Algorithms and Tools for Bioinformatics on GPUs. Bertil SCHMIDT

Size: px
Start display at page:

Download "Algorithms and Tools for Bioinformatics on GPUs. Bertil SCHMIDT"

Transcription

1 Algorithms and Tools for Bioinformatics on GPUs Bertil SCHMIDT

2 Contents Motivation Pairwise Sequence Alignment Multiple Sequence Alignment Short Read Error Correction using CUDA Some other CUDA-enabled Bioinformatics tools

3 Data Explosion

4 Typical Bioinformatics Applications Database Search BLAST, Smith-Waterman Multiple Sequence Alignment ClustalW Hidden Markov Models HMMer Motive Finding MEME De-novo Genome Assembly Velvet Phylogenetic Trees RAxML Protein Structure Prediction

5 Local Pairwise Sequence Alignment Align S=ATCTCGTATGATG S=GTCTATCAC G T C T A T C A C A T C T C G T A T G A T G = = else ) ( if ), ( y x y x Sbt α=, β= A T C T C G T A T G A T G G T C T A T C A C + = ), ( ), ( ), ( ), ( max ), ( j i S S Sbt j i H j i H j i H j i H

6 Extraction of Parallelism Ligowski, Rudnicki, Liu, Schmidt: "Accurate scanning of sequence databases with the Smith-Waterman algorithm", GPU Computing Gems, Vol., Chapter Liu, Maskell, Schmidt: "CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units", BMC Research Notes, :, 9 G T C T A T C A C A T C T C G T A T G A T G l l P P P

7 Multiple Sequence Alignment (MSA) FOS_RAT MMFSGFNADYEASSSRCSSASPAGDSLSYYHSPADSFSSMGSPVNTQDFCADLSVSSANF FOS_MOUSE MMFSGFNADYEASSSRCSSASPAGDSLSYYHSPADSFSSMGSPVNTQDFCADLSVSSANF FOS_CHICK MMYQGFAGEYEAPSSRCSSASPAGDSLTYYPSPADSFSSMGSPVNSQDFCTDLAVSSANF FOSB_MOUSE -MFQAFPGDYDS-GSRCSS-SPSAESQ--YLSSVDSFGSPPTAAASQE-CAGLGEMPGSF FOSB_HUMAN -MFQAFPGDYDS-GSRCSS-SPSAESQ--YLSSVDSFGSPPTAAASQE-CAGLGEMPGSF *:..*.:*::.***** **:.:* * *..***.* :.. :*: *:.*....* Exact DP solution has exponential complexity Heuristic optimization methods used in practice; e.g. progressive alignment method (ClustalW) (a) (b) (c) Distance Matrix Compuation Guided Tree Progressive Alignment along the Guided Tree Profiling the three stages of ClustalW Stage (Distance matrix) requires more than 9% of overall runtime

8 MSA with ClustalW HAHU HA HU HBHU. HB HU HAHO.9 9. HA HO HB HO MY WH P LH Dist Matrix: O(n l ) LG HB HBHO HBHU Dynamic Programming Alignment HBHU HBHO HBHO. 9.. MYWH PLH LGHB NJ-Tree: O(n ) LGHB PLH MYWH HAHU HAHO HAHO HAHU HAHO HAHU Dynamic Programming HBHU HBHO Dynamic Programming Alignment Progressive: O(n l ) Alignment HAHU HAHO HBHU HBHO HAHU HAHO HBHU HBHO

9 Distance Computation G T C T A T C A C A T C T C G T A T G A T G = ), ( ), ( ), ( ), ( max ), ( j i S S sbt j i H g j i H g j i H j i H sbt(x,y) = + if x=y; otherwise Linear Gap Penalty : g = nid(s,s) = d(s,s) = / Disadvantage of nid-impementation with trace-back: Quadratic Memory or Divide-and-Conquer ), min( ), ( ), ( j i j i j i l l S S nid S S d =

10 Our Approach: Distance Computation with DP in linear space G T C T A T C A C A T C T C G T A T G A T G / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 9/ / / / / / / / / / / / / / / / / / / / / / / / / / / //9/ / / / / / / / / / / / 9/ 9/ /

11 Recurrence Relations for Affine Gap Penalties

12 CUDA Parallelization Inter-task parallelization Each alignment (task) is assigned to exactly one thread dimblock alignments are performed in parallel within a thread block. Load balancing Sequences sorted by lengths all threads within a thread block have similar workload Memory access O(min{l a,l b }) storage for intermediate results per thread Stored in global memory using coalesced memory access pattern Partitioning of DP-matrix into blocks reduces global memory access by using shared memory and registers Substitution matrix stored in shared memory Sequences stored in texture memory

13 Overview: Parallelization Approaches FPGA: Systolization with Verilog HDL FPGA: Load Balancing, Partitioning (FIFO, Multi-Lanes) Sequential ClustalW Algorithm DP-Modification to allow more efficient parallelization GPU: SIMT Parallelization with CUDA GPU: Load Balancing, Optimization of memory accesses (coalesced, shared) Cell/BE: MIMD Parallelization with Cell/BE SDK Cell/BE: Load Balancing, SIMD Vectorization

14 Comparison: Speedup FPGA: Xilinx XCVLX PEs MHz GPU: GeForce GTX SPs.GHz Cell/BE: PlayStation SPEs SIMD vector-length:.ghz Speedup compared to ClustalW..9 FPGA GPU Cell/BE 9 9 () () () () () ()

15 Comparison: Productivity, Power

16 MSA-CUDA: Performance Stage + MSA-CUDA on a GPU (GeForce GTX) Better Performance than ClustalW-MPI on a PC-cluster with Cores for all tested datasets

17 Profile Hidden Markov Models Statistical model of a set of biological similar sequences HMMs can be created from MSAs General transition structure for a global alignments: D D D D Example: align HEIKO H E I K - O I I I I I M M - - M M M (start) M M M M M (end) Viterbi Algorithm: Finds most likely path through the HMM generating the given sequence Dynamic Programming: O(sequence length HMM length) Efficient parallel implementation (similar to SW) Transition structure does not allow for local or multi-hit alignments

18 Improving MSA accuracy We have designed MSAProbs to significantly improve alignment accuracy Currently working on a CUDA version

19 Short Read Error Correction May contain errors! DNA Sequencing machine Read-sequences DNA-sequence

20 Next-Generation Sequencing (NGS) NGS technology has ultra-high throughput short read-length NGS Platform Illumina (HiSeq) SOLiD Reads per run billion. billion Read length - bps - bps Run time (single-end) - days - days Run time (mate-pair) - days - days Example: Human Genome Sequencing (Li et al., ) billion reads, average read-length bp (x coverage) NGS Bioinformatics Challenges Scalability (to deal with huge amounts of reads) Algorithm design (to deal with short reads)

21 Error Correction Illumina reads contain about %-% sequencing errors (substitutions) Prior Error Correction can improve assembly quality as well as Graph size N-values produced by Edena for simulated reads (.M reads of length generated from Saccharomyces C Chr ) Human Genome (Li et al. ): distinct -mers reduced from.b to.b through prior error correction Error Correction usually most time-consuming step in assembly % of total runtime (h on a high-end PC cluster) for human genome Error Correction also increases the amount of mapped reads to the reference genome for Re-sequencing applications

22 Spectral Alignment Problem (SAP) Changing the single error at position in the given read from G to A results in l corresponding matches in the spectrum.

23 Spectral Alignment Problem (SAP) Reads R={r,...,r k } of length L Length l<l Reference genome G l-mer spectrum T(G) read error-free all its l-mers have corresponding exact match in T(G) read has a single mutation error overlapping l-mers have (in most cases) a low number of corresponding exact matches in T(G) Changing error to correct base-pair, all overlapping l-mers have a corresponding match in T(G)

24 Spectral Alignment Problem (SAP) G usually unknown T(G) approximated by T(R,m) T(R,m): all l-mers that occur at least m times (multiplicity) in R Possible complications. Some l-mers in T(G) not necessarily in T(R,m) (false negatives). Some l-mers in T(R,m) not necessarily int(g) (false positives) Quality of approximation can be reduced by using quality-scores associated with each read (i.e. Use only high-quality l-mers to build T(m,R)) Q-score: value between and

25 Bloom Filter Data Structure Membership test most important operation (test if an l-mer is in T(m,R)) Use of a space-efficient Bloom filter for probabilistic hashing stored in CUDA texture memory C A C T G G A A G T C l-tuple s BF[..m] & if s T m,l (R) or FP(s) if s T m,l (R) and not FP(s)

26 SAP Voting Procedure

27 DecGPU error correction algorithm. (Distributed) spectrum construction. filtering out error-free reads. fixing erroneous reads using a voting algorithm. trimming (or discarding entirely) the fixed reads that remain erroneous. optional iterative policy between the filtering and fixing stages for the correction of more than one base error in a single read. On a cluster DecGPU uses a one-toone correspondence between an MPI process and one GPU

28 Performance Evaluation Datasets

29 Runtime Comparison Hardware Configurations DecGPU: single Tesla T DecGPU (CPU version): AMD Opteron quad-core (multithreaded with OpenMP) Euler-SR: Intel Core i (single threaded) All times in seconds Data set Euler-SR DecGPU (CPU) DecGPU (GPU) Overall Speedup Overall Speedup SC EC SC EC SC EC Euler-SR DecGPU(CPU) A.. B C

30 Accuracy and Runtime Comparison Comparison to hshrec Salmela (Bioinformatics, ) extension of the suffix tree approach by Schroeder and Schmidt (Bioinformatics, 9) hshrec and DecGPU both run a dual quad-core Intel Xeon E (both multithreaded)

31 Accuracy Evaluation for Re-sequencing

32 Quality Evaluation for de-novo Assembly

33 Scalability FPP of a Bloom filter (where N B = number of buckets, N E = number of elements, α=hn E / N B ): DecGPU: h =, max N B = GB memory FPP FPP and maximal N E for representative α values ( α e ) h We estimate the maximal number of reads that can be processed by N PE MPI processes as: E( N kmer ) C N R = N PE N E = N PE N E L k + L Example: C=, L=, N PE =: N R =. billion for α =.

34 mcuda-meme: Motif finding ATCCCG gene TTCCGG gene ATGCCG gene ATCCAC gene Complications of identifying common motifs in DNA sequences: We do not know the motif sequence We do not know where it is located relative to the genes start Motifs can differ slightly from one gene to the next How to discern it from random motifs?

35 mcuda-meme: Motif finding CUDA-MEME is integrated in the CompleteMotifs pipeline ( for ChiP-Seq data analysis

36 CUDA-BLASTP Stage Stage Stage Stage database Word hits Ungapped Matching Extension HSPs Gapped Extension HSAs Traceback & Display alignments Filtration approach: Assumes good alignments contain short exact matches Find such matches quickly using data structures such as lookup tables Identified short matches are used as seeds for further detailed analysis

37 CUDA-BLASTP

38 Summary and Current Work DecGPU CUDA-SW++ mcuda-meme CUDA-BLASTP Tools currently under development CRiSPy (Computing Species Richness in S rrna Pyrosequencing Datasets with CUDA) PASHA (denovo genome assembler) MSAProbs (CUDA version) More versions of BLAST

Algorithms and Tools for Bioinformatics on GPUs. Bertil Schmidt

Algorithms and Tools for Bioinformatics on GPUs. Bertil Schmidt Algorithms and Tools for Bioinformatics on GPUs Bertil Schmidt Data Explosion Contents Overview CUDA-enabled HPC Bioinformatics Software developed by my group Pairwise Sequence Alignment Multiple Sequence

More information

Fast Sequence Alignment Method Using CUDA-enabled GPU

Fast Sequence Alignment Method Using CUDA-enabled GPU Fast Sequence Alignment Method Using CUDA-enabled GPU Yeim-Kuan Chang Department of Computer Science and Information Engineering National Cheng Kung University Tainan, Taiwan ykchang@mail.ncku.edu.tw De-Yu

More information

Comparative Analysis of Protein Alignment Algorithms in Parallel environment using CUDA

Comparative Analysis of Protein Alignment Algorithms in Parallel environment using CUDA Comparative Analysis of Protein Alignment Algorithms in Parallel environment using BLAST versus Smith-Waterman Shadman Fahim shadmanbracu09@gmail.com Shehabul Hossain rudrozzal@gmail.com Gulshan Jubaed

More information

Biology 644: Bioinformatics

Biology 644: Bioinformatics Find the best alignment between 2 sequences with lengths n and m, respectively Best alignment is very dependent upon the substitution matrix and gap penalties The Global Alignment Problem tries to find

More information

BLAST & Genome assembly

BLAST & Genome assembly BLAST & Genome assembly Solon P. Pissis Tomáš Flouri Heidelberg Institute for Theoretical Studies November 17, 2012 1 Introduction Introduction 2 BLAST What is BLAST? The algorithm 3 Genome assembly De

More information

A GPU Algorithm for Comparing Nucleotide Histograms

A GPU Algorithm for Comparing Nucleotide Histograms A GPU Algorithm for Comparing Nucleotide Histograms Adrienne Breland Harpreet Singh Omid Tutakhil Mike Needham Dickson Luong Grant Hennig Roger Hoang Torborn Loken Sergiu M. Dascalu Frederick C. Harris,

More information

Darwin: A Genomic Co-processor gives up to 15,000X speedup on long read assembly (To appear in ASPLOS 2018)

Darwin: A Genomic Co-processor gives up to 15,000X speedup on long read assembly (To appear in ASPLOS 2018) Darwin: A Genomic Co-processor gives up to 15,000X speedup on long read assembly (To appear in ASPLOS 2018) Yatish Turakhia EE PhD candidate Stanford University Prof. Bill Dally (Electrical Engineering

More information

ENABLING NEW SCIENCE GPU SOLUTIONS

ENABLING NEW SCIENCE GPU SOLUTIONS ENABLING NEW SCIENCE TESLA BIO Workbench The NVIDIA Tesla Bio Workbench enables biophysicists and computational chemists to push the boundaries of life sciences research. It turns a standard PC into a

More information

BLAST & Genome assembly

BLAST & Genome assembly BLAST & Genome assembly Solon P. Pissis Tomáš Flouri Heidelberg Institute for Theoretical Studies May 15, 2014 1 BLAST What is BLAST? The algorithm 2 Genome assembly De novo assembly Mapping assembly 3

More information

Keywords -Bioinformatics, sequence alignment, Smith- waterman (SW) algorithm, GPU, CUDA

Keywords -Bioinformatics, sequence alignment, Smith- waterman (SW) algorithm, GPU, CUDA Volume 5, Issue 5, May 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Accelerating Smith-Waterman

More information

GPU 3 Smith-Waterman

GPU 3 Smith-Waterman 129 211 11 GPU 3 Smith-Waterman Saori SUDO 1 GPU Graphic Processing Unit GPU GPGPUGeneral-purpose computing on GPU 1) CPU GPU GPU GPGPU NVIDIA C CUDACompute Unified Device Architecture 2) OpenCL 3) DNA

More information

An Ultrafast Scalable Many-core Motif Discovery Algorithm for Multiple GPUs

An Ultrafast Scalable Many-core Motif Discovery Algorithm for Multiple GPUs 2011 IEEE International Parallel & Distributed Processing Symposium An Ultrafast Scalable Many-core Motif Discovery Algorithm for Multiple GPUs Yongchao Liu, Bertil Schmidt, Douglas L. Maskell School of

More information

Harnessing Associative Computing for Sequence Alignment with Parallel Accelerators

Harnessing Associative Computing for Sequence Alignment with Parallel Accelerators Harnessing Associative Computing for Sequence Alignment with Parallel Accelerators Shannon I. Steinfadt Doctoral Research Showcase III Room 17 A / B 4:00-4:15 International Conference for High Performance

More information

Review of Recent NGS Short Reads Alignment Tools BMI-231 final project, Chenxi Chen Spring 2014

Review of Recent NGS Short Reads Alignment Tools BMI-231 final project, Chenxi Chen Spring 2014 Review of Recent NGS Short Reads Alignment Tools BMI-231 final project, Chenxi Chen Spring 2014 Deciphering the information contained in DNA sequences began decades ago since the time of Sanger sequencing.

More information

AAlign: A SIMD Framework for Pairwise Sequence Alignment on x86-based Multi- and Many-core Processors

AAlign: A SIMD Framework for Pairwise Sequence Alignment on x86-based Multi- and Many-core Processors AAlign: A SIMD Framework for Pairwise Sequence Alignment on x86-based Multi- and Many-core Processors Kaixi Hou, Hao Wang, Wu-chun Feng {kaixihou,hwang121,wfeng}@vt.edu Pairwise Sequence Alignment Algorithms

More information

Alignment and clustering tools for sequence analysis. Omar Abudayyeh Presentation December 9, 2015

Alignment and clustering tools for sequence analysis. Omar Abudayyeh Presentation December 9, 2015 Alignment and clustering tools for sequence analysis Omar Abudayyeh 18.337 Presentation December 9, 2015 Introduction Sequence comparison is critical for inferring biological relationships within large

More information

Mapping NGS reads for genomics studies

Mapping NGS reads for genomics studies Mapping NGS reads for genomics studies Valencia, 28-30 Sep 2015 BIER Alejandro Alemán aaleman@cipf.es Genomics Data Analysis CIBERER Where are we? Fastq Sequence preprocessing Fastq Alignment BAM Visualization

More information

Accelerating Genomic Sequence Alignment Workload with Scalable Vector Architecture

Accelerating Genomic Sequence Alignment Workload with Scalable Vector Architecture Accelerating Genomic Sequence Alignment Workload with Scalable Vector Architecture Dong-hyeon Park, Jon Beaumont, Trevor Mudge University of Michigan, Ann Arbor Genomics Past Weeks ~$3 billion Human Genome

More information

Darwin-WGA. A Co-processor Provides Increased Sensitivity in Whole Genome Alignments with High Speedup

Darwin-WGA. A Co-processor Provides Increased Sensitivity in Whole Genome Alignments with High Speedup Darwin-WGA A Co-processor Provides Increased Sensitivity in Whole Genome Alignments with High Speedup Yatish Turakhia*, Sneha D. Goenka*, Prof. Gill Bejerano, Prof. William J. Dally * Equal contribution

More information

GPU Accelerated Smith-Waterman

GPU Accelerated Smith-Waterman GPU Accelerated Smith-Waterman Yang Liu 1,WayneHuang 1,2, John Johnson 1, and Sheila Vaidya 1 1 Lawrence Livermore National Laboratory 2 DOE Joint Genome Institute, UCRL-CONF-218814 {liu24, whuang, jjohnson,

More information

BLAST, Profile, and PSI-BLAST

BLAST, Profile, and PSI-BLAST BLAST, Profile, and PSI-BLAST Jianlin Cheng, PhD School of Electrical Engineering and Computer Science University of Central Florida 26 Free for academic use Copyright @ Jianlin Cheng & original sources

More information

GPUBwa -Parallelization of Burrows Wheeler Aligner using Graphical Processing Units

GPUBwa -Parallelization of Burrows Wheeler Aligner using Graphical Processing Units GPUBwa -Parallelization of Burrows Wheeler Aligner using Graphical Processing Units Abstract A very popular discipline in bioinformatics is Next-Generation Sequencing (NGS) or DNA sequencing. It specifies

More information

Sequence comparison: Local alignment

Sequence comparison: Local alignment Sequence comparison: Local alignment Genome 559: Introuction to Statistical an Computational Genomics Prof. James H. Thomas http://faculty.washington.eu/jht/gs559_217/ Review global alignment en traceback

More information

Alignment of Long Sequences

Alignment of Long Sequences Alignment of Long Sequences BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2009 Mark Craven craven@biostat.wisc.edu Pairwise Whole Genome Alignment: Task Definition Given a pair of genomes (or other large-scale

More information

GPU Accelerated API for Alignment of Genomics Sequencing Data

GPU Accelerated API for Alignment of Genomics Sequencing Data GPU Accelerated API for Alignment of Genomics Sequencing Data Nauman Ahmed, Hamid Mushtaq, Koen Bertels and Zaid Al-Ars Computer Engineering Laboratory, Delft University of Technology, Delft, The Netherlands

More information

Darwin: A Hardware-acceleration Framework for Genomic Sequence Alignment

Darwin: A Hardware-acceleration Framework for Genomic Sequence Alignment Darwin: A Hardware-acceleration Framework for Genomic Sequence Alignment Yatish Turakhia EE PhD candidate Stanford University Prof. Bill Dally (Electrical Engineering and Computer Science) Prof. Gill Bejerano

More information

OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT

OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT Asif Ali Khan*, Laiq Hassan*, Salim Ullah* ABSTRACT: In bioinformatics, sequence alignment is a common and insistent task. Biologists align

More information

GPU-Supercomputer Acceleration of Pattern Matching

GPU-Supercomputer Acceleration of Pattern Matching CHAPTER GPU-Supercomputer Acceleration of Pattern Matching 13 Ali Khajeh-Saeed, J. Blair Perot This chapter describes the solution of a single very large pattern-matching search using a supercomputing

More information

International Journal of Engineering and Scientific Research

International Journal of Engineering and Scientific Research Research Article ISSN: XXXX XXXX International Journal of Engineering and Scientific Research Journal home page: www.ijesr.info AN EFFICIENT RETOUCHED BLOOM FILTER BASED WORD-MATCHING STAGE OF BLASTN R.

More information

Omega: an Overlap-graph de novo Assembler for Metagenomics

Omega: an Overlap-graph de novo Assembler for Metagenomics Omega: an Overlap-graph de novo Assembler for Metagenomics B a h l e l H a i d e r, Ta e - H y u k A h n, B r i a n B u s h n e l l, J u a n j u a n C h a i, A l e x C o p e l a n d, C h o n g l e Pa n

More information

Single Pass, BLAST-like, Approximate String Matching on FPGAs*

Single Pass, BLAST-like, Approximate String Matching on FPGAs* Single Pass, BLAST-like, Approximate String Matching on FPGAs* Martin Herbordt Josh Model Yongfeng Gu Bharat Sukhwani Tom VanCourt Computer Architecture and Automated Design Laboratory Department of Electrical

More information

Sequence alignment theory and applications Session 3: BLAST algorithm

Sequence alignment theory and applications Session 3: BLAST algorithm Sequence alignment theory and applications Session 3: BLAST algorithm Introduction to Bioinformatics online course : IBT Sonal Henson Learning Objectives Understand the principles of the BLAST algorithm

More information

As of August 15, 2008, GenBank contained bases from reported sequences. The search procedure should be

As of August 15, 2008, GenBank contained bases from reported sequences. The search procedure should be 48 Bioinformatics I, WS 09-10, S. Henz (script by D. Huson) November 26, 2009 4 BLAST and BLAT Outline of the chapter: 1. Heuristics for the pairwise local alignment of two sequences 2. BLAST: search and

More information

Sequence Alignment with GPU: Performance and Design Challenges

Sequence Alignment with GPU: Performance and Design Challenges Sequence Alignment with GPU: Performance and Design Challenges Gregory M. Striemer and Ali Akoglu Department of Electrical and Computer Engineering University of Arizona, 85721 Tucson, Arizona USA {gmstrie,

More information

An Analysis of Pairwise Sequence Alignment Algorithm Complexities: Needleman-Wunsch, Smith-Waterman, FASTA, BLAST and Gapped BLAST

An Analysis of Pairwise Sequence Alignment Algorithm Complexities: Needleman-Wunsch, Smith-Waterman, FASTA, BLAST and Gapped BLAST An Analysis of Pairwise Sequence Alignment Algorithm Complexities: Needleman-Wunsch, Smith-Waterman, FASTA, BLAST and Gapped BLAST Alexander Chan 5075504 Biochemistry 218 Final Project An Analysis of Pairwise

More information

Brief review from last class

Brief review from last class Sequence Alignment Brief review from last class DNA is has direction, we will use only one (5 -> 3 ) and generate the opposite strand as needed. DNA is a 3D object (see lecture 1) but we will model it

More information

Reconstructing long sequences from overlapping sequence fragment. Searching databases for related sequences and subsequences

Reconstructing long sequences from overlapping sequence fragment. Searching databases for related sequences and subsequences SEQUENCE ALIGNMENT ALGORITHMS 1 Why compare sequences? Reconstructing long sequences from overlapping sequence fragment Searching databases for related sequences and subsequences Storing, retrieving and

More information

Combinatorial Pattern Matching. CS 466 Saurabh Sinha

Combinatorial Pattern Matching. CS 466 Saurabh Sinha Combinatorial Pattern Matching CS 466 Saurabh Sinha Genomic Repeats Example of repeats: ATGGTCTAGGTCCTAGTGGTC Motivation to find them: Genomic rearrangements are often associated with repeats Trace evolutionary

More information

Parallel Prefiltering for Accelerating HHblits on the Convey HC-1

Parallel Prefiltering for Accelerating HHblits on the Convey HC-1 Parallel Prefiltering for Accelerating HHblits on the Convey HC-1 Michael Bromberger, Fabian Nowak Chair for Computer Architecture and Parallel Processing Karlsruhe Institute of Technology Kaiserstraße

More information

IDBA - A Practical Iterative de Bruijn Graph De Novo Assembler

IDBA - A Practical Iterative de Bruijn Graph De Novo Assembler IDBA - A Practical Iterative de Bruijn Graph De Novo Assembler Yu Peng, Henry Leung, S.M. Yiu, Francis Y.L. Chin Department of Computer Science, The University of Hong Kong Pokfulam Road, Hong Kong {ypeng,

More information

Masher: Mapping Long(er) Reads with Hash-based Genome Indexing on GPUs

Masher: Mapping Long(er) Reads with Hash-based Genome Indexing on GPUs Masher: Mapping Long(er) Reads with Hash-based Genome Indexing on GPUs Anas Abu-Doleh 1,2, Erik Saule 1, Kamer Kaya 1 and Ümit V. Çatalyürek 1,2 1 Department of Biomedical Informatics 2 Department of Electrical

More information

CISC 889 Bioinformatics (Spring 2003) Multiple Sequence Alignment

CISC 889 Bioinformatics (Spring 2003) Multiple Sequence Alignment CISC 889 Bioinformatics (Spring 2003) Multiple Sequence Alignment Courtesy of jalview 1 Motivations Collective statistic Protein families Identification and representation of conserved sequence features

More information

Multiple Sequence Alignment (MSA)

Multiple Sequence Alignment (MSA) I519 Introduction to Bioinformatics, Fall 2013 Multiple Sequence Alignment (MSA) Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Outline Multiple sequence alignment (MSA) Generalize

More information

Dynamic Programming User Manual v1.0 Anton E. Weisstein, Truman State University Aug. 19, 2014

Dynamic Programming User Manual v1.0 Anton E. Weisstein, Truman State University Aug. 19, 2014 Dynamic Programming User Manual v1.0 Anton E. Weisstein, Truman State University Aug. 19, 2014 Dynamic programming is a group of mathematical methods used to sequentially split a complicated problem into

More information

PROTEIN MULTIPLE ALIGNMENT MOTIVATION: BACKGROUND: Marina Sirota

PROTEIN MULTIPLE ALIGNMENT MOTIVATION: BACKGROUND: Marina Sirota Marina Sirota MOTIVATION: PROTEIN MULTIPLE ALIGNMENT To study evolution on the genetic level across a wide range of organisms, biologists need accurate tools for multiple sequence alignment of protein

More information

Accelerated GPU Based Protein Sequence Alignment An optimized database sequences approach

Accelerated GPU Based Protein Sequence Alignment An optimized database sequences approach IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 231 Accelerated GPU Based Protein Sequence Alignment An optimized database sequences approach Muhammad

More information

Performance analysis of parallel de novo genome assembly in shared memory system

Performance analysis of parallel de novo genome assembly in shared memory system IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Performance analysis of parallel de novo genome assembly in shared memory system To cite this article: Syam Budi Iryanto et al 2018

More information

INTRODUCING NVBIO: HIGH PERFORMANCE PRIMITIVES FOR COMPUTATIONAL GENOMICS. Jonathan Cohen, NVIDIA Nuno Subtil, NVIDIA Jacopo Pantaleoni, NVIDIA

INTRODUCING NVBIO: HIGH PERFORMANCE PRIMITIVES FOR COMPUTATIONAL GENOMICS. Jonathan Cohen, NVIDIA Nuno Subtil, NVIDIA Jacopo Pantaleoni, NVIDIA INTRODUCING NVBIO: HIGH PERFORMANCE PRIMITIVES FOR COMPUTATIONAL GENOMICS Jonathan Cohen, NVIDIA Nuno Subtil, NVIDIA Jacopo Pantaleoni, NVIDIA SEQUENCING AND MOORE S LAW Slide courtesy Illumina DRAM I/F

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

Biological Sequence Comparison on Hybrid Platforms with Dynamic Workload Adjustment

Biological Sequence Comparison on Hybrid Platforms with Dynamic Workload Adjustment 2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum Biological Sequence Comparison on Hybrid Platforms with Dynamic Workload Adjustment Fernando Machado

More information

HPC-BLAST Scalable Sequence Analysis for the Intel Many Integrated Core Future

HPC-BLAST Scalable Sequence Analysis for the Intel Many Integrated Core Future HPC-BLAST Scalable Sequence Analysis for the Intel Many Integrated Core Future Dr. R. Glenn Brook & Shane Sawyer Joint Institute For Computational Sciences University of Tennessee, Knoxville Dr. Bhanu

More information

SlopMap: a software application tool for quick and flexible identification of similar sequences using exact k-mer matching

SlopMap: a software application tool for quick and flexible identification of similar sequences using exact k-mer matching SlopMap: a software application tool for quick and flexible identification of similar sequences using exact k-mer matching Ilya Y. Zhbannikov 1, Samuel S. Hunter 1,2, Matthew L. Settles 1,2, and James

More information

Quiz section 10. June 1, 2018

Quiz section 10. June 1, 2018 Quiz section 10 June 1, 2018 Logistics Bring: 1 page cheat-sheet, simple calculator Any last logistics questions about the final? Logistics Bring: 1 page cheat-sheet, simple calculator Any last logistics

More information

Heterogeneous Hardware/Software Acceleration of the BWA-MEM DNA Alignment Algorithm

Heterogeneous Hardware/Software Acceleration of the BWA-MEM DNA Alignment Algorithm Heterogeneous Hardware/Software Acceleration of the BWA-MEM DNA Alignment Algorithm Nauman Ahmed, Vlad-Mihai Sima, Ernst Houtgast, Koen Bertels and Zaid Al-Ars Computer Engineering Lab, Delft University

More information

Chapter 6. Multiple sequence alignment (week 10)

Chapter 6. Multiple sequence alignment (week 10) Course organization Introduction ( Week 1,2) Part I: Algorithms for Sequence Analysis (Week 1-11) Chapter 1-3, Models and theories» Probability theory and Statistics (Week 3)» Algorithm complexity analysis

More information

Principles of Bioinformatics. BIO540/STA569/CSI660 Fall 2010

Principles of Bioinformatics. BIO540/STA569/CSI660 Fall 2010 Principles of Bioinformatics BIO540/STA569/CSI660 Fall 2010 Lecture 11 Multiple Sequence Alignment I Administrivia Administrivia The midterm examination will be Monday, October 18 th, in class. Closed

More information

Finding data. HMMER Answer key

Finding data. HMMER Answer key Finding data HMMER Answer key HMMER input is prepared using VectorBase ClustalW, which runs a Java application for the graphical representation of the results. If you get an error message that blocks this

More information

GLOBEX Bioinformatics (Summer 2015) Multiple Sequence Alignment

GLOBEX Bioinformatics (Summer 2015) Multiple Sequence Alignment GLOBEX Bioinformatics (Summer 2015) Multiple Sequence Alignment Scoring Dynamic Programming algorithms Heuristic algorithms CLUSTAL W Courtesy of jalview Motivations Collective (or aggregate) statistic

More information

24 Grundlagen der Bioinformatik, SS 10, D. Huson, April 26, This lecture is based on the following papers, which are all recommended reading:

24 Grundlagen der Bioinformatik, SS 10, D. Huson, April 26, This lecture is based on the following papers, which are all recommended reading: 24 Grundlagen der Bioinformatik, SS 10, D. Huson, April 26, 2010 3 BLAST and FASTA This lecture is based on the following papers, which are all recommended reading: D.J. Lipman and W.R. Pearson, Rapid

More information

Under the Hood of Alignment Algorithms for NGS Researchers

Under the Hood of Alignment Algorithms for NGS Researchers Under the Hood of Alignment Algorithms for NGS Researchers April 16, 2014 Gabe Rudy VP of Product Development Golden Helix Questions during the presentation Use the Questions pane in your GoToWebinar window

More information

Visual Analysis of Lagrangian Particle Data from Combustion Simulations

Visual Analysis of Lagrangian Particle Data from Combustion Simulations Visual Analysis of Lagrangian Particle Data from Combustion Simulations Hongfeng Yu Sandia National Laboratories, CA Ultrascale Visualization Workshop, SC11 Nov 13 2011, Seattle, WA Joint work with Jishang

More information

Bioinformatics for Biologists

Bioinformatics for Biologists Bioinformatics for Biologists Sequence Analysis: Part I. Pairwise alignment and database searching Fran Lewitter, Ph.D. Director Bioinformatics & Research Computing Whitehead Institute Topics to Cover

More information

Scalable Accelerator Architecture for Local Alignment of DNA Sequences

Scalable Accelerator Architecture for Local Alignment of DNA Sequences Scalable Accelerator Architecture for Local Alignment of DNA Sequences Nuno Sebastião, Nuno Roma, Paulo Flores INESC-ID / IST-TU Lisbon Rua Alves Redol, 9, Lisboa PORTUGAL {Nuno.Sebastiao, Nuno.Roma, Paulo.Flores}

More information

Alignments BLAST, BLAT

Alignments BLAST, BLAT Alignments BLAST, BLAT Genome Genome Gene vs Built of DNA DNA Describes Organism Protein gene Stored as Circular/ linear Single molecule, or a few of them Both (depending on the species) Part of genome

More information

MetaPhyler Usage Manual

MetaPhyler Usage Manual MetaPhyler Usage Manual Bo Liu boliu@umiacs.umd.edu March 13, 2012 Contents 1 What is MetaPhyler 1 2 Installation 1 3 Quick Start 2 3.1 Taxonomic profiling for metagenomic sequences.............. 2 3.2

More information

Basic Local Alignment Search Tool (BLAST)

Basic Local Alignment Search Tool (BLAST) BLAST 26.04.2018 Basic Local Alignment Search Tool (BLAST) BLAST (Altshul-1990) is an heuristic Pairwise Alignment composed by six-steps that search for local similarities. The most used access point to

More information

FastA & the chaining problem

FastA & the chaining problem FastA & the chaining problem We will discuss: Heuristics used by the FastA program for sequence alignment Chaining problem 1 Sources for this lecture: Lectures by Volker Heun, Daniel Huson and Knut Reinert,

More information

FastA and the chaining problem, Gunnar Klau, December 1, 2005, 10:

FastA and the chaining problem, Gunnar Klau, December 1, 2005, 10: FastA and the chaining problem, Gunnar Klau, December 1, 2005, 10:56 4001 4 FastA and the chaining problem We will discuss: Heuristics used by the FastA program for sequence alignment Chaining problem

More information

8/19/13. Computational problems. Introduction to Algorithm

8/19/13. Computational problems. Introduction to Algorithm I519, Introduction to Introduction to Algorithm Yuzhen Ye (yye@indiana.edu) School of Informatics and Computing, IUB Computational problems A computational problem specifies an input-output relationship

More information

Improving CUDASW++, a Parallelization of Smith-Waterman for CUDA Enabled Devices

Improving CUDASW++, a Parallelization of Smith-Waterman for CUDA Enabled Devices 2011 IEEE International Parallel & Distributed Processing Symposium Improving CUDASW++, a Parallelization of Smith-Waterman for CUDA Enabled Devices Doug Hains, Zach Cashero, Mark Ottenberg, Wim Bohm and

More information

Speeding up Subset Seed Algorithm for Intensive Protein Sequence Comparison

Speeding up Subset Seed Algorithm for Intensive Protein Sequence Comparison Speeding up Subset Seed Algorithm for Intensive Protein Sequence Comparison Van Hoa NGUYEN IRISA/INRIA Rennes Rennes, France Email: vhnguyen@irisa.fr Dominique LAVENIER CNRS/IRISA Rennes, France Email:

More information

3.4 Multiple sequence alignment

3.4 Multiple sequence alignment 3.4 Multiple sequence alignment Why produce a multiple sequence alignment? Using more than two sequences results in a more convincing alignment by revealing conserved regions in ALL of the sequences Aligned

More information

Integrated Accelerator Architecture for DNA Sequences Alignment with Enhanced Traceback Phase

Integrated Accelerator Architecture for DNA Sequences Alignment with Enhanced Traceback Phase Integrated Accelerator Architecture for DNA Sequences Alignment with Enhanced Traceback Phase Nuno Sebastião Tiago Dias Nuno Roma Paulo Flores INESC-ID INESC-ID / IST INESC-ID INESC-ID IST-TU Lisbon ISEL-PI

More information

Lecture Overview. Sequence search & alignment. Searching sequence databases. Sequence Alignment & Search. Goals: Motivations:

Lecture Overview. Sequence search & alignment. Searching sequence databases. Sequence Alignment & Search. Goals: Motivations: Lecture Overview Sequence Alignment & Search Karin Verspoor, Ph.D. Faculty, Computational Bioscience Program University of Colorado School of Medicine With credit and thanks to Larry Hunter for creating

More information

Lectures by Volker Heun, Daniel Huson and Knut Reinert, in particular last years lectures

Lectures by Volker Heun, Daniel Huson and Knut Reinert, in particular last years lectures 4 FastA and the chaining problem We will discuss: Heuristics used by the FastA program for sequence alignment Chaining problem 4.1 Sources for this lecture Lectures by Volker Heun, Daniel Huson and Knut

More information

Biochemistry 324 Bioinformatics. Multiple Sequence Alignment (MSA)

Biochemistry 324 Bioinformatics. Multiple Sequence Alignment (MSA) Biochemistry 324 Bioinformatics Multiple Sequence Alignment (MSA) Big- Οh notation Greek omicron symbol Ο The Big-Oh notation indicates the complexity of an algorithm in terms of execution speed and storage

More information

Efficient Pairwise Statistical Significance Estimation for Local Sequence Alignment Using GPU

Efficient Pairwise Statistical Significance Estimation for Local Sequence Alignment Using GPU Efficient Pairwise Statistical Significance Estimation for Local Sequence Alignment Using GPU 1,2 Yuhong Zhang, 2 Sanchit Misra, 2 Daniel Honbo, 2 Ankit Agrawal, 2 Wei-keng Liao, 2 Alok Choudhary 1 School

More information

How to Run NCBI BLAST on zcluster at GACRC

How to Run NCBI BLAST on zcluster at GACRC How to Run NCBI BLAST on zcluster at GACRC BLAST: Basic Local Alignment Search Tool Georgia Advanced Computing Resource Center University of Georgia Suchitra Pakala pakala@uga.edu 1 OVERVIEW What is BLAST?

More information

Design and Evaluation of a BLAST Ungapped Extension Accelerator, Master's Thesis

Design and Evaluation of a BLAST Ungapped Extension Accelerator, Master's Thesis Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-2006-21 2006-01-01 Design and

More information

Chapter 8 Multiple sequence alignment. Chaochun Wei Spring 2018

Chapter 8 Multiple sequence alignment. Chaochun Wei Spring 2018 1896 1920 1987 2006 Chapter 8 Multiple sequence alignment Chaochun Wei Spring 2018 Contents 1. Reading materials 2. Multiple sequence alignment basic algorithms and tools how to improve multiple alignment

More information

de novo assembly Simon Rasmussen 36626: Next Generation Sequencing analysis DTU Bioinformatics Next Generation Sequencing Analysis

de novo assembly Simon Rasmussen 36626: Next Generation Sequencing analysis DTU Bioinformatics Next Generation Sequencing Analysis de novo assembly Simon Rasmussen 36626: Next Generation Sequencing analysis DTU Bioinformatics 27626 - Next Generation Sequencing Analysis Generalized NGS analysis Data size Application Assembly: Compare

More information

Sequence Alignment & Search

Sequence Alignment & Search Sequence Alignment & Search Karin Verspoor, Ph.D. Faculty, Computational Bioscience Program University of Colorado School of Medicine With credit and thanks to Larry Hunter for creating the first version

More information

Parallel Exact Spliced Alignment on GPU

Parallel Exact Spliced Alignment on GPU Parallel Exact Spliced Alignment on GPU Anisio Nolasco Nahri Moreano School of Computing Federal University of Mato Grosso do Sul, Brazil Email: anisionolasco@gmailcom, nahri@facomufmsbr Abstract Due to

More information

THE Smith-Waterman (SW) algorithm [1] is a wellknown

THE Smith-Waterman (SW) algorithm [1] is a wellknown Design and Implementation of the Smith-Waterman Algorithm on the CUDA-Compatible GPU Yuma Munekawa, Fumihiko Ino, Member, IEEE, and Kenichi Hagihara Abstract This paper describes a design and implementation

More information

Research Article Improving the Mapping of Smith-Waterman Sequence Database Searches onto CUDA-Enabled GPUs

Research Article Improving the Mapping of Smith-Waterman Sequence Database Searches onto CUDA-Enabled GPUs BioMed Research International Volume 2015, Article ID 185179, 10 pages http://dx.doi.org/10.1155/2015/185179 Research Article Improving the Mapping of Smith-Waterman Sequence Database Searches onto CUDA-Enabled

More information

WITH the advent of the Next-Generation Sequencing

WITH the advent of the Next-Generation Sequencing 1262 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012 Integrated Hardware Architecture for Efficient Computation of the n-best Bio-Sequence Local Alignments in

More information

A Coprocessor Architecture for Fast Protein Structure Prediction

A Coprocessor Architecture for Fast Protein Structure Prediction A Coprocessor Architecture for Fast Protein Structure Prediction M. Marolia, R. Khoja, T. Acharya, C. Chakrabarti Department of Electrical Engineering Arizona State University, Tempe, USA. Abstract Predicting

More information

Sequence analysis Pairwise sequence alignment

Sequence analysis Pairwise sequence alignment UMF11 Introduction to bioinformatics, 25 Sequence analysis Pairwise sequence alignment 1. Sequence alignment Lecturer: Marina lexandersson 12 September, 25 here are two types of sequence alignments, global

More information

CPU-GPU Heterogeneous Computing

CPU-GPU Heterogeneous Computing CPU-GPU Heterogeneous Computing Advanced Seminar "Computer Engineering Winter-Term 2015/16 Steffen Lammel 1 Content Introduction Motivation Characteristics of CPUs and GPUs Heterogeneous Computing Systems

More information

From Smith-Waterman to BLAST

From Smith-Waterman to BLAST From Smith-Waterman to BLAST Jeremy Buhler July 23, 2015 Smith-Waterman is the fundamental tool that we use to decide how similar two sequences are. Isn t that all that BLAST does? In principle, it is

More information

Highly Scalable and Accurate Seeds for Subsequence Alignment

Highly Scalable and Accurate Seeds for Subsequence Alignment Highly Scalable and Accurate Seeds for Subsequence Alignment Abhijit Pol Tamer Kahveci Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA, 32611

More information

IDBA A Practical Iterative de Bruijn Graph De Novo Assembler

IDBA A Practical Iterative de Bruijn Graph De Novo Assembler IDBA A Practical Iterative de Bruijn Graph De Novo Assembler Yu Peng, Henry C.M. Leung, S.M. Yiu, and Francis Y.L. Chin Department of Computer Science, The University of Hong Kong Pokfulam Road, Hong Kong

More information

SWhybrid: A Hybrid-Parallel Framework for Large-Scale Protein Sequence Database Search

SWhybrid: A Hybrid-Parallel Framework for Large-Scale Protein Sequence Database Search 217 IEEE International Parallel and Distributed Processing Symposium SWhybrid: A Hybrid-Parallel Framework for Large-Scale Protein Sequence Database Search Haidong Lan, Weiguo Liu Shandong University Jinan,

More information

Meraculous De Novo Assembly of the Ariolimax dolichophallus Genome. Charles Cole, Jake Houser, Kyle McGovern, and Jennie Richardson

Meraculous De Novo Assembly of the Ariolimax dolichophallus Genome. Charles Cole, Jake Houser, Kyle McGovern, and Jennie Richardson Meraculous De Novo Assembly of the Ariolimax dolichophallus Genome Charles Cole, Jake Houser, Kyle McGovern, and Jennie Richardson Meraculous Assembler Published by the US Department of Energy Joint Genome

More information

ON HEURISTIC METHODS IN NEXT-GENERATION SEQUENCING DATA ANALYSIS

ON HEURISTIC METHODS IN NEXT-GENERATION SEQUENCING DATA ANALYSIS ON HEURISTIC METHODS IN NEXT-GENERATION SEQUENCING DATA ANALYSIS Ivan Vogel Doctoral Degree Programme (1), FIT BUT E-mail: xvogel01@stud.fit.vutbr.cz Supervised by: Jaroslav Zendulka E-mail: zendulka@fit.vutbr.cz

More information

CUDAlign 4.0: Incremental Speculative Traceback for Exact Chromosome-Wide Alignment in GPU Clusters

CUDAlign 4.0: Incremental Speculative Traceback for Exact Chromosome-Wide Alignment in GPU Clusters 216 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

A Distributed CPU-GPU Framework for Pairwise Alignments on Large-Scale Sequence Datasets

A Distributed CPU-GPU Framework for Pairwise Alignments on Large-Scale Sequence Datasets A Distributed CPU-GPU Framework for Pairwise Alignments on Large-Scale Sequence Datasets Da Li 1, Kittisak Sajjapongse 1, Huan Truong 2, Gavin Conant 2,3, Michela Becchi 1,2 1 Dept. of Electrical and Computer

More information

Hidden Markov Models. Mark Voorhies 4/2/2012

Hidden Markov Models. Mark Voorhies 4/2/2012 4/2/2012 Searching with PSI-BLAST 0 th order Markov Model 1 st order Markov Model 1 st order Markov Model 1 st order Markov Model What are Markov Models good for? Background sequence composition Spam Hidden

More information

BLAST - Basic Local Alignment Search Tool

BLAST - Basic Local Alignment Search Tool Lecture for ic Bioinformatics (DD2450) April 11, 2013 Searching 1. Input: Query Sequence 2. Database of sequences 3. Subject Sequence(s) 4. Output: High Segment Pairs (HSPs) Sequence Similarity Measures:

More information

SEQUENCE alignment is one of the most widely used operations

SEQUENCE alignment is one of the most widely used operations A parallel FPGA design of the Smith-Waterman traceback Zubair Nawaz #1, Muhammad Nadeem #2, Hans van Someren 3, Koen Bertels #4 # Computer Engineering Lab, Delft University of Technology The Netherlands

More information