Why modern versions of OpenGL should be used Some useful API commands and extensions

Size: px
Start display at page:

Download "Why modern versions of OpenGL should be used Some useful API commands and extensions"

Transcription

1 Michał Radziszewski

2 Why modern versions of OpenGL should be used Some useful API commands and extensions Timer Query EXT Direct State Access (DSA) Geometry Programs Position in pipeline Rendering wireframe over solid in one pass

3 Tesselation Programs Tesselation control and tesselation evaluation Position in pipeline PN-triangles Atomic Counters, Image Load/Store Order Independent Transparency (OIT) Subroutine Uniforms

4 Mark Segal, Kurt Akeley, The OpenGL Graphics System: A Specification (version 4.2), John Kessenich, Dave Baldwin, Randi Rost, The OpenGL Shading Language, Language Version: 4.2, Randi Rost, Bill Licea-Kane, OpenGL Shading Language, 3rd edition, Addison Wesley 2009

5 Richard S. Wright, Nicholas Haemel, Graham Sellers, OpenGL SuperBible, 5th edition, Addison- Wesley Professional 2010 Dave Shreiner, OpenGL Programming Guide: The Official Guide to Learning OpenGL, versions 3.0 and 3.1, 7th edition, Addison- Wesley Professional 2009

6 Tomas Akenine-Moller, Eric Haines, Naty Hoffman, Real-Time Rendering, 3rd edition, AK PETERS 2008, GPU Gems 1-3, ct/gpu_gems_home.html

7 The development process of game is likely to take a few years Consider using the newest technology available when development starts Required GPUs probably will be popular when the game is ready to ship Today, the only real choice is either OpenGL or DirectX, in versions 4.2 and 11, respectively

8 The supported features and performance of newest versions of these libraries are almost identical Choice of one particular library can be based on its availablity on target platforms and coding style Many game engines support both APIs

9 Platform independent open standard Available on PC Windows/Linux, MAC, PS3 OpenGL ES on mobile devices, e.g. with Android Develped by SGI during early 90 Currently supported by Khronos group Hardware vendors can provide extensions Procedural programming style Most commonly used with C or C++

10 Only Direct3D (part of DirectX) is competing with OpenGL Microsoft proprietary API Officially available only on Windows operating system and Xbox consoles Newest versions (from 10.0 onward) unavailable on Windows XP (!) Extensions are unavailable (theoretically) Object oriented programming style

11 Very useful, yet rarely used feature Available since OpenGL 3.3 The way to calculate the amount of time taken by rendering commands on GPU Measuring time in application is unreliable Application timers measure time of sending commands to GPU, not executing them! Adding glfinish() calls disturbs cooperation between CPU and GPU

12 Start using TimerQuery since very beginning of development process Check the cost of any new feature added The time taken by all rendering commands should not be larger than, say, 1/60 sec (16 msec) If the rendering time is checked frequently, there is no risk that game won t achieve desired frame rate due to GPU limits

13 Allows manipulation of object state (textures, programs, etc.) without binding them Bindings are necessary only for draw calls Much less API commands executed Much cleaner code One of most useful extensions ever Purely software (driver) feature, no new hardware necessary

14 Programs operating on primitives (triangles, triangle fans/strips, lines, points, ) Geometry programs can read at once data from all vertexes of processed primitive This is impossible using vertex shader alone Geometry programs can add and/or remove vertexes, and they can also change primitive type

15 They can direct rendering output to a few texture layers at once For example, cubic shadow maps can be rendered with just one draw call Availablity As OpenGL extension since November 2006 In DirectX since verison 10.0 (January 2007) In OpenGL core since version 3.2 (August 2009)

16

17 Geometry programs are executed between vertex and fragment programs Vertex program outputs are passed to geometry program inputs unchanged Between geometry programs and fragment programs there is a fixed function processing step primitive rasterization and data interpolation It is identical as without geometry program

18 Fragment program receives input data from geometry program in the same way as it would receive data from vertex program Therefore fragment program can be written in the same way regardless if it cooperates with geometry program or not Fragment program receives its input data interpolated between vertexes The interpolation depends only on interpolation mode

19

20 Without geometry programs two passes Double the time required for vertex processing Depth bias necessary Just one pass using geometry programs Geometry program produces triangles Extra output attribute (vec3) necessary per vertex The geometry program write (0, 0, 1), (0, 1, 0) and (1, 0, 0) for three vertexes, order is unimportant

21 Before fragment program, the fixed function step interpolates the attribute For each component x, y and z in one vertex there is value 1.0, and 0.0 in remaining two For each component, 1.0 is in different vertex Two zeros mark the edge, its width can be constant in screen space (computed using derivatives) Merge three edges, one for each component wireframe is ready

22

23 Transform feedback Rendering cube shadow maps in one pass Rendering object silhouettes Volumetric shadows with geometry programs are much faster DO NOT use these programs to substantially increase the amount of rendered geometry It works, but is extremely inefficient Leave this for tesselation programs

24 Tesselation programs operate on patch primitives (GL_PATCHES) They control conversion of patches into triangles or lines, consumed by subsequent pipeline stages Tesselation allows efficient creation of large amounts of geometry on GPU Tesselation has been designed for such purpose it is much more efficient than geometry programs

25 Availability In DirectX since version 11.0 (October 2009) In OpenGL core since version 4.0 (March 2010)

26

27

28

29

30 Tesselation is executed after vertex program and before geometry program (if exist) or fragment program otherwise If tesselation is active, vertex program actually operates on patches control points, not on triangles vertexes There are two tesselation programs, separated by partially controllable fixed function processing step

31 Geometry program (or fragment program) receives input data from tesselation step in the same way as it would receive data if application rendered triangles, without tesselation Geometry and fragment programs can be written in the same way regardless of the tesselation is active or not

32

33 Immediately after vertex program tesselation control program is executed It operates on patches Specifies how many triangles should be generated for a given patch (edge tesselation and centre tesselation) Fixed function step performs tesselation Generates triangles with undefined vertex attributes these are to be computed later

34

35 Finally tesselation evaluation program is executed It should evaluate attributes of triangles vertexes It should write to gl_position variable if geometry program is not present Tesselation evaluation program has access to all atributes of patches control points These attributes are inaccesible in further processing steps

36 Algorithm for smoothing mesh using only vertexes positions and normals No new assets necessary A. Vlachos et al., Curved PN Triangles, Interactive 3D graphics 2001 The new surface is continuous, but not perfectly smooth This is not a problem in practice Carefully evaluated normals hide this flaw

37

38

39 Common tesselation applications Smoothing meshes, then adding detail with displacement maps Dynamic level of detail control Tesselation of object silhouettes adding triangles when they are most useful Rendering terrain with very few triangles, more geometry is generated only in places where height varies substantially

40

41 Atomic counter buffers Behave just like any other buffers Variable ingpu progrm uniform atomic_uint foo; Functions for accessing atomic counters uint atomiccounterincrement(atomic_uint); uint atomiccounterdecrement(atomic_uint); uint atomiccounter(atomic_uint);

42 Images are similar as textures Except that GPU programs can read from and write to them with special API functions To avoid potential conflicts resulting from concurrency there is set of atomic operations on images Atomic counters can also be used

43

44 Rendering to two-texture (image) buffer First (screen-size) texture contains uints for each texel indexes for second texture Second texture (1D) contains linked lists (one per pixel) with color and opacity information Size must be large enough for all fragments (there is likely to be more fragments than pixels!) All instances of a fragment shader write to the list texture, likely in the same time atomic counter necessary to resolve conflicts

45

46 Allow choice of particular algoirthm used by GPU program from application No recompilation is necessary Just assignment to uniform variable is enough Alternative to so called uber-shaders or huge number of shaders for each combination of algorithms Similar to function pointers known from C/C++

47 What is necessary in GPU program Define a subroutine (like function prototype) Define more than one function with the matching return value and arguments Define subroutine uniform Call by the subroutine uniform name, passing required arguments Application decides, which implementation is actually called

48 What is necessary in application Query the GPU program for subroutine implementation indexes Set the subroutine uniform to index of the desired implementation Subroutine uniform values are not stored as GPU program state, they must be set each time a program is bound

49 Any questions?

Grafica Computazionale: Lezione 30. Grafica Computazionale. Hiding complexity... ;) Introduction to OpenGL. lezione30 Introduction to OpenGL

Grafica Computazionale: Lezione 30. Grafica Computazionale. Hiding complexity... ;) Introduction to OpenGL. lezione30 Introduction to OpenGL Grafica Computazionale: Lezione 30 Grafica Computazionale lezione30 Introduction to OpenGL Informatica e Automazione, "Roma Tre" May 20, 2010 OpenGL Shading Language Introduction to OpenGL OpenGL (Open

More information

OpenGL BOF Siggraph 2011

OpenGL BOF Siggraph 2011 OpenGL BOF Siggraph 2011 OpenGL BOF Agenda OpenGL 4 update Barthold Lichtenbelt, NVIDIA OpenGL Shading Language Hints/Kinks Bill Licea-Kane, AMD Ecosystem update Jon Leech, Khronos Viewperf 12, a new beginning

More information

A Trip Down The (2011) Rasterization Pipeline

A Trip Down The (2011) Rasterization Pipeline A Trip Down The (2011) Rasterization Pipeline Aaron Lefohn - Intel / University of Washington Mike Houston AMD / Stanford 1 This talk Overview of the real-time rendering pipeline available in ~2011 corresponding

More information

Rendering Objects. Need to transform all geometry then

Rendering Objects. Need to transform all geometry then Intro to OpenGL Rendering Objects Object has internal geometry (Model) Object relative to other objects (World) Object relative to camera (View) Object relative to screen (Projection) Need to transform

More information

OpenGL Status - November 2013 G-Truc Creation

OpenGL Status - November 2013 G-Truc Creation OpenGL Status - November 2013 G-Truc Creation Vendor NVIDIA AMD Intel Windows Apple Release date 02/10/2013 08/11/2013 30/08/2013 22/10/2013 Drivers version 331.10 beta 13.11 beta 9.2 10.18.10.3325 MacOS

More information

Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload)

Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload) Lecture 2: Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload) Visual Computing Systems Today Finishing up from last time Brief discussion of graphics workload metrics

More information

Rendering Grass with Instancing in DirectX* 10

Rendering Grass with Instancing in DirectX* 10 Rendering Grass with Instancing in DirectX* 10 By Anu Kalra Because of the geometric complexity, rendering realistic grass in real-time is difficult, especially on consumer graphics hardware. This article

More information

API Background. Prof. George Wolberg Dept. of Computer Science City College of New York

API Background. Prof. George Wolberg Dept. of Computer Science City College of New York API Background Prof. George Wolberg Dept. of Computer Science City College of New York Objectives Graphics API history OpenGL API OpenGL function format Immediate Mode vs Retained Mode Examples The Programmer

More information

Lecture 4: Geometry Processing. Kayvon Fatahalian CMU : Graphics and Imaging Architectures (Fall 2011)

Lecture 4: Geometry Processing. Kayvon Fatahalian CMU : Graphics and Imaging Architectures (Fall 2011) Lecture 4: Processing Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011) Today Key per-primitive operations (clipping, culling) Various slides credit John Owens, Kurt Akeley,

More information

Screen Space Ambient Occlusion TSBK03: Advanced Game Programming

Screen Space Ambient Occlusion TSBK03: Advanced Game Programming Screen Space Ambient Occlusion TSBK03: Advanced Game Programming August Nam-Ki Ek, Oscar Johnson and Ramin Assadi March 5, 2015 This project report discusses our approach of implementing Screen Space Ambient

More information

Shading Languages. Ari Silvennoinen Apri 12, 2004

Shading Languages. Ari Silvennoinen Apri 12, 2004 Shading Languages Ari Silvennoinen Apri 12, 2004 Introduction The recent trend in graphics hardware has been to replace fixed functionality in vertex and fragment processing with programmability [1], [2],

More information

Lecture 5 Vertex and Fragment Shaders-1. CITS3003 Graphics & Animation

Lecture 5 Vertex and Fragment Shaders-1. CITS3003 Graphics & Animation Lecture 5 Vertex and Fragment Shaders-1 CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 Objectives The rendering pipeline and the shaders Data

More information

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský Real - Time Rendering Graphics pipeline Michal Červeňanský Juraj Starinský Overview History of Graphics HW Rendering pipeline Shaders Debugging 2 History of Graphics HW First generation Second generation

More information

Beginning Direct3D Game Programming: 1. The History of Direct3D Graphics

Beginning Direct3D Game Programming: 1. The History of Direct3D Graphics Beginning Direct3D Game Programming: 1. The History of Direct3D Graphics jintaeks@gmail.com Division of Digital Contents, DongSeo University. April 2016 Long time ago Before Windows, DOS was the most popular

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Water Simulation on WebGL and Three.js

Water Simulation on WebGL and Three.js The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College 5-2013 Water Simulation on WebGL and Three.js Kerim J. Pereira Follow this and additional works at: http://aquila.usm.edu/honors_theses

More information

Dave Shreiner, ARM March 2009

Dave Shreiner, ARM March 2009 4 th Annual Dave Shreiner, ARM March 2009 Copyright Khronos Group, 2009 - Page 1 Motivation - What s OpenGL ES, and what can it do for me? Overview - Lingo decoder - Overview of the OpenGL ES Pipeline

More information

OpenGL Programmable Shaders

OpenGL Programmable Shaders h gpup 1 Topics Rendering Pipeline Shader Types OpenGL Programmable Shaders sh gpup 1 OpenGL Shader Language Basics h gpup 1 EE 4702-X Lecture Transparency. Formatted 9:03, 20 October 2014 from shaders2.

More information

Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1 X. GPU Programming 320491: Advanced Graphics - Chapter X 1 X.1 GPU Architecture 320491: Advanced Graphics - Chapter X 2 GPU Graphics Processing Unit Parallelized SIMD Architecture 112 processing cores

More information

Hands-On Workshop: 3D Automotive Graphics on Connected Radios Using Rayleigh and OpenGL ES 2.0

Hands-On Workshop: 3D Automotive Graphics on Connected Radios Using Rayleigh and OpenGL ES 2.0 Hands-On Workshop: 3D Automotive Graphics on Connected Radios Using Rayleigh and OpenGL ES 2.0 FTF-AUT-F0348 Hugo Osornio Luis Olea A P R. 2 0 1 4 TM External Use Agenda Back to the Basics! What is a GPU?

More information

Rendering Subdivision Surfaces Efficiently on the GPU

Rendering Subdivision Surfaces Efficiently on the GPU Rendering Subdivision Surfaces Efficiently on the GPU Gy. Antal, L. Szirmay-Kalos and L. A. Jeni Department of Algorithms and their Applications, Faculty of Informatics, Eötvös Loránd Science University,

More information

CS450/550. Pipeline Architecture. Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012

CS450/550. Pipeline Architecture. Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012 CS450/550 Pipeline Architecture Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012 0 Objectives Learn the basic components of a graphics system Introduce the OpenGL pipeline

More information

CS427 Multicore Architecture and Parallel Computing

CS427 Multicore Architecture and Parallel Computing CS427 Multicore Architecture and Parallel Computing Lecture 6 GPU Architecture Li Jiang 2014/10/9 1 GPU Scaling A quiet revolution and potential build-up Calculation: 936 GFLOPS vs. 102 GFLOPS Memory Bandwidth:

More information

A method in creating 3D models: From shape to shape, from shapes to model (October 2016)

A method in creating 3D models: From shape to shape, from shapes to model (October 2016) A method in creating 3D models: From shape to shape, from shapes to model (October 2016) M. Sinan Serbetcioglu, BS* Abstract In this paper, we try to create 3D models by using some geometrical primitives.

More information

The Application Stage. The Game Loop, Resource Management and Renderer Design

The Application Stage. The Game Loop, Resource Management and Renderer Design 1 The Application Stage The Game Loop, Resource Management and Renderer Design Application Stage Responsibilities 2 Set up the rendering pipeline Resource Management 3D meshes Textures etc. Prepare data

More information

Computergrafik. Matthias Zwicker. Herbst 2010

Computergrafik. Matthias Zwicker. Herbst 2010 Computergrafik Matthias Zwicker Universität Bern Herbst 2010 Today Bump mapping Shadows Shadow mapping Shadow mapping in OpenGL Bump mapping Surface detail is often the result of small perturbations in

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

OpenGL SUPERBIBLE. Fifth Edition. Comprehensive Tutorial and Reference. Richard S. Wright, Jr. Nicholas Haemel Graham Sellers Benjamin Lipchak

OpenGL SUPERBIBLE. Fifth Edition. Comprehensive Tutorial and Reference. Richard S. Wright, Jr. Nicholas Haemel Graham Sellers Benjamin Lipchak OpenGL SUPERBIBLE Fifth Edition Comprehensive Tutorial and Reference Richard S. Wright, Jr. Nicholas Haemel Graham Sellers Benjamin Lipchak AAddison-Wesley Upper Saddle River, NJ Boston Indianapolis San

More information

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics Why GPU? Chapter 1 Graphics Hardware Graphics Processing Unit (GPU) is a Subsidiary hardware With massively multi-threaded many-core Dedicated to 2D and 3D graphics Special purpose low functionality, high

More information

LOD and Occlusion Christian Miller CS Fall 2011

LOD and Occlusion Christian Miller CS Fall 2011 LOD and Occlusion Christian Miller CS 354 - Fall 2011 Problem You want to render an enormous island covered in dense vegetation in realtime [Crysis] Scene complexity Many billions of triangles Many gigabytes

More information

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer Real-Time Rendering (Echtzeitgraphik) Michael Wimmer wimmer@cg.tuwien.ac.at Walking down the graphics pipeline Application Geometry Rasterizer What for? Understanding the rendering pipeline is the key

More information

Shaders CSCI 4239/5239 Advanced Computer Graphics Spring 2014

Shaders CSCI 4239/5239 Advanced Computer Graphics Spring 2014 Shaders CSCI 4239/5239 Advanced Computer Graphics Spring 2014 What is a Shader? Wikipedia: A shader is a computer program used in 3D computer graphics to determine the final surface properties of an object

More information

Graphics Programming. Computer Graphics, VT 2016 Lecture 2, Chapter 2. Fredrik Nysjö Centre for Image analysis Uppsala University

Graphics Programming. Computer Graphics, VT 2016 Lecture 2, Chapter 2. Fredrik Nysjö Centre for Image analysis Uppsala University Graphics Programming Computer Graphics, VT 2016 Lecture 2, Chapter 2 Fredrik Nysjö Centre for Image analysis Uppsala University Graphics programming Typically deals with How to define a 3D scene with a

More information

Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload)

Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload) Lecture 2: Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload) Visual Computing Systems Analyzing a 3D Graphics Workload Where is most of the work done? Memory Vertex

More information

CS452/552; EE465/505. Clipping & Scan Conversion

CS452/552; EE465/505. Clipping & Scan Conversion CS452/552; EE465/505 Clipping & Scan Conversion 3-31 15 Outline! From Geometry to Pixels: Overview Clipping (continued) Scan conversion Read: Angel, Chapter 8, 8.1-8.9 Project#1 due: this week Lab4 due:

More information

Copyright Khronos Group, Page Graphic Remedy. All Rights Reserved

Copyright Khronos Group, Page Graphic Remedy. All Rights Reserved Avi Shapira Graphic Remedy Copyright Khronos Group, 2009 - Page 1 2004 2009 Graphic Remedy. All Rights Reserved Debugging and profiling 3D applications are both hard and time consuming tasks Companies

More information

WebGL (Web Graphics Library) is the new standard for 3D graphics on the Web, designed for rendering 2D graphics and interactive 3D graphics.

WebGL (Web Graphics Library) is the new standard for 3D graphics on the Web, designed for rendering 2D graphics and interactive 3D graphics. About the Tutorial WebGL (Web Graphics Library) is the new standard for 3D graphics on the Web, designed for rendering 2D graphics and interactive 3D graphics. This tutorial starts with a basic introduction

More information

Free Downloads OpenGL ES 3.0 Programming Guide

Free Downloads OpenGL ES 3.0 Programming Guide Free Downloads OpenGL ES 3.0 Programming Guide OpenGLÂ Â ESâ is the industryâ s leading software interface and graphics library for rendering sophisticated 3D graphics on handheld and embedded devices.

More information

The Graphics Pipeline

The Graphics Pipeline The Graphics Pipeline Ray Tracing: Why Slow? Basic ray tracing: 1 ray/pixel Ray Tracing: Why Slow? Basic ray tracing: 1 ray/pixel But you really want shadows, reflections, global illumination, antialiasing

More information

G - Graphics

G - Graphics Coordinating unit: 270 - FIB - Barcelona School of Informatics Teaching unit: 723 - CS - Department of Computer Science Academic year: Degree: 2017 BACHELOR'S DEGREE IN INFORMATICS ENGINEERING (Syllabus

More information

Lecture 9(B): GPUs & GPGPU

Lecture 9(B): GPUs & GPGPU Lecture 9(B): GPUs & GPGPU John-Philip Taylor 26 March 2015 Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Outline OpenGL Primitives and Vertices Vertex Shader Rasteriser Fragment Shader OpenCL

More information

PowerVR Hardware. Architecture Overview for Developers

PowerVR Hardware. Architecture Overview for Developers Public Imagination Technologies PowerVR Hardware Public. This publication contains proprietary information which is subject to change without notice and is supplied 'as is' without warranty of any kind.

More information

Real-Time Reyes: Programmable Pipelines and Research Challenges. Anjul Patney University of California, Davis

Real-Time Reyes: Programmable Pipelines and Research Challenges. Anjul Patney University of California, Davis Real-Time Reyes: Programmable Pipelines and Research Challenges Anjul Patney University of California, Davis Real-Time Reyes-Style Adaptive Surface Subdivision Anjul Patney and John D. Owens SIGGRAPH Asia

More information

Lecture 2. Shaders, GLSL and GPGPU

Lecture 2. Shaders, GLSL and GPGPU Lecture 2 Shaders, GLSL and GPGPU Is it interesting to do GPU computing with graphics APIs today? Lecture overview Why care about shaders for computing? Shaders for graphics GLSL Computing with shaders

More information

(Joseph Hocking, Unity in Action, 2015, p.70) textures + shaders. general appl. matrix & other computations

(Joseph Hocking, Unity in Action, 2015, p.70) textures + shaders. general appl. matrix & other computations Outline Introduction to Game Programming Autumn 2017 04. Graphics for games Juha Vihavainen University of Helsinki Creating and drawing game entities from 2D images (sprites sprites) ) to 3D models the

More information

Lecture 13: OpenGL Shading Language (GLSL)

Lecture 13: OpenGL Shading Language (GLSL) Lecture 13: OpenGL Shading Language (GLSL) COMP 175: Computer Graphics April 18, 2018 1/56 Motivation } Last week, we discussed the many of the new tricks in Graphics require low-level access to the Graphics

More information

Direct Rendering of Trimmed NURBS Surfaces

Direct Rendering of Trimmed NURBS Surfaces Direct Rendering of Trimmed NURBS Surfaces Hardware Graphics Pipeline 2/ 81 Hardware Graphics Pipeline GPU Video Memory CPU Vertex Processor Raster Unit Fragment Processor Render Target Screen Extended

More information

Programmable Graphics Hardware

Programmable Graphics Hardware Programmable Graphics Hardware Outline 2/ 49 A brief Introduction into Programmable Graphics Hardware Hardware Graphics Pipeline Shading Languages Tools GPGPU Resources Hardware Graphics Pipeline 3/ 49

More information

Hardware Displacement Mapping

Hardware Displacement Mapping Matrox's revolutionary new surface generation technology, (HDM), equates a giant leap in the pursuit of 3D realism. Matrox is the first to develop a hardware implementation of displacement mapping and

More information

Coding OpenGL ES 3.0 for Better Graphics Quality

Coding OpenGL ES 3.0 for Better Graphics Quality Coding OpenGL ES 3.0 for Better Graphics Quality Part 2 Hugo Osornio Rick Tewell A P R 1 1 t h 2 0 1 4 TM External Use Agenda Exercise 1: Array Structure vs Vertex Buffer Objects vs Vertex Array Objects

More information

Deus Ex is in the Details

Deus Ex is in the Details Deus Ex is in the Details Augmenting the PC graphics of Deus Ex: Human Revolution using DirectX 11 technology Matthijs De Smedt Graphics Programmer, Nixxes Software Overview Introduction DirectX 11 implementation

More information

Bringing AAA graphics to mobile platforms. Niklas Smedberg Senior Engine Programmer, Epic Games

Bringing AAA graphics to mobile platforms. Niklas Smedberg Senior Engine Programmer, Epic Games Bringing AAA graphics to mobile platforms Niklas Smedberg Senior Engine Programmer, Epic Games Who Am I A.k.a. Smedis Platform team at Epic Games Unreal Engine 15 years in the industry 30 years of programming

More information

PROFESSIONAL. WebGL Programming DEVELOPING 3D GRAPHICS FOR THE WEB. Andreas Anyuru WILEY. John Wiley & Sons, Ltd.

PROFESSIONAL. WebGL Programming DEVELOPING 3D GRAPHICS FOR THE WEB. Andreas Anyuru WILEY. John Wiley & Sons, Ltd. PROFESSIONAL WebGL Programming DEVELOPING 3D GRAPHICS FOR THE WEB Andreas Anyuru WILEY John Wiley & Sons, Ltd. INTRODUCTION xxl CHAPTER 1: INTRODUCING WEBGL 1 The Basics of WebGL 1 So Why Is WebGL So Great?

More information

Advanced Deferred Rendering Techniques. NCCA, Thesis Portfolio Peter Smith

Advanced Deferred Rendering Techniques. NCCA, Thesis Portfolio Peter Smith Advanced Deferred Rendering Techniques NCCA, Thesis Portfolio Peter Smith August 2011 Abstract The following paper catalogues the improvements made to a Deferred Renderer created for an earlier NCCA project.

More information

Introduction to the Direct3D 11 Graphics Pipeline

Introduction to the Direct3D 11 Graphics Pipeline Introduction to the Direct3D 11 Graphics Pipeline Kevin Gee - XNA Developer Connection Microsoft Corporation 2008 NVIDIA Corporation. Direct3D 11 focuses on Key Takeaways Increasing scalability, Improving

More information

Graphics Processing Unit Architecture (GPU Arch)

Graphics Processing Unit Architecture (GPU Arch) Graphics Processing Unit Architecture (GPU Arch) With a focus on NVIDIA GeForce 6800 GPU 1 What is a GPU From Wikipedia : A specialized processor efficient at manipulating and displaying computer graphics

More information

Craig Peeper Software Architect Windows Graphics & Gaming Technologies Microsoft Corporation

Craig Peeper Software Architect Windows Graphics & Gaming Technologies Microsoft Corporation Gaming Technologies Craig Peeper Software Architect Windows Graphics & Gaming Technologies Microsoft Corporation Overview Games Yesterday & Today Game Components PC Platform & WGF 2.0 Game Trends Big Challenges

More information

White Paper. Solid Wireframe. February 2007 WP _v01

White Paper. Solid Wireframe. February 2007 WP _v01 White Paper Solid Wireframe February 2007 WP-03014-001_v01 White Paper Document Change History Version Date Responsible Reason for Change _v01 SG, TS Initial release Go to sdkfeedback@nvidia.com to provide

More information

Today s Agenda. Basic design of a graphics system. Introduction to OpenGL

Today s Agenda. Basic design of a graphics system. Introduction to OpenGL Today s Agenda Basic design of a graphics system Introduction to OpenGL Image Compositing Compositing one image over another is most common choice can think of each image drawn on a transparent plastic

More information

Programmable GPUs Outline

Programmable GPUs Outline papi 1 Outline References Programmable Units Languages Programmable GPUs Outline papi 1 OpenGL Shading Language papi 1 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api.

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology Texture and Environment Maps Fall 2018 Texture Mapping Problem: colors, normals, etc. are only specified at vertices How do we add detail between vertices without incurring

More information

Per-Pixel Lighting and Bump Mapping with the NVIDIA Shading Rasterizer

Per-Pixel Lighting and Bump Mapping with the NVIDIA Shading Rasterizer Per-Pixel Lighting and Bump Mapping with the NVIDIA Shading Rasterizer Executive Summary The NVIDIA Quadro2 line of workstation graphics solutions is the first of its kind to feature hardware support for

More information

TSBK03 Screen-Space Ambient Occlusion

TSBK03 Screen-Space Ambient Occlusion TSBK03 Screen-Space Ambient Occlusion Joakim Gebart, Jimmy Liikala December 15, 2013 Contents 1 Abstract 1 2 History 2 2.1 Crysis method..................................... 2 3 Chosen method 2 3.1 Algorithm

More information

Many rendering scenarios, such as battle scenes or urban environments, require rendering of large numbers of autonomous characters.

Many rendering scenarios, such as battle scenes or urban environments, require rendering of large numbers of autonomous characters. 1 2 Many rendering scenarios, such as battle scenes or urban environments, require rendering of large numbers of autonomous characters. Crowd rendering in large environments presents a number of challenges,

More information

Ciril Bohak. - INTRODUCTION TO WEBGL

Ciril Bohak. - INTRODUCTION TO WEBGL 2016 Ciril Bohak ciril.bohak@fri.uni-lj.si - INTRODUCTION TO WEBGL What is WebGL? WebGL (Web Graphics Library) is an implementation of OpenGL interface for cmmunication with graphical hardware, intended

More information

Programming with OpenGL Part 3: Shaders. Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Programming with OpenGL Part 3: Shaders. Ed Angel Professor of Emeritus of Computer Science University of New Mexico Programming with OpenGL Part 3: Shaders Ed Angel Professor of Emeritus of Computer Science University of New Mexico 1 Objectives Simple Shaders - Vertex shader - Fragment shaders Programming shaders with

More information

EECS 487: Interactive Computer Graphics

EECS 487: Interactive Computer Graphics EECS 487: Interactive Computer Graphics Lecture 21: Overview of Low-level Graphics API Metal, Direct3D 12, Vulkan Console Games Why do games look and perform so much better on consoles than on PCs with

More information

Com S 336 Final Project Ideas

Com S 336 Final Project Ideas Com S 336 Final Project Ideas Deadlines These projects are to be done in groups of two. I strongly encourage everyone to start as soon as possible. Presentations begin four weeks from now (Tuesday, December

More information

Introduction. What s New in This Edition

Introduction. What s New in This Edition Introduction Welcome to the fourth edition of the OpenGL SuperBible. For more than ten years, we have striven to provide the world s best introduction to not only OpenGL, but 3D graphics programming in

More information

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker CMSC427 Advanced shading getting global illumination by local methods Credit: slides Prof. Zwicker Topics Shadows Environment maps Reflection mapping Irradiance environment maps Ambient occlusion Reflection

More information

Introduction to OpenGL

Introduction to OpenGL Introduction to OpenGL 1995-2015 Josef Pelikán & Alexander Wilkie CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 31 Advances in Hardware 3D acceleration is a common feature in

More information

Copyright Khronos Group 2012 Page 1. Teaching GL. Dave Shreiner Director, Graphics and GPU Computing, ARM 1 December 2012

Copyright Khronos Group 2012 Page 1. Teaching GL. Dave Shreiner Director, Graphics and GPU Computing, ARM 1 December 2012 Copyright Khronos Group 2012 Page 1 Teaching GL Dave Shreiner Director, Graphics and GPU Computing, ARM 1 December 2012 Copyright Khronos Group 2012 Page 2 Agenda Overview of OpenGL family of APIs Comparison

More information

Could you make the XNA functions yourself?

Could you make the XNA functions yourself? 1 Could you make the XNA functions yourself? For the second and especially the third assignment, you need to globally understand what s going on inside the graphics hardware. You will write shaders, which

More information

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT COMP27112 Computer Graphics and Image Processing 2: Introducing image synthesis Toby.Howard@manchester.ac.uk 1 Introduction In these notes we ll cover: Some orientation how did we get here? Graphics system

More information

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Programming with OpenGL Shaders I Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Objectives Shader Programming Basics Simple Shaders Vertex shader Fragment shaders

More information

Introduction to the OpenGL Shading Language

Introduction to the OpenGL Shading Language Introduction to the OpenGL Shading Language Randi Rost Director of Developer Relations, 3Dlabs 08-Dec-2005 1 Why use graphics programmability? Graphics hardware has changed radically Fixed functionality

More information

Squeezing Performance out of your Game with ATI Developer Performance Tools and Optimization Techniques

Squeezing Performance out of your Game with ATI Developer Performance Tools and Optimization Techniques Squeezing Performance out of your Game with ATI Developer Performance Tools and Optimization Techniques Jonathan Zarge, Team Lead Performance Tools Richard Huddy, European Developer Relations Manager ATI

More information

Mobile graphics API Overview

Mobile graphics API Overview Mobile graphics API Overview Michael Doggett Department of Computer Science Lund University 2009 Michael Doggett and Tomas Akenine-Möller 1 Register Please check to see if your name is on the list, if

More information

Cg 2.0. Mark Kilgard

Cg 2.0. Mark Kilgard Cg 2.0 Mark Kilgard What is Cg? Cg is a GPU shading language C/C++ like language Write vertex-, geometry-, and fragmentprocessing kernels that execute on massively parallel GPUs Productivity through a

More information

Shaders. Slide credit to Prof. Zwicker

Shaders. Slide credit to Prof. Zwicker Shaders Slide credit to Prof. Zwicker 2 Today Shader programming 3 Complete model Blinn model with several light sources i diffuse specular ambient How is this implemented on the graphics processor (GPU)?

More information

SIGGRAPH Briefing August 2014

SIGGRAPH Briefing August 2014 Copyright Khronos Group 2014 - Page 1 SIGGRAPH Briefing August 2014 Neil Trevett VP Mobile Ecosystem, NVIDIA President, Khronos Copyright Khronos Group 2014 - Page 2 Significant Khronos API Ecosystem Advances

More information

Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express

Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express Level: Intermediate Area: Graphics Programming Summary This document is an introduction to the series of samples,

More information

The Graphics Pipeline

The Graphics Pipeline The Graphics Pipeline Lecture 2 Robb T. Koether Hampden-Sydney College Wed, Aug 23, 2017 Robb T. Koether (Hampden-Sydney College) The Graphics Pipeline Wed, Aug 23, 2017 1 / 19 Outline 1 Vertices 2 The

More information

Enhancing Traditional Rasterization Graphics with Ray Tracing. October 2015

Enhancing Traditional Rasterization Graphics with Ray Tracing. October 2015 Enhancing Traditional Rasterization Graphics with Ray Tracing October 2015 James Rumble Developer Technology Engineer, PowerVR Graphics Overview Ray Tracing Fundamentals PowerVR Ray Tracing Pipeline Using

More information

2.11 Particle Systems

2.11 Particle Systems 2.11 Particle Systems 320491: Advanced Graphics - Chapter 2 152 Particle Systems Lagrangian method not mesh-based set of particles to model time-dependent phenomena such as snow fire smoke 320491: Advanced

More information

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Programming with OpenGL Shaders I Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico 0 Objectives Shader Basics Simple Shaders Vertex shader Fragment shaders 1 Vertex

More information

Architectures. Michael Doggett Department of Computer Science Lund University 2009 Tomas Akenine-Möller and Michael Doggett 1

Architectures. Michael Doggett Department of Computer Science Lund University 2009 Tomas Akenine-Möller and Michael Doggett 1 Architectures Michael Doggett Department of Computer Science Lund University 2009 Tomas Akenine-Möller and Michael Doggett 1 Overview of today s lecture The idea is to cover some of the existing graphics

More information

Shaders CSCI 4229/5229 Computer Graphics Fall 2017

Shaders CSCI 4229/5229 Computer Graphics Fall 2017 Shaders CSCI 4229/5229 Computer Graphics Fall 2017 What is a Shader? A shader is a computer program that runs on the GPU to calculate the properties of vertexes, pixels and other graphical processing Examples:

More information

Performance OpenGL Programming (for whatever reason)

Performance OpenGL Programming (for whatever reason) Performance OpenGL Programming (for whatever reason) Mike Bailey Oregon State University Performance Bottlenecks In general there are four places a graphics system can become bottlenecked: 1. The computer

More information

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1 Markus Hadwiger, KAUST Reading Assignment #2 (until Feb. 17) Read (required): GLSL book, chapter 4 (The OpenGL Programmable

More information

Zeyang Li Carnegie Mellon University

Zeyang Li Carnegie Mellon University Zeyang Li Carnegie Mellon University Recap: Texture Mapping Programmable Graphics Pipeline Bump Mapping Displacement Mapping Environment Mapping GLSL Overview Perlin Noise GPGPU Map reflectance over a

More information

Approximate Catmull-Clark Patches. Scott Schaefer Charles Loop

Approximate Catmull-Clark Patches. Scott Schaefer Charles Loop Approximate Catmull-Clark Patches Scott Schaefer Charles Loop Approximate Catmull-Clark Patches Scott Schaefer Charles Loop Catmull-Clark Surface ACC-Patches Polygon Models Prevalent in game industry Very

More information

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 4 Tamar Shinar Computer Science & Engineering UC Riverside Shadows Shadows for each pixel do compute viewing ray if ( ray hits an object with t in [0, inf] ) then compute

More information

Next-Generation Graphics on Larrabee. Tim Foley Intel Corp

Next-Generation Graphics on Larrabee. Tim Foley Intel Corp Next-Generation Graphics on Larrabee Tim Foley Intel Corp Motivation The killer app for GPGPU is graphics We ve seen Abstract models for parallel programming How those models map efficiently to Larrabee

More information

Transforms 3: Projection Christian Miller CS Fall 2011

Transforms 3: Projection Christian Miller CS Fall 2011 Transforms 3: Projection Christian Miller CS 354 - Fall 2011 Eye coordinates Eye space is the coordinate system at the camera: x right, y up, z out (i.e. looking down -z) [RTR] The setup Once we ve applied

More information

Nonphotorealism. Christian Miller CS Fall 2011

Nonphotorealism. Christian Miller CS Fall 2011 Nonphotorealism Christian Miller CS 354 - Fall 2011 Different goals Everything we ve done so far has been working (more or less) towards photorealism But, you might not want realism as a stylistic choice

More information

The GPGPU Programming Model

The GPGPU Programming Model The Programming Model Institute for Data Analysis and Visualization University of California, Davis Overview Data-parallel programming basics The GPU as a data-parallel computer Hello World Example Programming

More information

3D Computer Games Technology and History. Markus Hadwiger VRVis Research Center

3D Computer Games Technology and History. Markus Hadwiger VRVis Research Center 3D Computer Games Technology and History VRVis Research Center Lecture Outline Overview of the last ten years A look at seminal 3D computer games Most important techniques employed Graphics research and

More information