MS2013: Euclidean Geometry. Anca Mustata

Size: px
Start display at page:

Download "MS2013: Euclidean Geometry. Anca Mustata"

Transcription

1 MS2013: Euclidean Geometry Anca Mustata January 10, 2012

2 Warning: please read this text with a pencil at hand, as you will need to draw your own pictures to illustrate some statements. Euclid s Geometry as a Mathematical Theory God is always doing geometry, words attributed to Plato by Plutarch, suggest the reverence with which this branch of mathematics was regarded by thinkers in the ancient world. They saw geometry as managing to extract proportions, order and symmetry from the seemingly chaotic nature, thus making its beauty accessible to the reasoning mind. For us as well, geometry is a bridge from visual representations of the world to abstract logical thinking. This makes it a wonderful education tool. Indeed, since our perception of the world is embedded in sensorial experiences, what better way to develop a solid basis for our abstract thinking than to combine our visual intuition with logical deductions? It is for these reasons that a an ancient geometry text has been referred to as the most famous and influential textbook ever written. The Elements is a collection of thirteen mathematical books attributed to Euclid, who taught at Alexandria in Egypt and lived from about 325 BC to 265 BC. This is the earliest known historical example of a mathematical theory based on the axiomatic and logical deduction method.

3 A mathematical theory consists of a set of basic objects described by Definitions, a set of basic assumptions about these objects, called Axioms, and a set of statements derived from the axioms by logical reasoning. The most important of these statements are called Theorems, less important statements are called Propositions, Corrolaries are direct consequences of some previous statement, and Lemmas are helpful in proving further propositions or theorems. Each theorem, proposition or lemma consists of a Hypothesis (set of assumptions), which is what We Know, and a Conclusion, which is what we have To Prove. These should be followed by a Proof, meaning a chain of statements related by logical implications,

4 which starts from the hypothesis, combines it with the axioms and/or statements already proven, and arrives to the conclusion. Basic objects and terminology of Euclidean geometry All human knowledge begins with intuitions, thence passes to concepts and ends with ideas. (Kant, Kritik der reinen Vernunft, Elementarlehle). Euclid s geometry assumes an intuitive grasp of basic objects like points, straight lines, segments, and the plane. These could be considered as primitive concepts, in the sense that they cannot be described in terms of simpler concepts. However, Euclid s Elements do attempt some definitions by means of other intuitive notions like position, breath and length, in-between. Some of these definitions are included below in italics for your enjoyment; you do not need to remember them, but you do need to know the definitions of more complex objects like the circle or a polygon, or relations between them like concurrence, perpendicularity, etc. The Point A point is that of which there is no part. A point is usually denoted by an upper case letter. The Line A straight line is length without breadth, which lies evenly with points on itself.

5 A straight line is usually denoted by a lower case letter. We will think of a line as a set of points. We write A d if A is a point on the line d. Alternatively, we may denote a line by any two points on it: d = AB. d A B Note: We will call any straight line shortly line. Even though we are forced to draw a line in a finite space, we should think of it as extending forever both on the left and the right hand side. A point A on a line d divides the line into two half-lines, or rays. Two points A and B on the line d determine the segment [AB] = AB, made of all the points between A and B. A [AB] If three or more lines intersect at a point, we say that they are concurrent at that point. If three or more points are on the same line, we say that they are collinear. The Plane A surface is that which has length and breadth. When a surface is such that the line joining B

6 any two arbitrary points in it lies wholly in the surface, it is called a plane. A line in a plane divides the plane in two half-planes. The Angle In a plane, consider two half-planes bounded by two lines concurrent at the point O. The intersection of the two half-planes is an angle. Alternatively, The inclination of two right lines extending out from one point in different directions is called a rectilineal angle. The two lines are called the legs, and the point the vertex of the angle. A particular angle in a figure is denoted by three letters, as BAC, of which the middle one, A, is at the vertex, and the other two along the legs. The angle is then read BAC. B Aα C The angle formed by joining two or more angles together is called their sum. Thus the sum of the two angles ABC, PQR is the angle formed by applying the side QP

7 to the side BC, so that the vertex Q shall fall on the vertex B, and the side QR on the opposite side of BC from BA. When the sum of two angles BAC, CAD is such that the legs BA, AD form one straight line, they are called supplements of each other. When one line stands on another, and makes the adjacent angles at both sides of itself equal, each of the angles is called a right angle, and the line which stands on the other is called a perpendicular to it. Hence a right angle is equal to its supplement. An acute angle is one which is less than a right angle. An obtuse angle is one which is greater than a right angle. The supplement of an acute angle is obtuse, and conversely, the supplement of an obtuse angle is acute. When the sum of two angles is a right angle, each is called the complement of the other. The Circle A circle is a plane figure formed by a curve called the circumference, and is such that all segments drawn from a certain point within the figure to the circumference are equal to one another. This point is called the centre.

8 A radius of a circle is any right line drawn from the centre to the circumference. A diameter of a circle is a right line drawn through the centre and terminated both ways by the circumference. Four or more points found on the same circle are called conciclic. The Polygon A figure bounded by three or more segments is usually called a polygon. The segments are called the sides of the polygon. A polygon of three sides is called a triangle. A polygon of four sides is called a quadrilateral. A polygon which has five sides is called a pentagon; one which has six sides, a hexagon, and so on. The Triangle A triangle whose three sides are unequal is said to be scalene; a triangle having two sides equal, to be isosceles; and and having all its sides equal, to be equilateral. A right-angled triangle is one that has one of its angles a right angle. The side which subtends the right angle is called the hypotenuse.

9 An obtuse-angled triangle is one that has one of its angles obtuse. An acute-angled triangle is one that has its three angles acute. An exterior angle of a triangle is one that is formed by any side and the continuation of another side. Hence a triangle has six exterior angles; and also each exterior angle is the supplement of the adjacent interior angle. Parallel lines are straight-lines which, being in the same plane, and being continued to infinity in each direction, meet with one another in neither (of these directions). Basic Axioms of Euclidean geometry Euclid split his set of axioms of plane geometry into 5 postulates and 5 common notions of plane geometry. These were as follows: P(1) A straight line segment can be drawn joining any two points. P(2) Any straight line segment is contained in a unique straight line. P(3) Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.

10 P(4) All right angles are congruent. P(5) If a straight line intersecting two other straight lines makes the sum of the interior angles on the same side of itself less than two right angles, the straight lines, if continued indefinitely, will meet on that side on which the sum of the angles is less than two right angles. CN(1) Things which are equal to the same thing are also equal to one another. CN(2) If equals be added to equals, the wholes are equal. CN(3) If equals be subtracted from equals, the remainders are equal. CN(4) Things which coincide with one another are equal to one another. CN(5) The whole is greater than the part. Common notion (2) means: If a 1 = a 2 and b 1 = b 2 then a 1 +b 1 = a 2 +b 2. This is true for numbers as well as for segments and angles. Common notion (3) means: If a 1 = a 2 and b 1 = b 2 then a 1 b 1 = a 2 b 2.

11 Common notion (4) means: If we can move a figure (angle or segment) to fit exactly on top of the other, then it means they are equal (in terms of size). Common notion (5) means: This means that we can show an object to be smaller than another object by moving the smaller object until it fits inside the larger one, thus becoming a part of it. Note: Postulate (2) is different from the statement that Any line contains a segment, although this statement is true as well, and it is part of our basic intuition of lines as being made by points and containing the segments between their points. Formally though, the difference between Postulate (2) and the statement above is like the one between for any job, there is a man/woman who can do it and for any man/woman who can do a job, there is a job (sadly, the last statement being false at this time, even if the first might be true). In truth, Euclid s axioms are not enough in themselves for formally deducing the wealth of beautiful theorems of the Euclidean geometry, or even for defining notions like equal things, or for comparing angles and segments. Apart from the axioms, Euclid also relied on other common sense, intuitive notions like boundedness, in-between-ness, rigid motion, uniqueness, and basic notions of topology of the plane. Rigid motion The notion of rigid motion is necessary when comparing geometric objects. A rigid movement

12 of a geometric figure in plane can be understood as cutting the figure out of a sheet of paper representing the plane and placing it in a different position, except that the sheet of paper is supposed to be boundless. In practice, we don t cut figures out in order to move them we clone them! (copy them exactly) by means of markings on a ruler (for segments) or protractor (for angles). Moving segments and angles is then enough to move every other plane figure, no matter how complex. As a basic tenet of Euclidean geometry, you can thus move any geometric figure found somewhere in the plane to any other position in plane. Interestingly, Euler had put quite some effort into proving this tenet for movements of segments, while taking it for granted in the case of angles. Rigid motion by means of a ruler and protractor is so ingrained in our way of doing geometry that we don t even notice how the notion of measure (centimeters, meters, inches etc. for segments, and degrees for angles) is in fact an indirect process resulting from being able to compare and add objects by moving them in suitable places. Two geometric figures D and D are then called equal or congruent if one can move the first figure and superpose it exactly on top of the second figure, such that the points of the two figures now coincide. In this case we write D D.

13 A segment AB can be said to be smaller than another one CD if one can move the segment AB until A coincides with D and B is in between C and D. Similarly, an angle AOB can be said to be smaller than CO D if one can move AOB such that O falls over O, the line OA over O C, and B is in the interior of the angle CO D. Angle measures We can define 1 as the measure of an angle such that the sum of 90 angles equal to it makes a right angle. This makes sense due to the definition of a sum of two angles given above and Euclid s Postulate (4). Euclid doesn t tell us that such an angle exists! But we assume it anyway. Note: Degrees are defined based on the notion of right angles (and the assumption that they are all equal), so if you try to define a right angle as being 90, you d be moving in circles... Similarly if you tried to define supplements as summing up to 180. Other basic assumptions that Euler forgot to state Suppose one would want to describe Euclidean geometry in such a way that even a blind alien would be able to understand it. One could trail through the Elements to find all the basic assumptions that Euler has forgotten to state. Apart from the one mentioned above, we could find:

14 Basic uniqueness statements. The line and circle postulated in Postulates (1) and (3), respectively, are unique. A bounded figure is called convex if, for any two points A and B in the interior of the figure, the segment AB is also in the interior of the figure. Basic notion of topology. If a line contains a point found in the interior of a convex figure, then it intersects that figure in exactly two points. However, even after gathering all these basic assumptions in a set of Axioms, there would be some work to be done. One would have to eliminate the superfluous assumptions, i.e. those which can be considered as theorems or propositions based on the other axioms. For example, we do not need to assume rigid motion for all figures - only for angles and segments. On the other hand, Euclid proved that a segment can be moved to any other position if we assume that two circles, each passing through the interior of the other, intersect. Another problem may appear if some of the axioms introduced actually contradict other axioms. To prove that the axioms are not contradictory, one would have to construct

15 a model of the plane for which all the axioms hold true, using other known mathematical objects like numbers, vector spaces, etc. Towards the end of the 19th century, David Hilbert initiated an immense effort of constructing a sound axiomatic basis for each area of mathematics. His lectures at the university of Göttingen in , published under the title Foundations of Geometry, proposed a larger set of axioms substituting the traditional axioms of Euclid. Hilbert proved that his axioms are independent and non-contradictory (relying on algebra and coordinates to construct a model of the plane satisfying his axioms). Since then, the algebraic/analytic approach to Euclidian geometry has become dominant. Time permitting, we will discuss Hilbert s approach towards the end of the course. Independently and contemporaneously, a 19-year-old American student named Robert Lee Moore published an equivalent set of axioms. Some of the axioms coincide, while some of the axioms in Moore s system are theorems in Hilbert s and vice-versa.

Elementary Planar Geometry

Elementary Planar Geometry Elementary Planar Geometry What is a geometric solid? It is the part of space occupied by a physical object. A geometric solid is separated from the surrounding space by a surface. A part of the surface

More information

Euclid s Muse Directions

Euclid s Muse Directions Euclid s Muse Directions First: Draw and label three columns on your chart paper as shown below. Name Picture Definition Tape your cards to the chart paper (3 per page) in the appropriate columns. Name

More information

History of Mathematics

History of Mathematics History of Mathematics Paul Yiu Department of Mathematics Florida tlantic University Spring 2014 1: Pythagoras Theorem in Euclid s Elements Euclid s Elements n ancient Greek mathematical classic compiled

More information

EUCLID S GEOMETRY. Raymond Hoobler. January 27, 2008

EUCLID S GEOMETRY. Raymond Hoobler. January 27, 2008 EUCLID S GEOMETRY Raymond Hoobler January 27, 2008 Euclid rst codi ed the procedures and results of geometry, and he did such a good job that even today it is hard to improve on his presentation. He lived

More information

Geometry Reasons for Proofs Chapter 1

Geometry Reasons for Proofs Chapter 1 Geometry Reasons for Proofs Chapter 1 Lesson 1.1 Defined Terms: Undefined Terms: Point: Line: Plane: Space: Postulate 1: Postulate : terms that are explained using undefined and/or other defined terms

More information

And Now From a New Angle Special Angles and Postulates LEARNING GOALS

And Now From a New Angle Special Angles and Postulates LEARNING GOALS And Now From a New Angle Special Angles and Postulates LEARNING GOALS KEY TERMS. In this lesson, you will: Calculate the complement and supplement of an angle. Classify adjacent angles, linear pairs, and

More information

Assignments in Mathematics Class IX (Term I) 5. InTroduCTIon To EuClId s GEoMETry. l Euclid s five postulates are : ANIL TUTORIALS

Assignments in Mathematics Class IX (Term I) 5. InTroduCTIon To EuClId s GEoMETry. l Euclid s five postulates are : ANIL TUTORIALS Assignments in Mathematics Class IX (Term I) 5. InTroduCTIon To EuClId s GEoMETry IMporTAnT TErMs, definitions And results l In geometry, we take a point, a line and a plane as undefined terms. l An axiom

More information

Problem 3.1 (Building up geometry). For an axiomatically built-up geometry, six groups of axioms needed:

Problem 3.1 (Building up geometry). For an axiomatically built-up geometry, six groups of axioms needed: Math 3181 Dr. Franz Rothe September 29, 2016 All3181\3181_fall16h3.tex Names: Homework has to be turned in this handout. For extra space, use the back pages, or put blank pages between. The homework can

More information

Chapter 1-2 Points, Lines, and Planes

Chapter 1-2 Points, Lines, and Planes Chapter 1-2 Points, Lines, and Planes Undefined Terms: A point has no size but is often represented by a dot and usually named by a capital letter.. A A line extends in two directions without ending. Lines

More information

1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false. Chapter 1 Line and Angle Relationships 1.1 Sets, Statements and Reasoning Definitions 1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

More information

1 Appendix to notes 2, on Hyperbolic geometry:

1 Appendix to notes 2, on Hyperbolic geometry: 1230, notes 3 1 Appendix to notes 2, on Hyperbolic geometry: The axioms of hyperbolic geometry are axioms 1-4 of Euclid, plus an alternative to axiom 5: Axiom 5-h: Given a line l and a point p not on l,

More information

Naming Angles. One complete rotation measures 360º. Half a rotation would then measure 180º. A quarter rotation would measure 90º.

Naming Angles. One complete rotation measures 360º. Half a rotation would then measure 180º. A quarter rotation would measure 90º. Naming Angles What s the secret for doing well in geometry? Knowing all the angles. An angle can be seen as a rotation of a line about a fixed point. In other words, if I were mark a point on a paper,

More information

Some Comments on Leaving Certificate Geometry Work in Progress

Some Comments on Leaving Certificate Geometry Work in Progress Some Comments on Leaving Certificate Geometry Work in Progress D. R. Wilkins April 23, 2016 i Axioms for Leaving Certificate Geometry In 1932, George D. Birkhoff published a paper entitled A set of postulates

More information

A HISTORICAL INTRODUCTION TO ELEMENTARY GEOMETRY

A HISTORICAL INTRODUCTION TO ELEMENTARY GEOMETRY i MATH 119 A HISTORICAL INTRODUCTION TO ELEMENTARY GEOMETRY Geometry is an word derived from ancient Greek meaning earth measure ( ge = earth or land ) + ( metria = measure ). Euclid wrote the Elements

More information

GEOMETRY is the study of points in space

GEOMETRY is the study of points in space CHAPTER 5 Logic and Geometry SECTION 5-1 Elements of Geometry GEOMETRY is the study of points in space POINT indicates a specific location and is represented by a dot and a letter R S T LINE is a set of

More information

Transactions in Euclidean Geometry

Transactions in Euclidean Geometry Transactions in Euclidean Geometry Volume 207F Issue # 4 Table of Contents Title Author Square Construction Katherine Bertacini, Rachelle Feldmann, & Kaelyn Koontz Squares and Rectangles Rachelle Feldmann

More information

VOCABULARY. Chapters 1, 2, 3, 4, 5, 9, and 8. WORD IMAGE DEFINITION An angle with measure between 0 and A triangle with three acute angles.

VOCABULARY. Chapters 1, 2, 3, 4, 5, 9, and 8. WORD IMAGE DEFINITION An angle with measure between 0 and A triangle with three acute angles. Acute VOCABULARY Chapters 1, 2, 3, 4, 5, 9, and 8 WORD IMAGE DEFINITION Acute angle An angle with measure between 0 and 90 56 60 70 50 A with three acute. Adjacent Alternate interior Altitude of a Angle

More information

Moore Catholic High School Math Department

Moore Catholic High School Math Department Moore Catholic High School Math Department Geometry Vocabulary The following is a list of terms and properties which are necessary for success in a Geometry class. You will be tested on these terms during

More information

West Windsor-Plainsboro Regional School District Basic Geometry Grades 9-12

West Windsor-Plainsboro Regional School District Basic Geometry Grades 9-12 West Windsor-Plainsboro Regional School District Basic Geometry Grades 9-12 Unit 1: Basics of Geometry Content Area: Mathematics Course & Grade Level: Basic Geometry, 9 12 Summary and Rationale This unit

More information

Basic Euclidean Geometry

Basic Euclidean Geometry hapter 1 asic Euclidean Geometry This chapter is not intended to be a complete survey of basic Euclidean Geometry, but rather a review for those who have previously taken a geometry course For a definitive

More information

An Approach to Geometry (stolen in part from Moise and Downs: Geometry)

An Approach to Geometry (stolen in part from Moise and Downs: Geometry) An Approach to Geometry (stolen in part from Moise and Downs: Geometry) Undefined terms: point, line, plane The rules, axioms, theorems, etc. of elementary algebra are assumed as prior knowledge, and apply

More information

Geometry Definitions, Postulates, and Theorems. Chapter 3: Parallel and Perpendicular Lines. Section 3.1: Identify Pairs of Lines and Angles.

Geometry Definitions, Postulates, and Theorems. Chapter 3: Parallel and Perpendicular Lines. Section 3.1: Identify Pairs of Lines and Angles. Geometry Definitions, Postulates, and Theorems Chapter : Parallel and Perpendicular Lines Section.1: Identify Pairs of Lines and Angles Standards: Prepare for 7.0 Students prove and use theorems involving

More information

Moore Catholic High School Math Department

Moore Catholic High School Math Department Moore Catholic High School Math Department Geometry Vocabulary The following is a list of terms and properties which are necessary for success in a Geometry class. You will be tested on these terms during

More information

Chapter 2 QUIZ. Section 2.1 The Parallel Postulate and Special Angles

Chapter 2 QUIZ. Section 2.1 The Parallel Postulate and Special Angles Chapter 2 QUIZ Section 2.1 The Parallel Postulate and Special Angles (1.) How many lines can be drawn through point P that are parallel to line? (2.) Lines and m are cut by transversal t. Which angle corresponds

More information

(1) Page #1 24 all. (2) Page #7-21 odd, all. (3) Page #8 20 Even, Page 35 # (4) Page #1 8 all #13 23 odd

(1) Page #1 24 all. (2) Page #7-21 odd, all. (3) Page #8 20 Even, Page 35 # (4) Page #1 8 all #13 23 odd Geometry/Trigonometry Unit 1: Parallel Lines Notes Name: Date: Period: # (1) Page 25-26 #1 24 all (2) Page 33-34 #7-21 odd, 23 28 all (3) Page 33-34 #8 20 Even, Page 35 #40 44 (4) Page 60 61 #1 8 all #13

More information

Math 6, Unit 8 Notes: Geometric Relationships

Math 6, Unit 8 Notes: Geometric Relationships Math 6, Unit 8 Notes: Geometric Relationships Points, Lines and Planes; Line Segments and Rays As we begin any new topic, we have to familiarize ourselves with the language and notation to be successful.

More information

Lines Plane A flat surface that has no thickness and extends forever.

Lines Plane A flat surface that has no thickness and extends forever. Lines Plane A flat surface that has no thickness and extends forever. Point an exact location Line a straight path that has no thickness and extends forever in opposite directions Ray Part of a line that

More information

Geometry Basics of Geometry Precise Definitions Unit CO.1 OBJECTIVE #: G.CO.1

Geometry Basics of Geometry Precise Definitions Unit CO.1 OBJECTIVE #: G.CO.1 OBJECTIVE #: G.CO.1 OBJECTIVE Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance

More information

Math-in-CTE Lesson Plan Template

Math-in-CTE Lesson Plan Template Lesson Development Math-in-CTE Lesson Plan Template Lesson Title: Basic Geometric Concepts Lesson # Author(s): Phone Number(s): E-mail Address(es): Juan Carlos Martínez jcmartinez@dadeschoolsnet Bergman

More information

Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points.

Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points. Math 3181 Dr. Franz Rothe Name: All3181\3181_spr13t1.tex 1 Solution of Test I Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points. Definition

More information

Grade IX. Mathematics Geometry Notes. #GrowWithGreen

Grade IX. Mathematics Geometry Notes. #GrowWithGreen Grade IX Mathematics Geometry Notes #GrowWithGreen The distance of a point from the y - axis is called its x -coordinate, or abscissa, and the distance of the point from the x -axis is called its y-coordinate,

More information

Geometry Vocabulary Math Fundamentals Reference Sheet Page 1

Geometry Vocabulary Math Fundamentals Reference Sheet Page 1 Math Fundamentals Reference Sheet Page 1 Acute Angle An angle whose measure is between 0 and 90 Acute Triangle A that has all acute Adjacent Alternate Interior Angle Two coplanar with a common vertex and

More information

Geometry (H) Worksheet: 1st Semester Review:True/False, Always/Sometimes/Never

Geometry (H) Worksheet: 1st Semester Review:True/False, Always/Sometimes/Never 1stSemesterReviewTrueFalse.nb 1 Geometry (H) Worksheet: 1st Semester Review:True/False, Always/Sometimes/Never Classify each statement as TRUE or FALSE. 1. Three given points are always coplanar. 2. A

More information

Definition (Axiomatic System). An axiomatic system (a set of axioms and their logical consequences) consists of:

Definition (Axiomatic System). An axiomatic system (a set of axioms and their logical consequences) consists of: Course Overview Contents 1 AxiomaticSystems.............................. 1 2 Undefined Terms............................... 2 3 Incidence................................... 2 4 Distance....................................

More information

The University of British Columbia Final Examination - December 02, 2014 Mathematics 308. Closed book examination. No calculators.

The University of British Columbia Final Examination - December 02, 2014 Mathematics 308. Closed book examination. No calculators. The University of British Columbia Final Examination - December 02, 2014 Mathematics 308 Closed book examination. No calculators. Time: 2.5 hours Last Name First Signature Student Number No books, notes,

More information

SOME IMPORTANT PROPERTIES/CONCEPTS OF GEOMETRY (Compiled by Ronnie Bansal)

SOME IMPORTANT PROPERTIES/CONCEPTS OF GEOMETRY (Compiled by Ronnie Bansal) 1 SOME IMPORTANT PROPERTIES/CONCEPTS OF GEOMETRY (Compiled by Ronnie Bansal) 1. Basic Terms and Definitions: a) Line-segment: A part of a line with two end points is called a line-segment. b) Ray: A part

More information

Warm-Up. Find the domain and range:

Warm-Up. Find the domain and range: Warm-Up Find the domain and range: Geometry Vocabulary & Notation Point Name: Use only the capital letter, without any symbol. Line Name: Use any two points on the line with a line symbol above. AB Line

More information

Situation 1: Congruent Triangles vs. Similar Triangles

Situation 1: Congruent Triangles vs. Similar Triangles Situation 1: Congruent Triangles vs. Similar Triangles Prepared at the University of Georgia EMAT 6500 Date last revised: July 24 th, 2013 Nicolina Scarpelli Prompt: A teacher in a high school Analytic

More information

Postulates, Theorems, and Corollaries. Chapter 1

Postulates, Theorems, and Corollaries. Chapter 1 Chapter 1 Post. 1-1-1 Through any two points there is exactly one line. Post. 1-1-2 Through any three noncollinear points there is exactly one plane containing them. Post. 1-1-3 If two points lie in a

More information

Honors 213. Third Hour Exam. Name

Honors 213. Third Hour Exam. Name Honors 213 Third Hour Exam Name Monday, March 27, 2000 100 points Page 1 Please note: Because of multiple exams given Monday, this exam will be returned by Thursday, March 30. 1. (5 pts.) Define what it

More information

Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms

Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms Unit 1 asics of Geometry Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms 1. Point has no dimension, geometrically looks

More information

Geometry Midterm Review

Geometry Midterm Review Geometry Midterm Review **Look at Study Guide and old tests The Midterm covers: Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Parts of Chapter 6 Chapter 1 1.1 point: - has no dimension - represented

More information

4 Triangles and Congruence

4 Triangles and Congruence www.ck12.org CHAPTER 4 Triangles and Congruence Chapter Outline 4.1 TRIANGLE SUMS 4.2 CONGRUENT FIGURES 4.3 TRIANGLE CONGRUENCE USING SSS AND SAS 4.4 TRIANGLE CONGRUENCE USING ASA, AAS, AND HL 4.5 ISOSCELES

More information

Thomas Jefferson High School for Science and Technology Program of Studies TJ Math 1

Thomas Jefferson High School for Science and Technology Program of Studies TJ Math 1 Course Description: This course is designed for students who have successfully completed the standards for Honors Algebra I. Students will study geometric topics in depth, with a focus on building critical

More information

Math 7, Unit 08: Geometric Figures Notes

Math 7, Unit 08: Geometric Figures Notes Math 7, Unit 08: Geometric Figures Notes Points, Lines and Planes; Line Segments and Rays s we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My

More information

Course Number: Course Title: Geometry

Course Number: Course Title: Geometry Course Number: 1206310 Course Title: Geometry RELATED GLOSSARY TERM DEFINITIONS (89) Altitude The perpendicular distance from the top of a geometric figure to its opposite side. Angle Two rays or two line

More information

NFC ACADEMY COURSE OVERVIEW

NFC ACADEMY COURSE OVERVIEW NFC ACADEMY COURSE OVERVIEW Geometry Honors is a full year, high school math course for the student who has successfully completed the prerequisite course, Algebra I. The course focuses on the skills and

More information

Course: Geometry Level: Regular Date: 11/2016. Unit 1: Foundations for Geometry 13 Days 7 Days. Unit 2: Geometric Reasoning 15 Days 8 Days

Course: Geometry Level: Regular Date: 11/2016. Unit 1: Foundations for Geometry 13 Days 7 Days. Unit 2: Geometric Reasoning 15 Days 8 Days Geometry Curriculum Chambersburg Area School District Course Map Timeline 2016 Units *Note: unit numbers are for reference only and do not indicate the order in which concepts need to be taught Suggested

More information

Math 7, Unit 8: Geometric Figures Notes

Math 7, Unit 8: Geometric Figures Notes Math 7, Unit 8: Geometric Figures Notes Points, Lines and Planes; Line Segments and Rays s we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My guess

More information

If two sides and the included angle of one triangle are congruent to two sides and the included angle of 4 Congruence

If two sides and the included angle of one triangle are congruent to two sides and the included angle of 4 Congruence Postulates Through any two points there is exactly one line. Through any three noncollinear points there is exactly one plane containing them. If two points lie in a plane, then the line containing those

More information

Geometry - Chapter 1 - Corrective #1

Geometry - Chapter 1 - Corrective #1 Class: Date: Geometry - Chapter 1 - Corrective #1 Short Answer 1. Sketch a figure that shows two coplanar lines that do not intersect, but one of the lines is the intersection of two planes. 2. Name two

More information

Chapter 4 Triangles: Congruency & Similarity

Chapter 4 Triangles: Congruency & Similarity 1 Chapter 4 Triangles: Congruency & Similarity Concepts & Skills Quilting is a great American pastime especially in the heartland of the United States. Quilts can be simple in nature or as in the photo

More information

Solutions to the Test. Problem 1. 1) Who is the author of the first comprehensive text on geometry? When and where was it written?

Solutions to the Test. Problem 1. 1) Who is the author of the first comprehensive text on geometry? When and where was it written? Solutions to the Test Problem 1. 1) Who is the author of the first comprehensive text on geometry? When and where was it written? Answer: The first comprehensive text on geometry is called The Elements

More information

Aldine ISD Benchmark Targets /Geometry SUMMER 2004

Aldine ISD Benchmark Targets /Geometry SUMMER 2004 ASSURANCES: By the end of Geometry, the student will be able to: 1. Use properties of triangles and quadrilaterals to solve problems. 2. Identify, classify, and draw two and three-dimensional objects (prisms,

More information

Department: Course: Chapter 1

Department: Course: Chapter 1 Department: Course: 2016-2017 Term, Phrase, or Expression Simple Definition Chapter 1 Comprehension Support Point Line plane collinear coplanar A location in space. It does not have a size or shape The

More information

Basics of Geometry Unit 1 - Notes. Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes.

Basics of Geometry Unit 1 - Notes. Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. asics of Geometry Unit 1 - Notes Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms 1. Point has no dimension, geometrically

More information

2. Draw a non-isosceles triangle. Now make a template of this triangle out of cardstock or cardboard.

2. Draw a non-isosceles triangle. Now make a template of this triangle out of cardstock or cardboard. Tessellations The figure at the left shows a tiled floor. Because the floor is entirely covered by the tiles we call this arrangement a tessellation of the plane. A regular tessellation occurs when: The

More information

Unit 10 Study Guide: Plane Figures

Unit 10 Study Guide: Plane Figures Unit 10 Study Guide: Plane Figures *Be sure to watch all videos within each lesson* You can find geometric shapes in art. Whether determining the amount of leading or the amount of glass needed for a piece

More information

Visualizing Triangle Centers Using Geogebra

Visualizing Triangle Centers Using Geogebra Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai (Chhattisgarh) India http://mathematicsbhilai.blogspot.com/ sanjaybhil@gmail.com ABSTRACT. In this

More information

Geometry Cheat Sheet

Geometry Cheat Sheet Geometry Cheat Sheet Chapter 1 Postulate 1-6 Segment Addition Postulate - If three points A, B, and C are collinear and B is between A and C, then AB + BC = AC. Postulate 1-7 Angle Addition Postulate -

More information

MAT104: Fundamentals of Mathematics II Introductory Geometry Terminology Summary. Section 11-1: Basic Notions

MAT104: Fundamentals of Mathematics II Introductory Geometry Terminology Summary. Section 11-1: Basic Notions MAT104: Fundamentals of Mathematics II Introductory Geometry Terminology Summary Section 11-1: Basic Notions Undefined Terms: Point; Line; Plane Collinear Points: points that lie on the same line Between[-ness]:

More information

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles acute triangle a triangle with all acute angles adjacent angles angles that share a common side and vertex alternate exterior angles two non-adjacent exterior angles on opposite sides of the transversal;

More information

Unit 1, Lesson 1: Moving in the Plane

Unit 1, Lesson 1: Moving in the Plane Unit 1, Lesson 1: Moving in the Plane Let s describe ways figures can move in the plane. 1.1: Which One Doesn t Belong: Diagrams Which one doesn t belong? 1.2: Triangle Square Dance m.openup.org/1/8-1-1-2

More information

Lines and Angles. Chapter INTRODUCTION

Lines and Angles. Chapter INTRODUCTION LINES AND ANGLES 9 3 Lines and Angles Chapter 5 5.1 INTRODUCTION You already know how to identify different lines, line segments and angles in a given shape. Can you identify the different line segments

More information

Angles. An angle is: the union of two rays having a common vertex.

Angles. An angle is: the union of two rays having a common vertex. Angles An angle is: the union of two rays having a common vertex. Angles can be measured in both degrees and radians. A circle of 360 in radian measure is equal to 2π radians. If you draw a circle with

More information

1. Revision Description Reflect and Review Teasers Recall basics of geometrical shapes.

1. Revision Description Reflect and Review Teasers Recall basics of geometrical shapes. 1. Revision Description Reflect and Review Teasers Recall basics of geometrical shapes. A book, a birthday cap and a dice are some examples of 3-D shapes. 1) Write two examples of 2-D shapes and 3-D shapes

More information

Section 1-1 Points, Lines, and Planes

Section 1-1 Points, Lines, and Planes Section 1-1 Points, Lines, and Planes I CAN. Identify and model points, lines, and planes. Identify collinear and coplanar points and intersecting lines and planes in space. Undefined Term- Words, usually

More information

Chapter 1. Euclid s Elements, Book I (constructions)

Chapter 1. Euclid s Elements, Book I (constructions) hapter 1 uclid s lements, ook I (constructions) 102 uclid s lements, ook I (constructions) 1.1 The use of ruler and compass uclid s lements can be read as a book on how to construct certain geometric figures

More information

ACT Math test Plane Geometry Review

ACT Math test Plane Geometry Review Plane geometry problems account for 14 questions on the ACT Math Test that s almost a quarter of the questions on the Subject Test. If you ve taken high school geometry, you ve probably covered all of

More information

CHAPTER TWO. . Therefore the oblong number n(n + 1) is double the triangular number T n. , and the summands are the triangular numbers T n 1 and T n.

CHAPTER TWO. . Therefore the oblong number n(n + 1) is double the triangular number T n. , and the summands are the triangular numbers T n 1 and T n. CHAPTER TWO 1. Since AB BC; since the two angles at B are equal; and since the angles at A and C are both right angles, it follows by the angle-side-angle theorem that EBC is congruent to SBA and therefore

More information

ACT SparkNotes Test Prep: Plane Geometry

ACT SparkNotes Test Prep: Plane Geometry ACT SparkNotes Test Prep: Plane Geometry Plane Geometry Plane geometry problems account for 14 questions on the ACT Math Test that s almost a quarter of the questions on the Subject Test If you ve taken

More information

UNIT 6: Connecting Algebra & Geometry through Coordinates

UNIT 6: Connecting Algebra & Geometry through Coordinates TASK: Vocabulary UNIT 6: Connecting Algebra & Geometry through Coordinates Learning Target: I can identify, define and sketch all the vocabulary for UNIT 6. Materials Needed: 4 pieces of white computer

More information

The National Strategies Secondary Mathematics exemplification: Y8, 9

The National Strategies Secondary Mathematics exemplification: Y8, 9 Mathematics exemplification: Y8, 9 183 As outcomes, Year 8 pupils should, for example: Understand a proof that the sum of the angles of a triangle is 180 and of a quadrilateral is 360, and that the exterior

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Name Date Chapter 1 Maintaining Mathematical Proficiency Simplify the expression. 1. 3 + ( 1) = 2. 10 11 = 3. 6 + 8 = 4. 9 ( 1) = 5. 12 ( 8) = 6. 15 7 = + = 8. 5 ( 15) 7. 12 3 + = 9. 1 12 = Find the area

More information

definition. An angle is the union of two rays with a common end point.

definition. An angle is the union of two rays with a common end point. Chapter 3 Angles What s the secret for doing well in geometry? Knowing all the angles. As we did in the last chapter, we will introduce new terms and new notations, the building blocks for our success.

More information

Mathematics As A Liberal Art

Mathematics As A Liberal Art Math 105 Fall 2015 BY: 2015 Ron Buckmire Mathematics As A Liberal Art Class 26: Friday November 13 Fowler 302 MWF 10:40am- 11:35am http://sites.oxy.edu/ron/math/105/15/ Euclid, Geometry and the Platonic

More information

Videos, Constructions, Definitions, Postulates, Theorems, and Properties

Videos, Constructions, Definitions, Postulates, Theorems, and Properties Videos, Constructions, Definitions, Postulates, Theorems, and Properties Videos Proof Overview: http://tinyurl.com/riehlproof Modules 9 and 10: http://tinyurl.com/riehlproof2 Module 9 Review: http://tinyurl.com/module9livelesson-recording

More information

COURSE OBJECTIVES LIST: GEOMETRY

COURSE OBJECTIVES LIST: GEOMETRY COURSE OBJECTIVES LIST: GEOMETRY Geometry Honors is offered. PREREQUISITES: All skills from Algebra I are assumed. A prerequisites test is given during the first week of class to assess knowledge of these

More information

Geometry Note-Sheet Overview

Geometry Note-Sheet Overview Geometry Note-Sheet Overview 1. Logic a. A mathematical sentence is a sentence that states a fact or contains a complete idea. Open sentence it is blue x+3 Contains variables Cannot assign a truth variable

More information

MANHATTAN HUNTER SCIENCE HIGH SCHOOL GEOMETRY CURRICULUM

MANHATTAN HUNTER SCIENCE HIGH SCHOOL GEOMETRY CURRICULUM COORDINATE Geometry Plotting points on the coordinate plane. Using the Distance Formula: Investigate, and apply the Pythagorean Theorem as it relates to the distance formula. (G.GPE.7, 8.G.B.7, 8.G.B.8)

More information

Geometry Practice. 1. Angles located next to one another sharing a common side are called angles.

Geometry Practice. 1. Angles located next to one another sharing a common side are called angles. Geometry Practice Name 1. Angles located next to one another sharing a common side are called angles. 2. Planes that meet to form right angles are called planes. 3. Lines that cross are called lines. 4.

More information

Developmental Math An Open Program Unit 7 Geometry First Edition

Developmental Math An Open Program Unit 7 Geometry First Edition Developmental Math An Open Program Unit 7 Geometry First Edition Lesson 1 Basic Geometric Concepts and Figures TOPICS 7.1.1 Figures in 1 and 2 Dimensions 1 Identify and define points, lines, line segments,

More information

4 Mathematics Curriculum. Module Overview... i Topic A: Lines and Angles... 4.A.1. Topic B: Angle Measurement... 4.B.1

4 Mathematics Curriculum. Module Overview... i Topic A: Lines and Angles... 4.A.1. Topic B: Angle Measurement... 4.B.1 New York State Common Core 4 Mathematics Curriculum G R A D E Table of Contents GRADE 4 MODULE 4 Angle Measure and Plane Figures GRADE 4 MODULE 4 Module Overview... i Topic A: Lines and Angles... 4.A.1

More information

Tier 2: GEOMETRY INTRODUCTION TO GEOMETRY Lessons Abbreviation Key Table... 7 G1 LESSON: WHAT IS GEOMETRY?... 8 G1E... 9 G1EA...

Tier 2: GEOMETRY INTRODUCTION TO GEOMETRY Lessons Abbreviation Key Table... 7 G1 LESSON: WHAT IS GEOMETRY?... 8 G1E... 9 G1EA... Craig Hane, Ph.D., Founder Tier 2: GEOMETRY INTRODUCTION TO GEOMETRY... 6 1.1 Lessons Abbreviation Key Table... 7 G1 LESSON: WHAT IS GEOMETRY?... 8 G1E... 9 G1EA... 10 G2 LESSON: STRAIGHT LINES AND ANGLES...

More information

Math 3315: Geometry Vocabulary Review Human Dictionary: WORD BANK

Math 3315: Geometry Vocabulary Review Human Dictionary: WORD BANK Math 3315: Geometry Vocabulary Review Human Dictionary: WORD BANK [acute angle] [acute triangle] [adjacent interior angle] [alternate exterior angles] [alternate interior angles] [altitude] [angle] [angle_addition_postulate]

More information

MST Topics in History of Mathematics

MST Topics in History of Mathematics MST Topics in History of Mathematics Euclid s Elements and the Works of rchimedes Paul Yiu Department of Mathematics Florida tlantic University Summer 2014 June 30 2.6 ngle properties 11 2.6 ngle properties

More information

Geometry Review for Semester 1 Final Exam

Geometry Review for Semester 1 Final Exam Name Class Test Date POINTS, LINES & PLANES: Geometry Review for Semester 1 Final Exam Use the diagram at the right for Exercises 1 3. Note that in this diagram ST plane at T. The point S is not contained

More information

Grade 9 Math Terminology

Grade 9 Math Terminology Unit 1 Basic Skills Review BEDMAS a way of remembering order of operations: Brackets, Exponents, Division, Multiplication, Addition, Subtraction Collect like terms gather all like terms and simplify as

More information

MTH 362 Study Guide Exam 1 System of Euclidean Geometry 1. Describe the building blocks of Euclidean geometry. a. Point, line, and plane - undefined

MTH 362 Study Guide Exam 1 System of Euclidean Geometry 1. Describe the building blocks of Euclidean geometry. a. Point, line, and plane - undefined MTH 362 Study Guide Exam 1 System of Euclidean Geometry 1. Describe the building blocks of Euclidean geometry. a. Point, line, and plane - undefined terms used to create definitions. Definitions are used

More information

Type of Triangle Definition Drawing. Name the triangles below, and list the # of congruent sides and angles:

Type of Triangle Definition Drawing. Name the triangles below, and list the # of congruent sides and angles: Name: Triangles Test Type of Triangle Definition Drawing Right Obtuse Acute Scalene Isosceles Equilateral Number of congruent angles = Congruent sides are of the congruent angles Name the triangles below,

More information

Theorems, Postulates, and Properties for Use in Proofs

Theorems, Postulates, and Properties for Use in Proofs CP1 Math 2 Name Unit 1: Deductive Geometry: Day 21-22 Unit 1 Test Review Students should be able to: Understand and use geometric vocabulary and geometric symbols (,,, etc) Write proofs using accurate

More information

Chapter 1. Essentials of Geometry

Chapter 1. Essentials of Geometry Chapter 1 Essentials of Geometry 1.1 Identify Points, Lines, and Planes Objective: Name and sketch geometric figures so you can use geometry terms in the real world. Essential Question: How do you name

More information

Geometry Curriculum Map

Geometry Curriculum Map Geometry Curriculum Map Unit 1 st Quarter Content/Vocabulary Assessment AZ Standards Addressed Essentials of Geometry 1. What are points, lines, and planes? 1. Identify Points, Lines, and Planes 1. Observation

More information

Suggested List of Mathematical Language. Geometry

Suggested List of Mathematical Language. Geometry Suggested List of Mathematical Language Geometry Problem Solving A additive property of equality algorithm apply constraints construct discover explore generalization inductive reasoning parameters reason

More information

ACT Math and Science - Problem Drill 11: Plane Geometry

ACT Math and Science - Problem Drill 11: Plane Geometry ACT Math and Science - Problem Drill 11: Plane Geometry No. 1 of 10 1. Which geometric object has no dimensions, no length, width or thickness? (A) Angle (B) Line (C) Plane (D) Point (E) Polygon An angle

More information

Interpretations and Models. Chapter Axiomatic Systems and Incidence Geometry

Interpretations and Models. Chapter Axiomatic Systems and Incidence Geometry Interpretations and Models Chapter 2.1-2.4 - Axiomatic Systems and Incidence Geometry Axiomatic Systems in Mathematics The gold standard for rigor in an area of mathematics Not fully achieved in most areas

More information

Geometry Semester 1 Final Exam Study Guide FCS, Mr. Garcia

Geometry Semester 1 Final Exam Study Guide FCS, Mr. Garcia Name Date Period This is your semester 1 exam review study guide. It is designed for you to do a portion each day until the day of the exam. You may use the following formula to calculate your semester

More information

PROPERTIES OF TRIANGLES AND QUADRILATERALS (plus polygons in general)

PROPERTIES OF TRIANGLES AND QUADRILATERALS (plus polygons in general) Mathematics Revision Guides Properties of Triangles, Quadrilaterals and Polygons Page 1 of 15 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Foundation Tier PROPERTIES OF TRIANGLES AND QUADRILATERALS

More information

CURRICULUM GUIDE. Honors Geometry

CURRICULUM GUIDE. Honors Geometry CURRICULUM GUIDE Honors Geometry This level of Geometry is approached at an accelerated pace. Topics of postulates, theorems and proofs are discussed both traditionally and with a discovery approach. The

More information

Geometry Notes Chapter 4: Triangles

Geometry Notes Chapter 4: Triangles Geometry Notes Chapter 4: Triangles Name Date Assignment Questions I have Day 1 Section 4.1: Triangle Sum, Exterior Angles, and Classifying Triangles Day 2 Assign: Finish Ch. 3 Review Sheet, WS 4.1 Section

More information