of Genomics Sequencing Data

GPU Accelerated API for Alignment of Genomics Sequencing Data GPU Accelerated API for Alignment of Genomics Sequencing Data Nauman Ahmed, Hamid Mushtaq, Koen Bertels and Zaid Al-Ars Computer Engineering Laboratory, Delft University of Technology, Delft, The Netherlands

More information

Optimization solutions for the segmented sum algorithmic function

Optimization solutions for the segmented sum algorithmic function Optimization solutions for the segmented sum algorithmic function ALEXANDRU PÎRJAN Department of Informatics, Statistics and Mathematics Romanian-American University 1B, Expozitiei Blvd., district 1, code

More information

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CMPE655 - Multiple Processor Systems Fall 2015 Rochester Institute of Technology Contents What is GPGPU? What s the need? CUDA-Capable GPU Architecture

More information

Comparison and Evaluation of Multiple Sequence Alignment Tools In Bininformatics

Comparison and Evaluation of Multiple Sequence Alignment Tools In Bininformatics IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009 51 Comparison and Evaluation of Multiple Sequence Alignment Tools In Bininformatics Asieh Sedaghatinia, Dr Rodziah

More information

Two Phase Evolutionary Method for Multiple Sequence Alignments

Two Phase Evolutionary Method for Multiple Sequence Alignments The First International Symposium on Optimization and Systems Biology (OSB 07) Beijing, China, August 8 10, 2007 Copyright 2007 ORSC & APORC pp. 309 323 Two Phase Evolutionary Method for Multiple Sequence

More information

Multiple Sequence Alignment (MSA)

Multiple Sequence Alignment (MSA) I519 Introduction to Bioinformatics, Fall 2013 Multiple Sequence Alignment (MSA) Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Outline Multiple sequence alignment (MSA) Generalize

More information

Research Article Improving the Mapping of Smith-Waterman Sequence Database Searches onto CUDA-Enabled GPUs

Research Article Improving the Mapping of Smith-Waterman Sequence Database Searches onto CUDA-Enabled GPUs BioMed Research International Volume 2015, Article ID 185179, 10 pages http://dx.doi.org/10.1155/2015/185179 Research Article Improving the Mapping of Smith-Waterman Sequence Database Searches onto CUDA-Enabled

More information

SWhybrid: A Hybrid-Parallel Framework for Large-Scale Protein Sequence Database Search

SWhybrid: A Hybrid-Parallel Framework for Large-Scale Protein Sequence Database Search 217 IEEE International Parallel and Distributed Processing Symposium SWhybrid: A Hybrid-Parallel Framework for Large-Scale Protein Sequence Database Search Haidong Lan, Weiguo Liu Shandong University Jinan,

More information

SEASHORE / SARUMAN. Short Read Matching using GPU Programming. Tobias Jakobi

SEASHORE / SARUMAN. Short Read Matching using GPU Programming. Tobias Jakobi SEASHORE SARUMAN Summary 1 / 24 SEASHORE / SARUMAN Short Read Matching using GPU Programming Tobias Jakobi Center for Biotechnology (CeBiTec) Bioinformatics Resource Facility (BRF) Bielefeld University

More information

By: Tomer Morad Based on: Erik Lindholm, John Nickolls, Stuart Oberman, John Montrym. NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE In IEEE Micro 28(2), 2008 } } Erik Lindholm, John Nickolls,

More information

General Purpose Computing on Graphical Processing Units (GPGPU(

General Purpose Computing on Graphical Processing Units (GPGPU( General Purpose Computing on Graphical Processing Units (GPGPU( / GPGP /GP 2 ) By Simon J.K. Pedersen Aalborg University, Oct 2008 VGIS, Readings Course Presentation no. 7 Presentation Outline Part 1:

More information

gpot: Intelligent Compiler for GPGPU using Combinatorial Optimization Techniques

gpot: Intelligent Compiler for GPGPU using Combinatorial Optimization Techniques gpot: Intelligent Compiler for GPGPU using Combinatorial Optimization Techniques Yuta TOMATSU, Tomoyuki HIROYASU, Masato YOSHIMI, Mitsunori MIKI Graduate Student of School of Ewngineering, Faculty of Department

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

Efficient Pairwise Statistical Significance Estimation for Local Sequence Alignment Using GPU

Efficient Pairwise Statistical Significance Estimation for Local Sequence Alignment Using GPU Efficient Pairwise Statistical Significance Estimation for Local Sequence Alignment Using GPU 1,2 Yuhong Zhang, 2 Sanchit Misra, 2 Daniel Honbo, 2 Ankit Agrawal, 2 Wei-keng Liao, 2 Alok Choudhary 1 School

More information

The application of binary path matrix in backtracking of sequences alignment Zhongxi Cai1, 2, a, Chengzhen Xu1, b, Ying Wang 1, 3, c, Wang Cong1,*

The application of binary path matrix in backtracking of sequences alignment Zhongxi Cai1, 2, a, Chengzhen Xu1, b, Ying Wang 1, 3, c, Wang Cong1,* 4th International Conference on Electrical & Electronics Engineering and Computer Science (ICEEECS 2016) The application of binary path matrix in backtracking of sequences alignment Zhongxi Cai1, 2, a,

More information

Tesla Architecture, CUDA and Optimization Strategies

Tesla Architecture, CUDA and Optimization Strategies Tesla Architecture, CUDA and Optimization Strategies Lan Shi, Li Yi & Liyuan Zhang Hauptseminar: Multicore Architectures and Programming Page 1 Outline Tesla Architecture & CUDA CUDA Programming Optimization

More information

Journal of Universal Computer Science, vol. 14, no. 14 (2008), submitted: 30/9/07, accepted: 30/4/08, appeared: 28/7/08 J.

Journal of Universal Computer Science, vol. 14, no. 14 (2008), submitted: 30/9/07, accepted: 30/4/08, appeared: 28/7/08 J. Journal of Universal Computer Science, vol. 14, no. 14 (2008), 2416-2427 submitted: 30/9/07, accepted: 30/4/08, appeared: 28/7/08 J.UCS Tabu Search on GPU Adam Janiak (Institute of Computer Engineering

More information

A Distributed CPU-GPU Framework for Pairwise Alignments on Large-Scale Sequence Datasets

A Distributed CPU-GPU Framework for Pairwise Alignments on Large-Scale Sequence Datasets A Distributed CPU-GPU Framework for Pairwise Alignments on Large-Scale Sequence Datasets Da Li 1, Kittisak Sajjapongse 1, Huan Truong 2, Gavin Conant 2,3, Michela Becchi 1,2 1 Dept. of Electrical and Computer

More information

Masher: Mapping Long(er) Reads with Hash-based Genome Indexing on GPUs

Masher: Mapping Long(er) Reads with Hash-based Genome Indexing on GPUs Masher: Mapping Long(er) Reads with Hash-based Genome Indexing on GPUs Anas Abu-Doleh 1,2, Erik Saule 1, Kamer Kaya 1 and Ümit V. Çatalyürek 1,2 1 Department of Biomedical Informatics 2 Department of Electrical

More information

Performance Analysis of Parallelized Bioinformatics Applications

Performance Analysis of Parallelized Bioinformatics Applications Asian Journal of Computer Science and Technology ISSN: 2249-0701 Vol.7 No.2, 2018, pp. 70-74 The Research Publication, www.trp.org.in Dhruv Chander Pant 1 and OP Gupta 2 1 Research Scholar, I. K. Gujral

More information

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes.

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes. HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes Ian Glendinning Outline NVIDIA GPU cards CUDA & OpenCL Parallel Implementation

More information

CUDA Architecture & Programming Model

CUDA Architecture & Programming Model CUDA Architecture & Programming Model Course on Multi-core Architectures & Programming Oliver Taubmann May 9, 2012 Outline Introduction Architecture Generation Fermi A Brief Look Back At Tesla What s New

More information

arxiv: v1 [physics.comp-ph] 4 Nov 2013

arxiv: v1 [physics.comp-ph] 4 Nov 2013 arxiv:1311.0590v1 [physics.comp-ph] 4 Nov 2013 Performance of Kepler GTX Titan GPUs and Xeon Phi System, Weonjong Lee, and Jeonghwan Pak Lattice Gauge Theory Research Center, CTP, and FPRD, Department

More information

CS 179 Lecture 4. GPU Compute Architecture

CS 179 Lecture 4. GPU Compute Architecture CS 179 Lecture 4 GPU Compute Architecture 1 This is my first lecture ever Tell me if I m not speaking loud enough, going too fast/slow, etc. Also feel free to give me lecture feedback over email or at

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4, 116, 12M Open access books available International authors and editors Downloads Our authors

More information

ASW: Accelerating Smith-Waterman Algorithm on Coupled CPU-GPU Architecture

ASW: Accelerating Smith-Waterman Algorithm on Coupled CPU-GPU Architecture Click here to download Manuscript asw.pdf Noname manuscript No. (will be inserted by the editor) 0 0 0 0 0 0 ASW: Accelerating Smith-Waterman Algorithm on Coupled CPU-GPU Architecture Huihui Zou Shanjiang

More information

CISC 889 Bioinformatics (Spring 2003) Multiple Sequence Alignment

CISC 889 Bioinformatics (Spring 2003) Multiple Sequence Alignment CISC 889 Bioinformatics (Spring 2003) Multiple Sequence Alignment Courtesy of jalview 1 Motivations Collective statistic Protein families Identification and representation of conserved sequence features

More information

Face Detection on CUDA

Face Detection on CUDA 125 Face Detection on CUDA Raksha Patel Isha Vajani Computer Department, Uka Tarsadia University,Bardoli, Surat, Gujarat Abstract Face Detection finds an application in various fields in today's world.

More information

Chapter 8 Multiple sequence alignment. Chaochun Wei Spring 2018

Chapter 8 Multiple sequence alignment. Chaochun Wei Spring 2018 1896 1920 1987 2006 Chapter 8 Multiple sequence alignment Chaochun Wei Spring 2018 Contents 1. Reading materials 2. Multiple sequence alignment basic algorithms and tools how to improve multiple alignment

More information

Introduction to CUDA Programming

Introduction to CUDA Programming Introduction to CUDA Programming Steve Lantz Cornell University Center for Advanced Computing October 30, 2013 Based on materials developed by CAC and TACC Outline Motivation for GPUs and CUDA Overview

More information

J. Blair Perot. Ali Khajeh-Saeed. Software Engineer CD-adapco. Mechanical Engineering UMASS, Amherst

J. Blair Perot. Ali Khajeh-Saeed. Software Engineer CD-adapco. Mechanical Engineering UMASS, Amherst Ali Khajeh-Saeed Software Engineer CD-adapco J. Blair Perot Mechanical Engineering UMASS, Amherst Supercomputers Optimization Stream Benchmark Stag++ (3D Incompressible Flow Code) Matrix Multiply Function

More information

Fast Parallel Longest Common Subsequence with General Integer Scoring Support

Fast Parallel Longest Common Subsequence with General Integer Scoring Support Fast Parallel Longest Common Subsequence with General Integer Scoring Support Adnan Ozsoy, Arun Chauhan, Martin Swany School of Informatics and Computing Indiana University, Bloomington, USA 1 Fast Parallel

More information

ENABLING NEW SCIENCE GPU SOLUTIONS

ENABLING NEW SCIENCE GPU SOLUTIONS ENABLING NEW SCIENCE TESLA BIO Workbench The NVIDIA Tesla Bio Workbench enables biophysicists and computational chemists to push the boundaries of life sciences research. It turns a standard PC into a

More information

Portland State University ECE 588/688. Graphics Processors

Portland State University ECE 588/688. Graphics Processors Portland State University ECE 588/688 Graphics Processors Copyright by Alaa Alameldeen 2018 Why Graphics Processors? Graphics programs have different characteristics from general purpose programs Highly

More information

Implementation of Random Linear Network Coding using NVIDIA's CUDA toolkit

Implementation of Random Linear Network Coding using NVIDIA's CUDA toolkit Implementation of Random Linear Network Coding using NVIDIA's CUDA toolkit Péter Vingelmann* and Frank H. P. Fitzek * Budapest University of Technology and Economics Aalborg University, Department of Electronic

More information

Data-Parallel Algorithms on GPUs. Mark Harris NVIDIA Developer Technology

Data-Parallel Algorithms on GPUs. Mark Harris NVIDIA Developer Technology Data-Parallel Algorithms on GPUs Mark Harris NVIDIA Developer Technology Outline Introduction Algorithmic complexity on GPUs Algorithmic Building Blocks Gather & Scatter Reductions Scan (parallel prefix)

More information

ACCELERATING SIGNAL PROCESSING ALGORITHMS USING GRAPHICS PROCESSORS

ACCELERATING SIGNAL PROCESSING ALGORITHMS USING GRAPHICS PROCESSORS ACCELERATING SIGNAL PROCESSING ALGORITHMS USING GRAPHICS PROCESSORS Ashwin Prasad and Pramod Subramanyan RF and Communications R&D National Instruments, Bangalore 560095, India Email: {asprasad, psubramanyan}@ni.com

More information

GPU-UPGMA: high-performance computing for UPGMA algorithm based on graphics processing units

GPU-UPGMA: high-performance computing for UPGMA algorithm based on graphics processing units CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE Concurrency Computat.: Pract. Exper. 2015; 27:3403 3414 Published online 05 August 2014 in Wiley Online Library (wileyonlinelibrary.com)..3355 SPECIAL

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 35 Course outline Introduction to GPU hardware

More information

Parallelization of Shortest Path Finder on GPU: Floyd-Warshall

Parallelization of Shortest Path Finder on GPU: Floyd-Warshall Parallelization of Shortest Path Finder on GPU: Floyd-Warshall Dhananjay Kulkarni Neha Sharma Vaishali Varma Prithviraj Shinde ABSTRACT The project deals with implementation of Floyd Warshall Algorithm

More information

Speeding up Subset Seed Algorithm for Intensive Protein Sequence Comparison

Speeding up Subset Seed Algorithm for Intensive Protein Sequence Comparison Speeding up Subset Seed Algorithm for Intensive Protein Sequence Comparison Van Hoa NGUYEN IRISA/INRIA Rennes Rennes, France Email: vhnguyen@irisa.fr Dominique LAVENIER CNRS/IRISA Rennes, France Email:

More information

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Joined Advanced Student School (JASS) 2009 March 29 - April 7, 2009 St. Petersburg, Russia G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Dmitry Puzyrev St. Petersburg State University Faculty

More information

CS GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8 Markus Hadwiger, KAUST Reading Assignment #5 (until March 12) Read (required): Programming Massively Parallel Processors book, Chapter

More information

A Layer-Based Approach to Multiple Sequences Alignment

A Layer-Based Approach to Multiple Sequences Alignment A Layer-Based Approach to Multiple Sequences Alignment Tianwei JIANG and Weichuan YU Laboratory for Bioinformatics and Computational Biology, Department of Electronic and Computer Engineering, The Hong

More information

A Design of a Hybrid System for DNA Sequence Alignment

A Design of a Hybrid System for DNA Sequence Alignment IMECS 2008, 9-2 March, 2008, Hong Kong A Design of a Hybrid System for DNA Sequence Alignment Heba Khaled, Hossam M. Faheem, Tayseer Hasan, Saeed Ghoneimy Abstract This paper describes a parallel algorithm

More information

A Cross-Input Adaptive Framework for GPU Program Optimizations

A Cross-Input Adaptive Framework for GPU Program Optimizations A Cross-Input Adaptive Framework for GPU Program Optimizations Yixun Liu, Eddy Z. Zhang, Xipeng Shen Computer Science Department The College of William & Mary Outline GPU overview G-Adapt Framework Evaluation

More information

GPU Accelerated Smith-Waterman

GPU Accelerated Smith-Waterman GPU Accelerated Smith-Waterman Yang Liu 1,WayneHuang 1,2, John Johnson 1, and Sheila Vaidya 1 1 Lawrence Livermore National Laboratory 2 DOE Joint Genome Institute, UCRL-CONF-218814 {liu24, whuang, jjohnson,

More information

Master Informatics Eng.

Master Informatics Eng. Advanced Architectures Master Informatics Eng. 2018/19 A.J.Proença Data Parallelism 3 (GPU/CUDA, Neural Nets,...) (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 1 The

More information

Cooperative Multitasking for GPU-Accelerated Grid Systems

Cooperative Multitasking for GPU-Accelerated Grid Systems 21 1th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing Cooperative Multitasking for GPU-Accelerated Grid Systems Fumihiko Ino, Akihiro Ogita, Kentaro Oita and Kenichi Hagihara Graduate

More information

Additional Alignments Plugin USER MANUAL

Additional Alignments Plugin USER MANUAL Additional Alignments Plugin USER MANUAL User manual for Additional Alignments Plugin 1.8 Windows, Mac OS X and Linux November 7, 2017 This software is for research purposes only. QIAGEN Aarhus Silkeborgvej

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

Biochemistry 324 Bioinformatics. Multiple Sequence Alignment (MSA)

Biochemistry 324 Bioinformatics. Multiple Sequence Alignment (MSA) Biochemistry 324 Bioinformatics Multiple Sequence Alignment (MSA) Big- Οh notation Greek omicron symbol Ο The Big-Oh notation indicates the complexity of an algorithm in terms of execution speed and storage

More information

Sequence Alignment Using Graphics Processing Units. Dzivi PS

Sequence Alignment Using Graphics Processing Units. Dzivi PS Sequence Alignment Using Graphics Processing Units Dzivi PS This report is submitted as partial fulfilment of the requirements for the Honours Programme of the School of Computer Science and Software Engineering,

More information

NVIDIA s Compute Unified Device Architecture (CUDA)

NVIDIA s Compute Unified Device Architecture (CUDA) NVIDIA s Compute Unified Device Architecture (CUDA) Mike Bailey mjb@cs.oregonstate.edu Reaching the Promised Land NVIDIA GPUs CUDA Knights Corner Speed Intel CPUs General Programmability 1 History of GPU

More information

NVIDIA s Compute Unified Device Architecture (CUDA)

NVIDIA s Compute Unified Device Architecture (CUDA) NVIDIA s Compute Unified Device Architecture (CUDA) Mike Bailey mjb@cs.oregonstate.edu Reaching the Promised Land NVIDIA GPUs CUDA Knights Corner Speed Intel CPUs General Programmability History of GPU

More information

Chapter 6. Multiple sequence alignment (week 10)

Chapter 6. Multiple sequence alignment (week 10) Course organization Introduction ( Week 1,2) Part I: Algorithms for Sequence Analysis (Week 1-11) Chapter 1-3, Models and theories» Probability theory and Statistics (Week 3)» Algorithm complexity analysis

More information

A GPU Implementation of Tiled Belief Propagation on Markov Random Fields. Hassan Eslami Theodoros Kasampalis Maria Kotsifakou

A GPU Implementation of Tiled Belief Propagation on Markov Random Fields. Hassan Eslami Theodoros Kasampalis Maria Kotsifakou A GPU Implementation of Tiled Belief Propagation on Markov Random Fields Hassan Eslami Theodoros Kasampalis Maria Kotsifakou BP-M AND TILED-BP 2 BP-M 3 Tiled BP T 0 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 4 Tiled

More information

Accelerating Parameter Sweep Applications Using CUDA

Accelerating Parameter Sweep Applications Using CUDA 2 9th International Euromicro Conference on Parallel, Distributed and Network-Based Processing Accelerating Parameter Sweep Applications Using CUDA Masaya Motokubota, Fumihiko Ino and Kenichi Hagihara

More information

Multipredicate Join Algorithms for Accelerating Relational Graph Processing on GPUs

Multipredicate Join Algorithms for Accelerating Relational Graph Processing on GPUs Multipredicate Join Algorithms for Accelerating Relational Graph Processing on GPUs Haicheng Wu 1, Daniel Zinn 2, Molham Aref 2, Sudhakar Yalamanchili 1 1. Georgia Institute of Technology 2. LogicBlox

More information

Applications of Berkeley s Dwarfs on Nvidia GPUs

Applications of Berkeley s Dwarfs on Nvidia GPUs Applications of Berkeley s Dwarfs on Nvidia GPUs Seminar: Topics in High-Performance and Scientific Computing Team N2: Yang Zhang, Haiqing Wang 05.02.2015 Overview CUDA The Dwarfs Dynamic Programming Sparse

More information

Using GPUs to compute the multilevel summation of electrostatic forces

Using GPUs to compute the multilevel summation of electrostatic forces Using GPUs to compute the multilevel summation of electrostatic forces David J. Hardy Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of

More information

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2015-HPC-150 No /8/6 SPH CUDA 1 1 SPH GPU GPGPU CPU GPU GPU GPU CUDA SPH SoA(Structures Of Array) GPU

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2015-HPC-150 No /8/6 SPH CUDA 1 1 SPH GPU GPGPU CPU GPU GPU GPU CUDA SPH SoA(Structures Of Array) GPU SPH CUDA 1 1 SPH GPU GPGPU CPU GPU GPU GPU CUDA SPH SoA(Structures Of Array) GPU CUDA SPH Acceleration of Uniform Grid-based SPH Particle Method using CUDA Takada Kisei 1 Ohno Kazuhiko 1 Abstract: SPH

More information

An Efficient Parallel Algorithm for Longest Common Subsequence Problem on GPUs

An Efficient Parallel Algorithm for Longest Common Subsequence Problem on GPUs , June 30 - July 2, 2010, London, U.K. An Efficient Parallel Algorithm for Longest Common Subsequence Problem on GPUs Jiaoyun Yang, Yun Xu*, Yi Shang* Abstract Sequence alignment is an important problem

More information

QR Decomposition on GPUs

QR Decomposition on GPUs QR Decomposition QR Algorithms Block Householder QR Andrew Kerr* 1 Dan Campbell 1 Mark Richards 2 1 Georgia Tech Research Institute 2 School of Electrical and Computer Engineering Georgia Institute of

More information

GPU for HPC. October 2010

GPU for HPC. October 2010 GPU for HPC Simone Melchionna Jonas Latt Francis Lapique October 2010 EPFL/ EDMX EPFL/EDMX EPFL/DIT simone.melchionna@epfl.ch jonas.latt@epfl.ch francis.lapique@epfl.ch 1 Moore s law: in the old days,

More information

CUDA. GPU Computing. K. Cooper 1. 1 Department of Mathematics. Washington State University

CUDA. GPU Computing. K. Cooper 1. 1 Department of Mathematics. Washington State University GPU Computing K. Cooper 1 1 Department of Mathematics Washington State University 2014 Review of Parallel Paradigms MIMD Computing Multiple Instruction Multiple Data Several separate program streams, each

More information

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University CSE 591/392: GPU Programming Introduction Klaus Mueller Computer Science Department Stony Brook University First: A Big Word of Thanks! to the millions of computer game enthusiasts worldwide Who demand

More information