3D assimilaiton update: en route Lagrangian data

Size: px
Start display at page:

Download "3D assimilaiton update: en route Lagrangian data"

Transcription

1 / 3 3D assimilaiton update: en route Lagrangian data Elaine Spiller Amit Apte, Chris Jones Marquette University TIFR CAM, Bangalore and University of North Carolina January 24, 22

2 Outline 2 / 3 Motivation Test problem Observation operator and preliminary results Looking forward

3 Lagrangian instruments Argo float glider Goal collect below-surface measurements to better understand 3D dynamics and structures Lagrangian instruments collect data en route (temperature, pressure, salinity) Observations depend on unknown drifter paths What to do with that data? 3 / 3

4 Float depth profile 4 / 3 Cartoon: Argo float depth profile Cartoon: Argo float depth profile 2 m 7 days 2 m 7 days 7- day float results in O()-O() km traveled high frequency data in dive/ascent just before surfacing in water column beneath surfacing location low frequency en-route measurements at depth, no latitude/longitude information en-route measurements averaged, not used in assimilation

5 Float depth and overview 5 / 3 Cartoon: Argo float depth profile Cartoon: Overview of surfacing locations 2 m 7 days north east Lagrangian DA can help ascertain velocities w/o averaging

6 Float depth and overview 6 / 3 Cartoon: Argo float depth profile Cartoon: Overview of surfacing locations 2 m 7 days north east Some possible Lagrangian paths

7 Float depth and overview 7 / 3 Cartoon: Argo float depth profile Cartoon: Overview of surfacing locations 2 m 7 days north east need path & speed for subsurface observation locations

8 Float depth and overview 8 / 3 Cartoon: Argo float depth profile Cartoon: Overview of surfacing locations 2 m 7 days north east Can en-route observations help Lagrangian DA?

9 Assimilated 3-D Lagrangian paths are (possibly) useful for 9 / 3 aid in resolving Lagrangian structures assimilating data into high resolution models avoiding averaging via determining en-route data collection locales along paths which cross multiple grid cells

10 Depth profile for gliders / 3 Cartoon: glider flight depth profile m 7 hours (~ 5km) roll, pitch with preprogrammed flight plan paths are semi-lagrangian predict path with estimated velocity field and flight plan

11 Assimilating glider paths is (possibly) useful for / 3 figuring out what happened when glider surfaces far from where predicted improving local velocity estimates for planning next flight describing 3-D transport paths like those theorized to exist in the meridional overturning conveyor belt (Lozier, 2) need Lagrangian paths to help encorporate en-route data

12 Assimilating glider paths is (possibly) useful for 2 / 3 figuring out what happened when glider surfaces far from where predicted improving local velocity estimates for planning next flight describing 3-D transport paths like those theorized to exist in the meridional overturning conveyor belt (Lozier, 2) need Lagrangian paths to help encorporate en-route data Can en-route data help Lagrangian DA?

13 Assimilating glider paths is (possibly) useful for 3 / 3 figuring out what happened when glider surfaces far from where predicted improving local velocity estimates for planning next flight describing 3-D transport paths like those theorized to exist in the meridional overturning conveyor belt (Lozier, 2) need Lagrangian paths to help encorporate en-route data Can en-route data help Lagrangian DA? Possibly if gradients are strong

14 Observations and likelihood Observations will be related to the state variable by some observation function y = H(x). (For LaDA H(x) = x d, the instrument s location.) We can think of observations as random variables distributed as Or, Y j = H(X j )+ noise. Y j (X j = x j ) g(y x j ). g(y x) is the likelihood how likely was an observation given the possible states? With a whole set of observations {Y j } we can write down the likelihood for the time-series of observations n p(y :j x :j ) = g(y k x k ) j= 4 / 3

15 Inference: goal for data assimilation Given a background distribution of initial conditions, µ(x ), and observations, Y :n, we want to infer the distribution of physical states X :n. Prior Likelihood p(x :n ) = µ(x o ) p(y :n x :n ) = n m(x j x j ) j= n g(y = H(x j ) x j ) j= Posterior, obtained by Bayes rule p(x :n y :n ) = p(y :n x :n )p(x :n ) p(y :n ) recall, p(y :n ) = p(y :n x :n )p(x :n )dx :n 5 / 3

16 Breakdown of DA schemes: representation of posterior 6 / 3 Sample posterior: particle filter or MCMC handles nonlinear/nongaussianity naturally doesn t scale well as dimension increases Approx posterior as Gaussian: Kalman filter (family) relies on Gaussian/linear assumptions ENKF samples to estimate covariance Find mode of posterior: variational DA what if posterior is multi-modal w/nearly even masses? For all cases, including en-route data changes observation function, H(x), and hence likelihood

17 Test problem: Inviscid linearized Shallow Water Eqns 7 / 3 Non-dimensional velocity fields u t v t h t = v h x = u h y = u x v y Lagrangian trajectories ẋ(t) = u[x(t), y(t), t] ẏ(t) = v[x(t), y(t), t] Decomposition into Fourier Modes u(x, y, t) = 2π sin(2πx) cos(2πy)u o + cos(2πy)u (t) v(x, y, t) = 2π cos(2πx) sin(2πy)u o + cos(2πy)v (t) h(x, y, t) = sin(2πx) sin(2πy)u o + sin(2πy)h (t)

18 Cellular flow field If u = v = h =, flow field is constant & tracers stay w/in cells y x Otherwise, u o =, v = u 2πh, u = v, & ḣ = 2πv with initial conditions [u o (), u (), v (), h ()] 2 u h v time 8 / 3

19 A few trajectories y y y 9 / 3 Left: u () = v () = h () =, x() =.2, y() =.3 Middle: u () = v () = h () =, x() =.2, y() =.3 Right: u () =.2, v () =.3, h () =.4, x() =.5, y() = x x x

20 Particle filter for standard LADA Test problem: u () = v () = h () =, x() =.2, y () =.3 broad priors on (u, v, h ), tight on (x, y ) at t = run to t = T ( period of coefficients) 5 noisy observations of drifter 2 / 3

21 Particle filter for standard LADA Test problem: u () = v () = h () =, x() =.2, y () =.3 broad priors on (u, v, h ), tight on (x, y ) at t = run to t = T ( period of coefficients) 5 noisy observations of drifter Goal: learn about u (), v (), h () from Lagrangian observations 2 / 3

22 Particle filter for standard LADA Test problem: u () = v () = h () =, x() =.2, y () =.3 broad priors on (u, v, h ), tight on (x, y ) at t = run to t = T ( period of coefficients) 5 noisy observations of drifter Goal: learn about u (), v (), h () from Lagrangian observations y v.23 v x.34 u.5 h.5 22 / 3

23 En route Lagrangian data a test problem 23 / 3 Idea treat height, h(x, y, u, v, h ), as proxy for salinity typical quantity measured en route

24 En route Lagrangian data a test problem 24 / 3 Idea treat height, h(x, y, u, v, h ), as proxy for salinity typical quantity measured en route Sample height, ĥ(t) = h(x d (t), y d (t), t) + noise between surfacings, e.g. traditional observation instants t j

25 En route Lagrangian data a test problem 25 / 3 Idea treat height, h(x, y, u, v, h ), as proxy for salinity typical quantity measured en route Sample height, ĥ(t) = h(x d (t), y d (t), t) + noise between surfacings, e.g. traditional observation instants t j Changes the observation space, so now (z = {x d, y d, u, v, h } whole state) { (x d (t), y d (t)) for t = jt obs H(z) = ĥ(t) for t = t k, (j )T obs < t k < jt obs

26 En route Lagrangian data a test problem 26 / 3 Idea treat height, h(x, y, u, v, h ), as proxy for salinity typical quantity measured en route Sample height, ĥ(t) = h(x d (t), y d (t), t) + noise between surfacings, e.g. traditional observation instants t j Changes the observation space, so now (z = {x d, y d, u, v, h } whole state) H(z) = { (x d (t), y d (t)) for t = jt obs ĥ(t) for t = t k, (j )T obs < t k < jt obs Update Likelihood at surfacing time t j with data {xj o, yj o, ĥo k=...n h }

27 En route Lagrangian data a test problem Idea treat height, h(x, y, u, v, h ), as proxy for salinity typical quantity measured en route Sample height, ĥ(t) = h(x d (t), y d (t), t) + noise between surfacings, e.g. traditional observation instants t j Changes the observation space, so now (z = {x d, y d, u, v, h } whole state) H(z) = { (x d (t), y d (t)) for t = jt obs ĥ(t) for t = t k, (j )T obs < t k < jt obs Update Likelihood at surfacing time t j with data {xj o, yj o, ĥo k=...n h } log(g) = (x d x o ) 2 + (y d y o ) 2 2σd 2 + (h(z k N ) ĥo k )2 /2σh 2 h N h 27 / 3

28 Particle filter w/en route observations traditional LADA: y v.23 v x.34 u.5 h.5 28 / 3

29 Particle filter w/en route observations traditional LADA: y v.23 v x.34 u.5 h.5 en route LADA: y x / 3

30 Particle filter w/en route observations traditional LADA: y v.23 v x.34 u.5 h h.5 en route LADA: v y v x.34 u / 3

31 .5.5 v v Improvement with en-route observations u.5 h.5 Characterizing improvement: compare covariance matrices of prior and posterior distribution ratio of traces ratio determinants standard LaDA.46.9 = = w/height obs.5.9 = = robust over numerical experiments similar improvement for saddle case 3 / 3

32 Looking forward 32 / 3 Future directions: 3D model problem, depth one of observed en-route variables include flight plan control in glider problem assimilate likely paths between surfacing locations endpoints pinned assimilate for most likely paths w/brownian bridge suggestions welcome

Analyzing fluid flows via the

Analyzing fluid flows via the Analyzing fluid flows via the ergodicity defect Sherry E. Scott FFT 2013, Norbert Wiener Center February 22, 2013 Support: ONR-MURI Ocean 3D+1(N00014-11-1-0087) Outline Background & Motivation tion General

More information

Remote sensing In situ T, S and tracers Velocity Observing systems. Course url: Talley SIO 210 (2013)

Remote sensing In situ T, S and tracers Velocity Observing systems. Course url:   Talley SIO 210 (2013) SIO 210: I. Observational methods and II. Data analysis (combined single lecture) Fall 2013 I. Observations Reading: DPO 6.1, S16.1, S16.4, S16.5, S16.9 Remote sensing In situ T, S and tracers Velocity

More information

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017 Gaussian Processes for Robotics McGill COMP 765 Oct 24 th, 2017 A robot must learn Modeling the environment is sometimes an end goal: Space exploration Disaster recovery Environmental monitoring Other

More information

Post Processing, Visualization, and Sample Output

Post Processing, Visualization, and Sample Output Chapter 7 Post Processing, Visualization, and Sample Output Upon successful execution of an ADCIRC run, a number of output files will be created. Specifically which files are created depends upon how the

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

10701 Machine Learning. Clustering

10701 Machine Learning. Clustering 171 Machine Learning Clustering What is Clustering? Organizing data into clusters such that there is high intra-cluster similarity low inter-cluster similarity Informally, finding natural groupings among

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

Adaptive de-ghosting by kurtosis maximisation. Sergio Grion, Rob Telling, Janet Barnes, Dolphin Geophysical. Summary

Adaptive de-ghosting by kurtosis maximisation. Sergio Grion, Rob Telling, Janet Barnes, Dolphin Geophysical. Summary Adaptive de-ghosting by kurtosis maximisation Sergio Grion, Rob Telling, Janet Barnes, Dolphin Geophysical Summary We discuss the reasons for adaptive de-ghosting and its advantages. The success of broadband

More information

Verification of Moving Mesh Discretizations

Verification of Moving Mesh Discretizations Verification of Moving Mesh Discretizations Krzysztof J. Fidkowski High Order CFD Workshop Kissimmee, Florida January 6, 2018 How can we verify moving mesh results? Goal: Demonstrate accuracy of flow solutions

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

The Ventilated Ocean: What controls ocean stratification and overturning circulation and Lagrangian ocean modeling. Alexey Fedorov

The Ventilated Ocean: What controls ocean stratification and overturning circulation and Lagrangian ocean modeling. Alexey Fedorov The Ventilated Ocean: What controls ocean stratification and overturning circulation and Lagrangian ocean modeling Alexey Fedorov Many thanks to Patrick Haertel Yale University July 2011 1 What controls

More information

Data assimilation for OpenFOAM Combining measurements and modelling

Data assimilation for OpenFOAM Combining measurements and modelling Data assimilation for OpenFOAM Combining measurements and modelling Henk Seubers, Aerospace Engineering 8 januari 2013 () Data assimilation for OpenFOAM 1 / 27 Main goal The purpose of this project is

More information

Time series, HMMs, Kalman Filters

Time series, HMMs, Kalman Filters Classic HMM tutorial see class website: *L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proc. of the IEEE, Vol.77, No.2, pp.257--286, 1989. Time series,

More information

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm Robot Mapping FastSLAM Feature-based SLAM with Particle Filters Cyrill Stachniss Particle Filter in Brief! Non-parametric, recursive Bayes filter! Posterior is represented by a set of weighted samples!

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: EKF-based SLAM Dr. Kostas Alexis (CSE) These slides have partially relied on the course of C. Stachniss, Robot Mapping - WS 2013/14 Autonomous Robot Challenges Where

More information

Th ELI1 12 Joint Crossline Reconstruction and 3D Deghosting of Shallow Seismic Events from Multimeasurement Streamer Data

Th ELI1 12 Joint Crossline Reconstruction and 3D Deghosting of Shallow Seismic Events from Multimeasurement Streamer Data Th ELI1 12 Joint Crossline Reconstruction and 3D Deghosting of Shallow Seismic Events from Multimeasurement Streamer Data Y.I. Kamil* (Schlumberger), M. Vassallo (Schlumberger), W. Brouwer (Schlumberger),

More information

NEMOVAR, a data assimilation framework for NEMO

NEMOVAR, a data assimilation framework for NEMO , a data assimilation framework for Arthur Vidard September, 19 th 2008 19/09/2008 1/15 Forecast is produced by integration of a model from an initial state combines in a coherent manner all the available

More information

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways Latif Bouhadji ASL-AQFlow Inc., Sidney, British Columbia, Canada Email: lbouhadji@aslenv.com ABSTRACT Turbulent flows over a spillway

More information

Robotics. Chapter 25. Chapter 25 1

Robotics. Chapter 25. Chapter 25 1 Robotics Chapter 25 Chapter 25 1 Outline Robots, Effectors, and Sensors Localization and Mapping Motion Planning Chapter 25 2 Mobile Robots Chapter 25 3 Manipulators P R R R R R Configuration of robot

More information

Artificial Intelligence for Robotics: A Brief Summary

Artificial Intelligence for Robotics: A Brief Summary Artificial Intelligence for Robotics: A Brief Summary This document provides a summary of the course, Artificial Intelligence for Robotics, and highlights main concepts. Lesson 1: Localization (using Histogram

More information

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves Block #1: Vector-Valued Functions Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves 1 The Calculus of Moving Objects Problem.

More information

A mass-conservative version of the semi- Lagrangian semi-implicit HIRLAM using Lagrangian vertical coordinates

A mass-conservative version of the semi- Lagrangian semi-implicit HIRLAM using Lagrangian vertical coordinates A mass-conservative version of the semi- Lagrangian semi-implicit HIRLAM using Lagrangian vertical coordinates Peter Hjort Lauritzen Atmospheric Modeling & Predictability Section National Center for Atmospheric

More information

Imaging of flow in porous media - from optimal transport to prediction

Imaging of flow in porous media - from optimal transport to prediction Imaging of flow in porous media - from optimal transport to prediction Eldad Haber Dept of EOS and Mathematics, UBC October 15, 2013 With Rowan Lars Jenn Cocket Ruthotto Fohring Outline Prediction is very

More information

Particle Filtering for Large Dimensional Problems with Multimodal Likelihoods

Particle Filtering for Large Dimensional Problems with Multimodal Likelihoods Particle Filtering for Large Dimensional Problems with Multimodal Likelihoods Namrata Vaswani Dept of Electrical & Computer Engineering Iowa State University http://www.ece.iastate.edu/~namrata HMM Model

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

COS Lecture 13 Autonomous Robot Navigation

COS Lecture 13 Autonomous Robot Navigation COS 495 - Lecture 13 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere

A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere Ram Nair Computational and Information Systems Laboratory (CISL) National Center for Atmospheric Research

More information

Chapter 1 - Basic Equations

Chapter 1 - Basic Equations 2.20 Marine Hydrodynamics, Fall 2017 Lecture 2 Copyright c 2017 MIT - Department of Mechanical Engineering, All rights reserved. 2.20 Marine Hydrodynamics Lecture 2 Chapter 1 - Basic Equations 1.1 Description

More information

Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Finite Mixture Models Say we have a data set D = {x 1,..., x N } where x i is

More information

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Lincoln Laboratory ASAP-2001 Workshop Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Shawn Kraut and Jeffrey Krolik Duke University Department of Electrical and Computer

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Bayes Filter Implementations Discrete filters, Particle filters Piecewise Constant Representation of belief 2 Discrete Bayes Filter Algorithm 1. Algorithm Discrete_Bayes_filter(

More information

CHAPTER 5 MOTION DETECTION AND ANALYSIS

CHAPTER 5 MOTION DETECTION AND ANALYSIS CHAPTER 5 MOTION DETECTION AND ANALYSIS 5.1. Introduction: Motion processing is gaining an intense attention from the researchers with the progress in motion studies and processing competence. A series

More information

Particle Filtering. CS6240 Multimedia Analysis. Leow Wee Kheng. Department of Computer Science School of Computing National University of Singapore

Particle Filtering. CS6240 Multimedia Analysis. Leow Wee Kheng. Department of Computer Science School of Computing National University of Singapore Particle Filtering CS6240 Multimedia Analysis Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore (CS6240) Particle Filtering 1 / 28 Introduction Introduction

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research 1 Realtime Water Simulation on GPU Nuttapong Chentanez NVIDIA Research 2 3 Overview Approaches to realtime water simulation Hybrid shallow water solver + particles Hybrid 3D tall cell water solver + particles

More information

Automatic Tracking of Moving Objects in Video for Surveillance Applications

Automatic Tracking of Moving Objects in Video for Surveillance Applications Automatic Tracking of Moving Objects in Video for Surveillance Applications Manjunath Narayana Committee: Dr. Donna Haverkamp (Chair) Dr. Arvin Agah Dr. James Miller Department of Electrical Engineering

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Lian Shen Department of Civil Engineering Johns Hopkins University Baltimore, MD 21218 phone: (410) 516-5033 fax: (410) 516-7473 email: LianShen@jhu.edu

More information

3D Human Motion Analysis and Manifolds

3D Human Motion Analysis and Manifolds D E P A R T M E N T O F C O M P U T E R S C I E N C E U N I V E R S I T Y O F C O P E N H A G E N 3D Human Motion Analysis and Manifolds Kim Steenstrup Pedersen DIKU Image group and E-Science center Motivation

More information

10601 Machine Learning. Hierarchical clustering. Reading: Bishop: 9-9.2

10601 Machine Learning. Hierarchical clustering. Reading: Bishop: 9-9.2 161 Machine Learning Hierarchical clustering Reading: Bishop: 9-9.2 Second half: Overview Clustering - Hierarchical, semi-supervised learning Graphical models - Bayesian networks, HMMs, Reasoning under

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement Lian Shen Department of Mechanical Engineering

More information

Classification of High Dimensional Data By Two-way Mixture Models

Classification of High Dimensional Data By Two-way Mixture Models Classification of High Dimensional Data By Two-way Mixture Models Jia Li Statistics Department The Pennsylvania State University 1 Outline Goals Two-way mixture model approach Background: mixture discriminant

More information

Array Shape Tracking Using Active Sonar Reverberation

Array Shape Tracking Using Active Sonar Reverberation Lincoln Laboratory ASAP-2003 Worshop Array Shape Tracing Using Active Sonar Reverberation Vijay Varadarajan and Jeffrey Kroli Due University Department of Electrical and Computer Engineering Durham, NC

More information

Eulerian and Lagrangian Observability of Point Vortex Flows

Eulerian and Lagrangian Observability of Point Vortex Flows Tellus, () Printed March 8 (Tellus LATEX style file v.) Eulerian and Lagrangian Observability of Point Vortex Flows By ARTHUR J KRENER, Department of Applied Mathematics, Naval Postgraduate School,Monterey,

More information

Bayesian estimation of optical properties of the human head via 3D structural MRI p.1

Bayesian estimation of optical properties of the human head via 3D structural MRI p.1 Bayesian estimation of optical properties of the human head via 3D structural MRI June 23, 2003 at ECBO 2003 Alex Barnett Courant Institute, New York University Collaborators (NMR Center, Mass. Gen. Hosp.,

More information

Computer Vision I - Basics of Image Processing Part 1

Computer Vision I - Basics of Image Processing Part 1 Computer Vision I - Basics of Image Processing Part 1 Carsten Rother 28/10/2014 Computer Vision I: Basics of Image Processing Link to lectures Computer Vision I: Basics of Image Processing 28/10/2014 2

More information

Computational Fluid Dynamic Hydraulic Characterization: G3 Cube vs. Dolos Armour Unit. IS le Roux, WJS van der Merwe & CL de Wet

Computational Fluid Dynamic Hydraulic Characterization: G3 Cube vs. Dolos Armour Unit. IS le Roux, WJS van der Merwe & CL de Wet Computational Fluid Dynamic Hydraulic Characterization: G3 Cube vs. Dolos Armour Unit IS le Roux, WJS van der Merwe & CL de Wet Presentation Outline Scope. Assumptions and boundary values. Numerical mesh.

More information

Robotics. Chapter 25-b. Chapter 25-b 1

Robotics. Chapter 25-b. Chapter 25-b 1 Robotics Chapter 25-b Chapter 25-b 1 Particle Filtering Particle filtering uses a population of particles (each particle is a state estimate) to localize a robot s position. This is called Monte Carlo

More information

Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter

Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter Przemys law G asior, Stanis law Gardecki, Jaros law Gośliński and Wojciech Giernacki Poznan University of

More information

Chapter 6. Semi-Lagrangian Methods

Chapter 6. Semi-Lagrangian Methods Chapter 6. Semi-Lagrangian Methods References: Durran Chapter 6. Review article by Staniford and Cote (1991) MWR, 119, 2206-2223. 6.1. Introduction Semi-Lagrangian (S-L for short) methods, also called

More information

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 10: Learning with Partially Observed Data Theo Rekatsinas 1 Partially Observed GMs Speech recognition 2 Partially Observed GMs Evolution 3 Partially Observed

More information

Variational Autoencoders

Variational Autoencoders red red red red red red red red red red red red red red red red red red red red Tutorial 03/10/2016 Generative modelling Assume that the original dataset is drawn from a distribution P(X ). Attempt to

More information

Graphical Models, Bayesian Method, Sampling, and Variational Inference

Graphical Models, Bayesian Method, Sampling, and Variational Inference Graphical Models, Bayesian Method, Sampling, and Variational Inference With Application in Function MRI Analysis and Other Imaging Problems Wei Liu Scientific Computing and Imaging Institute University

More information

Vector Visualization. CSC 7443: Scientific Information Visualization

Vector Visualization. CSC 7443: Scientific Information Visualization Vector Visualization Vector data A vector is an object with direction and length v = (v x,v y,v z ) A vector field is a field which associates a vector with each point in space The vector data is 3D representation

More information

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz Humanoid Robotics Monte Carlo Localization Maren Bennewitz 1 Basis Probability Rules (1) If x and y are independent: Bayes rule: Often written as: The denominator is a normalizing constant that ensures

More information

Lecture 8 Fitting and Matching

Lecture 8 Fitting and Matching Lecture 8 Fitting and Matching Problem formulation Least square methods RANSAC Hough transforms Multi-model fitting Fitting helps matching! Reading: [HZ] Chapter: 4 Estimation 2D projective transformation

More information

Practical Course WS12/13 Introduction to Monte Carlo Localization

Practical Course WS12/13 Introduction to Monte Carlo Localization Practical Course WS12/13 Introduction to Monte Carlo Localization Cyrill Stachniss and Luciano Spinello 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Bayes Filter

More information

Automation Middleware and Algorithms for Robotic Underwater Sensor Networks

Automation Middleware and Algorithms for Robotic Underwater Sensor Networks Automation Middleware and Algorithms for Robotic Underwater Sensor Networks Fumin Zhang ECE, Georgia Institute of Technology 210 Technology Circle, Savannah, GA 31407 phone: (912) 963-6905 fax: (912) 966-7928

More information

Particle Filters for Visual Tracking

Particle Filters for Visual Tracking Particle Filters for Visual Tracking T. Chateau, Pascal Institute, Clermont-Ferrand 1 Content Particle filtering: a probabilistic framework SIR particle filter MCMC particle filter RJMCMC particle filter

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

Design of Offshore Structures using STAAD.Pro and STAAD.Offshore

Design of Offshore Structures using STAAD.Pro and STAAD.Offshore Design of Offshore Structures using STAAD.Pro and STAAD.Offshore By RAM/STAAD Solution Center 15 January 2007 Design of Offshore Structures using STAAD.Pro and STAAD.Offshore STAAD.Pro is a general purpose

More information

Field Verification of Oil Spill Fate & Transport Modeling and Linking CODAR Observation System Data with SIMAP Predictions

Field Verification of Oil Spill Fate & Transport Modeling and Linking CODAR Observation System Data with SIMAP Predictions Field Verification of Oil Spill Fate & Transport Modeling and Linking CODAR Observation System Data with SIMAP Predictions James R. Payne, Ph.D. Payne Environmental Consultants, Inc. Deborah French-McCay,

More information

Robotics. Lecture 5: Monte Carlo Localisation. See course website for up to date information.

Robotics. Lecture 5: Monte Carlo Localisation. See course website  for up to date information. Robotics Lecture 5: Monte Carlo Localisation See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College London Review:

More information

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures:

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures: Homework Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression 3.0-3.2 Pod-cast lecture on-line Next lectures: I posted a rough plan. It is flexible though so please come with suggestions Bayes

More information

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Wolfram Burgard 1 Motivation Recall: Discrete filter Discretize the continuous state space High memory complexity

More information

Lecture 21 : A Hybrid: Deep Learning and Graphical Models

Lecture 21 : A Hybrid: Deep Learning and Graphical Models 10-708: Probabilistic Graphical Models, Spring 2018 Lecture 21 : A Hybrid: Deep Learning and Graphical Models Lecturer: Kayhan Batmanghelich Scribes: Paul Liang, Anirudha Rayasam 1 Introduction and Motivation

More information

Multi-task Multi-modal Models for Collective Anomaly Detection

Multi-task Multi-modal Models for Collective Anomaly Detection Multi-task Multi-modal Models for Collective Anomaly Detection Tsuyoshi Ide ( Ide-san ), Dzung T. Phan, J. Kalagnanam PhD, Senior Technical Staff Member IBM Thomas J. Watson Research Center This slides

More information

A Sample of Monte Carlo Methods in Robotics and Vision. Credits. Outline. Structure from Motion. without Correspondences

A Sample of Monte Carlo Methods in Robotics and Vision. Credits. Outline. Structure from Motion. without Correspondences A Sample of Monte Carlo Methods in Robotics and Vision Frank Dellaert College of Computing Georgia Institute of Technology Credits Zia Khan Tucker Balch Michael Kaess Rafal Zboinski Ananth Ranganathan

More information

Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY Velocity models used for wavefield-based seismic

More information

Velocity Model Sampling and Interpolation: The Gradient Problem

Velocity Model Sampling and Interpolation: The Gradient Problem January 11, 2013 1 2 3 4 5 Kirchhoff migration uses raytracing equations for prestack depth migration. d x dt = v( x)2 p d p dt = v( x) v( x) These equations estimate the paths of seismic energy through

More information

OPTIMISATION OF PIN FIN HEAT SINK USING TAGUCHI METHOD

OPTIMISATION OF PIN FIN HEAT SINK USING TAGUCHI METHOD CHAPTER - 5 OPTIMISATION OF PIN FIN HEAT SINK USING TAGUCHI METHOD The ever-increasing demand to lower the production costs due to increased competition has prompted engineers to look for rigorous methods

More information

Global modelling of air pollution using multiple data sources

Global modelling of air pollution using multiple data sources Global modelling of air pollution using multiple data sources Matthew Thomas SAMBa, University of Bath Email: M.L.Thomas@bath.ac.uk November 11, 015 1/ 3 OUTLINE Motivation Data Sources Existing Approaches

More information

Combination of feature-based and geometric methods for positioning

Combination of feature-based and geometric methods for positioning Combination of feature-based and geometric methods for positioning Stefan Niedermayr, Andreas Wieser Institute of Geodesy and Geophysics 3 rd International Conference on Machine Control & Guidance, March

More information

CSE 490R P1 - Localization using Particle Filters Due date: Sun, Jan 28-11:59 PM

CSE 490R P1 - Localization using Particle Filters Due date: Sun, Jan 28-11:59 PM CSE 490R P1 - Localization using Particle Filters Due date: Sun, Jan 28-11:59 PM 1 Introduction In this assignment you will implement a particle filter to localize your car within a known map. This will

More information

Th N Deghosting by Echo-deblending SUMMARY. A.J. Berkhout* (Delft University of Technology) & G. Blacquiere (Delft University of Technology)

Th N Deghosting by Echo-deblending SUMMARY. A.J. Berkhout* (Delft University of Technology) & G. Blacquiere (Delft University of Technology) Th N103 11 Deghosting by Echo-deblending A.J. Berkhout* (Delft University of Technology) & G. Blacquiere (Delft University of Technology) SUMMARY Because of the strong sea surface reflectivity, a marine

More information

Spatio-Temporal Stereo Disparity Integration

Spatio-Temporal Stereo Disparity Integration Spatio-Temporal Stereo Disparity Integration Sandino Morales and Reinhard Klette The.enpeda.. Project, The University of Auckland Tamaki Innovation Campus, Auckland, New Zealand pmor085@aucklanduni.ac.nz

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

D025 Geostatistical Stochastic Elastic Iinversion - An Efficient Method for Integrating Seismic and Well Data Constraints

D025 Geostatistical Stochastic Elastic Iinversion - An Efficient Method for Integrating Seismic and Well Data Constraints D025 Geostatistical Stochastic Elastic Iinversion - An Efficient Method for Integrating Seismic and Well Data Constraints P.R. Williamson (Total E&P USA Inc.), A.J. Cherrett* (Total SA) & R. Bornard (CGGVeritas)

More information

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves Machine Learning A 708.064 11W 1sst KU Exercises Problems marked with * are optional. 1 Conditional Independence I [2 P] a) [1 P] Give an example for a probability distribution P (A, B, C) that disproves

More information

Coastal Ocean Modeling & Dynamics

Coastal Ocean Modeling & Dynamics DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Coastal Ocean Modeling & Dynamics Roger M. Samelson College of Oceanic and Atmospheric Sciences Oregon State University

More information

Outline. Data Association Scenarios. Data Association Scenarios. Data Association Scenarios

Outline. Data Association Scenarios. Data Association Scenarios. Data Association Scenarios Outline Data Association Scenarios Track Filtering and Gating Global Nearest Neighbor (GNN) Review: Linear Assignment Problem Murthy s k-best Assignments Algorithm Probabilistic Data Association (PDAF)

More information

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford Department of Engineering Science University of Oxford January 27, 2017 Many datasets consist of multiple heterogeneous subsets. Cluster analysis: Given an unlabelled data, want algorithms that automatically

More information

Computer Vision 2 Lecture 8

Computer Vision 2 Lecture 8 Computer Vision 2 Lecture 8 Multi-Object Tracking (30.05.2016) leibe@vision.rwth-aachen.de, stueckler@vision.rwth-aachen.de RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

More information

Software Infrastructure for Data Assimilation: Object Oriented Prediction System

Software Infrastructure for Data Assimilation: Object Oriented Prediction System Software Infrastructure for Data Assimilation: Object Oriented Prediction System Yannick Trémolet ECMWF Blueprints for Next-Generation Data Assimilation Systems, Boulder, March 2016 Why OOPS? Y. Trémolet

More information

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models Introduction ti to Embedded dsystems EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping Gabe Hoffmann Ph.D. Candidate, Aero/Astro Engineering Stanford University Statistical Models

More information

Motivation: Shortcomings of Hidden Markov Model. Ko, Youngjoong. Solution: Maximum Entropy Markov Model (MEMM)

Motivation: Shortcomings of Hidden Markov Model. Ko, Youngjoong. Solution: Maximum Entropy Markov Model (MEMM) Motivation: Shortcomings of Hidden Markov Model Maximum Entropy Markov Models and Conditional Random Fields Ko, Youngjoong Dept. of Computer Engineering, Dong-A University Intelligent System Laboratory,

More information

Variational Autoencoders. Sargur N. Srihari

Variational Autoencoders. Sargur N. Srihari Variational Autoencoders Sargur N. srihari@cedar.buffalo.edu Topics 1. Generative Model 2. Standard Autoencoder 3. Variational autoencoders (VAE) 2 Generative Model A variational autoencoder (VAE) is a

More information

Model-based Visual Tracking:

Model-based Visual Tracking: Technische Universität München Model-based Visual Tracking: the OpenTL framework Giorgio Panin Technische Universität München Institut für Informatik Lehrstuhl für Echtzeitsysteme und Robotik (Prof. Alois

More information

Section 17.7: Surface Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 4 Lecture. 4.1 Riemann definition

Section 17.7: Surface Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 4 Lecture. 4.1 Riemann definition ection 17.7: urface Integrals 1 Objectives 1. Compute surface integrals of function of three variables. Assignments 1. Read ection 17.7. Problems: 5,7,11,1 3. Challenge: 17,3 4. Read ection 17.4 3 Maple

More information

An Introduction to Markov Chain Monte Carlo

An Introduction to Markov Chain Monte Carlo An Introduction to Markov Chain Monte Carlo Markov Chain Monte Carlo (MCMC) refers to a suite of processes for simulating a posterior distribution based on a random (ie. monte carlo) process. In other

More information

Warped Mixture Models

Warped Mixture Models Warped Mixture Models Tomoharu Iwata, David Duvenaud, Zoubin Ghahramani Cambridge University Computational and Biological Learning Lab March 11, 2013 OUTLINE Motivation Gaussian Process Latent Variable

More information

Stochastic Road Shape Estimation, B. Southall & C. Taylor. Review by: Christopher Rasmussen

Stochastic Road Shape Estimation, B. Southall & C. Taylor. Review by: Christopher Rasmussen Stochastic Road Shape Estimation, B. Southall & C. Taylor Review by: Christopher Rasmussen September 26, 2002 Announcements Readings for next Tuesday: Chapter 14-14.4, 22-22.5 in Forsyth & Ponce Main Contributions

More information

Accuracy Progressive Calculation of Lagrangian Trajectories from a Gridded Velocity Field

Accuracy Progressive Calculation of Lagrangian Trajectories from a Gridded Velocity Field JULY 24 C H U A N D F A N 6 Accuracy Progressive Calculation of Lagrangian Trajectories from a Gridded Velocity Field PETER C. CHU AND CHENWU FAN Naval Ocean Analysis and Prediction Laboratory, Department

More information

Source Separation with a Sensor Array Using Graphical Models and Subband Filtering

Source Separation with a Sensor Array Using Graphical Models and Subband Filtering Source Separation with a Sensor Array Using Graphical Models and Subband Filtering Hagai Attias Microsoft Research Redmond, WA 98052 hagaia@microsoft.com Abstract Source separation is an important problem

More information

CPSC 340: Machine Learning and Data Mining. Probabilistic Classification Fall 2017

CPSC 340: Machine Learning and Data Mining. Probabilistic Classification Fall 2017 CPSC 340: Machine Learning and Data Mining Probabilistic Classification Fall 2017 Admin Assignment 0 is due tonight: you should be almost done. 1 late day to hand it in Monday, 2 late days for Wednesday.

More information

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu

More information

Robust Regression. Robust Data Mining Techniques By Boonyakorn Jantaranuson

Robust Regression. Robust Data Mining Techniques By Boonyakorn Jantaranuson Robust Regression Robust Data Mining Techniques By Boonyakorn Jantaranuson Outline Introduction OLS and important terminology Least Median of Squares (LMedS) M-estimator Penalized least squares What is

More information

Continuum-Microscopic Models

Continuum-Microscopic Models Scientific Computing and Numerical Analysis Seminar October 1, 2010 Outline Heterogeneous Multiscale Method Adaptive Mesh ad Algorithm Refinement Equation-Free Method Incorporates two scales (length, time

More information

Mass-flux parameterization in the shallow convection gray zone

Mass-flux parameterization in the shallow convection gray zone Mass-flux parameterization in the shallow convection gray zone LACE stay report Toulouse Centre National de Recherche Meteorologique, 15. September 2014 26. September 2014 Scientific supervisor: Rachel

More information

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos Machine Learning for Computer Vision 1 22 October, 2012 MVA ENS Cachan Lecture 5: Introduction to generative models Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Center for Visual Computing Ecole Centrale Paris

More information

FLOWING FLUIDS AND PRESSURE VARIATION

FLOWING FLUIDS AND PRESSURE VARIATION Chapter 4 Pressure differences are (often) the forces that move fluids FLOWING FLUIDS AND PRESSURE VARIATION Fluid Mechanics, Spring Term 2011 e.g., pressure is low at the center of a hurricane. For your

More information