11. Kinematic models of contact Mechanics of Manipulation

Size: px
Start display at page:

Download "11. Kinematic models of contact Mechanics of Manipulation"

Transcription

1 11. Kinematic models of contact Mechanics of Manipulation Matt Mason Carnegie Mellon Lecture 11. Mechanics of Manipulation p.1

2 Lecture 11. Kinematic models of contact. Chapter 1 Manipulation Case 1: Manipulation by a human Case 2: An automated assembly system 1. Issues in manipulation 1.4 A taxonomy of manipulation techniques 7 1. Bibliographic notes 8 Exercises 8 Chapter 2 Kinematics Preliminaries Planar kinematics 1 2. Spherical kinematics Spatial kinematics Kinematic constraint Kinematic mechanisms Bibliographic notes 6 Exercises 7 Chapter Kinematic Representation 41.1 Representation of spatial rotations 41.2 Representation of spatial displacements 8. Kinematic constraints 68.4 Bibliographic notes 72 Exercises 72 Chapter 4 Kinematic Manipulation Path planning Path planning for nonholonomic systems Kinematic models of contact Bibliographic notes 88 Exercises 88 Chapter Rigid Body Statics 9.1 Forces acting on rigid bodies 9.2 Polyhedral convex cones 99. Contact wrenches and wrench cones Cones in velocity twist space 104. The oriented plane 10.6 Instantaneous centers and Reuleaux s method Line of force; moment labeling Force dual Summary Bibliographic notes 117 Exercises 118 Chapter 6 Friction Coulomb s Law Single degree-of-freedom problems Planar single contact problems Graphical representation of friction cones Static equilibrium problems Planar sliding Bibliographic notes 19 Exercises 19 Chapter 7 Quasistatic Manipulation Grasping and fixturing Pushing Stable pushing Parts orienting Assembly Bibliographic notes 17 Exercises 17 Chapter 8 Dynamics Newton s laws A particle in three dimensions Moment of force; moment of momentum Dynamics of a system of particles Rigid body dynamics The angular inertia matrix Motion of a freely rotating body Planar single contact problems Graphical methods for the plane Planar multiple-contact problems Bibliographic notes 207 Exercises 208 Chapter 9 Impact A particle Rigid body impact Bibliographic notes 22 Exercises 22 Chapter 10 Dynamic Manipulation Quasidynamic manipulation Brie y dynamic manipulation Continuously dynamic manipulation Bibliographic notes 22 Exercises 2 Appendix A Infinity 27 Lecture 11. Mechanics of Manipulation p.2

3 Outline. Grübler Review of kinematic mechanisms Mobility and connectivity Grübler s formula Salisbury Taxonomy of contacts Mobility and connectivity of grasp Lecture 11. Mechanics of Manipulation p.

4 Kinematic mechanisms Link: a rigid body; Joint: imposes one or more constraints on the relative motion of two links; Kinematic mechanism: a bunch of links joined by joints; lower pairs joints involving positive contact area. Planar freedoms Cylindrical 2 freedoms Prismatic 1 freedom Spherical freedoms Revolute 1 freedom Helical 1 freedom Lecture 11. Mechanics of Manipulation p.4

5 Mobility and connectivity mobility of a mechanism: DOFs with one link fixed. connectivity DOFs of one link relative to another. What is the mobility of the five bar linkage at right? L2 L L1 L4 L What is the connectivity of Link 1 relative to link two? Link relative to link 1? Link relative to link 4? Lecture 11. Mechanics of Manipulation p.

6 Mobility and connectivity mobility of a mechanism: DOFs with one link fixed. connectivity DOFs of one link relative to another. What is the mobility of the five bar linkage at right? Two. L2 L L1 L4 L What is the connectivity of Link 1 relative to link two? Link relative to link 1? Link relative to link 4? Lecture 11. Mechanics of Manipulation p.

7 Mobility and connectivity mobility of a mechanism: DOFs with one link fixed. connectivity DOFs of one link relative to another. What is the mobility of the five bar linkage at right? Two. L2 L L1 L4 L What is the connectivity of Link 1 relative to link two? One. Link relative to link 1? Link relative to link 4? Lecture 11. Mechanics of Manipulation p.

8 Mobility and connectivity mobility of a mechanism: DOFs with one link fixed. connectivity DOFs of one link relative to another. What is the mobility of the five bar linkage at right? Two. L2 L L1 L4 L What is the connectivity of Link 1 relative to link two? One. Link relative to link 1? Two. Link relative to link 4? Lecture 11. Mechanics of Manipulation p.

9 Mobility and connectivity mobility of a mechanism: DOFs with one link fixed. connectivity DOFs of one link relative to another. What is the mobility of the five bar linkage at right? Two. L2 L L1 L4 L What is the connectivity of Link 1 relative to link two? One. Link relative to link 1? Two. Link relative to link 4? One. Lecture 11. Mechanics of Manipulation p.

10 Grübler s formula Given n links joined by g joints, with u i constraints and f i freedoms at joint i. (Note that u i + f i = 6.) Assume one link is fixed and constraints are all independent. The mobility M is M = 6(n 1) u i = 6(n 1) (6 f i ) = 6(n g 1) + f i Or, for a planar mechanism: M = (n 1) u i = (n g 1) + f i Lecture 11. Mechanics of Manipulation p.6

11 Grübler: special case for loops The previous formula works (sort of) for all mechanisms. For loops there is a variant. One loop: n = g, so M = f i + 6( 1) Two loops: make a second loop by adding k links and k + 1 joints: M = f i + 6( 2) Every loop increases excess of joints over links by 1. For l loops: for a spatial linkage, and M = f i 6l M = f i l Lecture 11. Mechanics of Manipulation p.7

12 Common sense Example: what is the mobility of Watt s linkage? Planar Grübler s formula: M = (n 1) u i = 10 M = (n g 1) + f i = M = f i l = Spatial Grübler s formula: Independent constraints is a very strong assumption. M = 6(n 1) u i = M = 6(n g 1) + f i = M = f i 6l = Lecture 11. Mechanics of Manipulation p.8

13 Common sense Example: what is the mobility of Watt s linkage? Planar Grübler s formula: M = (n 1) u i = 1 10 M = (n g 1) + f i = M = f i l = Spatial Grübler s formula: Independent constraints is a very strong assumption. M = 6(n 1) u i = M = 6(n g 1) + f i = M = f i 6l = Lecture 11. Mechanics of Manipulation p.8

14 Common sense Example: what is the mobility of Watt s linkage? Planar Grübler s formula: M = (n 1) u i = 1 10 M = (n g 1) + f i = 1 M = f i l = Spatial Grübler s formula: Independent constraints is a very strong assumption. M = 6(n 1) u i = M = 6(n g 1) + f i = M = f i 6l = Lecture 11. Mechanics of Manipulation p.8

15 Common sense Example: what is the mobility of Watt s linkage? Planar Grübler s formula: M = (n 1) u i = 1 10 M = (n g 1) + f i = 1 M = f i l = 1 Spatial Grübler s formula: Independent constraints is a very strong assumption. M = 6(n 1) u i = M = 6(n g 1) + f i = M = f i 6l = Lecture 11. Mechanics of Manipulation p.8

16 Common sense Example: what is the mobility of Watt s linkage? Planar Grübler s formula: M = (n 1) u i = 1 10 M = (n g 1) + f i = 1 M = f i l = 1 Spatial Grübler s formula: Independent constraints is a very strong assumption. M = 6(n 1) u i = 2 M = 6(n g 1) + f i = M = f i 6l = Lecture 11. Mechanics of Manipulation p.8

17 Common sense Example: what is the mobility of Watt s linkage? Planar Grübler s formula: M = (n 1) u i = 1 10 M = (n g 1) + f i = 1 M = f i l = 1 Spatial Grübler s formula: Independent constraints is a very strong assumption. M = 6(n 1) u i = 2 M = 6(n g 1) + f i = 2 M = f i 6l = Lecture 11. Mechanics of Manipulation p.8

18 Common sense Example: what is the mobility of Watt s linkage? Planar Grübler s formula: M = (n 1) u i = 1 10 M = (n g 1) + f i = 1 M = f i l = 1 Spatial Grübler s formula: Independent constraints is a very strong assumption. M = 6(n 1) u i = 2 M = 6(n g 1) + f i = 2 M = f i 6l = 2 Lecture 11. Mechanics of Manipulation p.8

19 Kinematic models of contact A grasp is like a kinematic mechanism. Assume fingers do not lift or slip. Model each contact as a joint Apply Grübler s formula! Lecture 11. Mechanics of Manipulation p.9

20 Taxonomy of contact types In previous slide, contact was modeled as spherical joint. Are there other possibilities? Salisbury s PhD thesis, 1982, included a taxonomy. No contact 6 freedoms Line contact without friction 4 freedoms Point contact without friction freedoms Point contact with friction freedoms Planar contact without friction freedoms Soft fi nger 2 freedoms Line contact with friction 1 freedom Planar contact with friction 0 freedoms Lecture 11. Mechanics of Manipulation p.10

21 Mobility and connectivity of grasp Salisbury suggests four measures: M Mobility of the entire system with the finger joints free. M Mobility of the entire system, with the finger joints locked. C Connectivity of the object relative to a fixed palm, with the finger joints free. C Connectivity of the object relative to a fixed palm, with the finger joints locked. If C = 6 then object can make general motions. If C 0 then hand can immobilize object. Lecture 11. Mechanics of Manipulation p.11

22 Example: the Salisbury hand What is C? What is C? Lecture 11. Mechanics of Manipulation p.12

23 Next: Foundations of statics. Chapter 1 Manipulation Case 1: Manipulation by a human Case 2: An automated assembly system 1. Issues in manipulation 1.4 A taxonomy of manipulation techniques 7 1. Bibliographic notes 8 Exercises 8 Chapter 2 Kinematics Preliminaries Planar kinematics 1 2. Spherical kinematics Spatial kinematics Kinematic constraint Kinematic mechanisms Bibliographic notes 6 Exercises 7 Chapter Kinematic Representation 41.1 Representation of spatial rotations 41.2 Representation of spatial displacements 8. Kinematic constraints 68.4 Bibliographic notes 72 Exercises 72 Chapter 4 Kinematic Manipulation Path planning Path planning for nonholonomic systems Kinematic models of contact Bibliographic notes 88 Exercises 88 Chapter Rigid Body Statics 9.1 Forces acting on rigid bodies 9.2 Polyhedral convex cones 99. Contact wrenches and wrench cones Cones in velocity twist space 104. The oriented plane 10.6 Instantaneous centers and Reuleaux s method Line of force; moment labeling Force dual Summary Bibliographic notes 117 Exercises 118 Chapter 6 Friction Coulomb s Law Single degree-of-freedom problems Planar single contact problems Graphical representation of friction cones Static equilibrium problems Planar sliding Bibliographic notes 19 Exercises 19 Chapter 7 Quasistatic Manipulation Grasping and fixturing Pushing Stable pushing Parts orienting Assembly Bibliographic notes 17 Exercises 17 Chapter 8 Dynamics Newton s laws A particle in three dimensions Moment of force; moment of momentum Dynamics of a system of particles Rigid body dynamics The angular inertia matrix Motion of a freely rotating body Planar single contact problems Graphical methods for the plane Planar multiple-contact problems Bibliographic notes 207 Exercises 208 Chapter 9 Impact A particle Rigid body impact Bibliographic notes 22 Exercises 22 Chapter 10 Dynamic Manipulation Quasidynamic manipulation Brie y dynamic manipulation Continuously dynamic manipulation Bibliographic notes 22 Exercises 2 Appendix A Infinity 27 Lecture 11. Mechanics of Manipulation p.1

9. Representing constraint

9. Representing constraint 9. Representing constraint Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 9. Mechanics of Manipulation p.1 Lecture 9. Representing constraint.

More information

13. Polyhedral Convex Cones

13. Polyhedral Convex Cones 13. Polyhedral Convex Cones Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 13. Mechanics of Manipulation p.1 Lecture 13. Cones. Chapter

More information

15. Moment Labeling Mechanics of Manipulation

15. Moment Labeling Mechanics of Manipulation 15. Moment Labeling Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 15. Mechanics of Manipulation p.1 Lecture 15. Moment Labeling. Chapter

More information

23. Assembly Mechanics of Manipulation

23. Assembly Mechanics of Manipulation 23. Assembly Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 23. Mechanics of Manipulation p.1 Lecture 23. Assembly. Chapter 1 Manipulation

More information

3. Planar kinematics Mechanics of Manipulation

3. Planar kinematics Mechanics of Manipulation 3. Planar kinematics Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 3. Mechanics of Manipulation p.1 Lecture 2. Planar kinematics. Chapter

More information

14. The Oriented Plane Mechanics of Manipulation

14. The Oriented Plane Mechanics of Manipulation 14. The Oriented Plane Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 14. Mechanics of Manipulation p.1 Exhortations Hands are levers of

More information

Lecture 3. Planar Kinematics

Lecture 3. Planar Kinematics Matthew T. Mason Mechanics of Manipulation Outline Where are we? s 1. Foundations and general concepts. 2.. 3. Spherical and spatial kinematics. Readings etc. The text: By now you should have read Chapter

More information

Lecture Note 2: Configuration Space

Lecture Note 2: Configuration Space ECE5463: Introduction to Robotics Lecture Note 2: Configuration Space Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 2 (ECE5463

More information

Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture 03 Introduction to Robot and Robotics (Contd.) (Refer Slide Time: 00:34) Now,

More information

Chapter 4. Mechanism Design and Analysis

Chapter 4. Mechanism Design and Analysis Chapter 4. Mechanism Design and Analysis All mechanical devices containing moving parts are composed of some type of mechanism. A mechanism is a group of links interacting with each other through joints

More information

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS Kinematics Fundamentals CREATING OF KINEMATIC CHAINS Mechanism Definitions 1. a system or structure of moving parts that performs some function 2. is each system reciprocally joined moveable bodies the

More information

SolidWorks Assembly Files. Assemblies Mobility. The Mating Game Mating features. Mechanical Mates Relative rotation about axes

SolidWorks Assembly Files. Assemblies Mobility. The Mating Game Mating features. Mechanical Mates Relative rotation about axes Assemblies Mobility SolidWorks Assembly Files An assembly file is a collection of parts The first part brought into an assembly file is fixed Other parts are constrained relative to that part (or other

More information

Modelling of mechanical system CREATING OF KINEMATIC CHAINS

Modelling of mechanical system CREATING OF KINEMATIC CHAINS Modelling of mechanical system CREATING OF KINEMATIC CHAINS Mechanism Definitions 1. a system or structure of moving parts that performs some function 2. is each system reciprocally joined moveable bodies

More information

ME 115(b): Final Exam, Spring

ME 115(b): Final Exam, Spring ME 115(b): Final Exam, Spring 2011-12 Instructions 1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of the exam if you need to ask me a question, or go to dinner,

More information

Analytical and Applied Kinematics

Analytical and Applied Kinematics Analytical and Applied Kinematics Vito Moreno moreno@engr.uconn.edu 860-614-2365 (cell) http://www.engr.uconn.edu/~moreno Office EB1, hours Thursdays 10:00 to 5:00 1 This course introduces a unified and

More information

Lesson 1: Introduction to Pro/MECHANICA Motion

Lesson 1: Introduction to Pro/MECHANICA Motion Lesson 1: Introduction to Pro/MECHANICA Motion 1.1 Overview of the Lesson The purpose of this lesson is to provide you with a brief overview of Pro/MECHANICA Motion, also called Motion in this book. Motion

More information

Manipulation: Mechanisms, Grasping and Inverse Kinematics

Manipulation: Mechanisms, Grasping and Inverse Kinematics Manipulation: Mechanisms, Grasping and Inverse Kinematics RSS Lectures 14 & 15 Monday & Wednesday, 1 & 3 April 2013 Prof. Seth Teller Overview Mobility and Manipulation Manipulation Strategies Mechanism

More information

What Is SimMechanics?

What Is SimMechanics? SimMechanics 1 simulink What Is Simulink? Simulink is a tool for simulating dynamic systems with a graphical interface specially developed for this purpose. Physical Modeling runs within the Simulink environment

More information

KINEMATICS OF MACHINES. Dr.V.SUNDARESWARAN PROFESSOR OF MECHANICAL ENGG. COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY CHENNAI

KINEMATICS OF MACHINES. Dr.V.SUNDARESWARAN PROFESSOR OF MECHANICAL ENGG. COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY CHENNAI KINEMATICS OF MACHINES Dr.V.SUNDARESWARAN PROFESSOR OF MECHANICAL ENGG. COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY CHENNAI 600 025 MECHANICS Science dealing with motion DIVISIONS OF MECHANICS Statics

More information

1. Introduction 1 2. Mathematical Representation of Robots

1. Introduction 1 2. Mathematical Representation of Robots 1. Introduction 1 1.1 Introduction 1 1.2 Brief History 1 1.3 Types of Robots 7 1.4 Technology of Robots 9 1.5 Basic Principles in Robotics 12 1.6 Notation 15 1.7 Symbolic Computation and Numerical Analysis

More information

3. Manipulator Kinematics. Division of Electronic Engineering Prof. Jaebyung Park

3. Manipulator Kinematics. Division of Electronic Engineering Prof. Jaebyung Park 3. Manipulator Kinematics Division of Electronic Engineering Prof. Jaebyung Park Introduction Kinematics Kinematics is the science of motion which treats motion without regard to the forces that cause

More information

Model Library Mechanics

Model Library Mechanics Model Library Mechanics Using the libraries Mechanics 1D (Linear), Mechanics 1D (Rotary), Modal System incl. ANSYS interface, and MBS Mechanics (3D) incl. CAD import via STL and the additional options

More information

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s CENG 732 Computer Animation This week Inverse Kinematics (continued) Rigid Body Simulation Bodies in free fall Bodies in contact Spring 2006-2007 Week 5 Inverse Kinematics Physically Based Rigid Body Simulation

More information

Robotics I. March 27, 2018

Robotics I. March 27, 2018 Robotics I March 27, 28 Exercise Consider the 5-dof spatial robot in Fig., having the third and fifth joints of the prismatic type while the others are revolute. z O x Figure : A 5-dof robot, with a RRPRP

More information

Kinematics - Introduction. Robotics. Kinematics - Introduction. Vladimír Smutný

Kinematics - Introduction. Robotics. Kinematics - Introduction. Vladimír Smutný Kinematics - Introduction Robotics Kinematics - Introduction Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics (CIIRC) Czech Technical University

More information

Reaching and Grasping

Reaching and Grasping Lecture 14: (06/03/14) Reaching and Grasping Reference Frames Configuration space Reaching Grasping Michael Herrmann michael.herrmann@ed.ac.uk, phone: 0131 6 517177, Informatics Forum 1.42 Robot arms Typically

More information

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T 3 3 Motion Control (wheeled robots) Introduction: Mobile Robot Kinematics Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground

More information

Last 2 modules were about. What the other robot did : Robotics systems and science Lecture 15: Grasping and Manipulation

Last 2 modules were about. What the other robot did : Robotics systems and science Lecture 15: Grasping and Manipulation 6.141: Robotics systems and science Lecture 15: Grasping and Manipulation Lecture Notes Prepared by Daniela Rus EECS/MIT Spring 2009 What the robot did over Spring break Reading: Chapter3, Craig: Robotics

More information

Configuration Space. Chapter 2

Configuration Space. Chapter 2 Chapter 2 Configuration Space A typical robot is mechanically constructed from several bodies, or links, that are connected by various types of joints. The robot moves when certain joints are driven by

More information

Spatial R-C-C-R Mechanism for a Single DOF Gripper

Spatial R-C-C-R Mechanism for a Single DOF Gripper NaCoMM-2009-ASMRL28 Spatial R-C-C-R Mechanism for a Single DOF Gripper Rajeev Lochana C.G * Mechanical Engineering Department Indian Institute of Technology Delhi, New Delhi, India * Email: rajeev@ar-cad.com

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 2, Issue 10, October 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Force Closure

More information

Forward kinematics and Denavit Hartenburg convention

Forward kinematics and Denavit Hartenburg convention Forward kinematics and Denavit Hartenburg convention Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 5 Dr. Tatlicioglu (EEE@IYTE) EE463

More information

Theory of Machines Course # 1

Theory of Machines Course # 1 Theory of Machines Course # 1 Ayman Nada Assistant Professor Jazan University, KSA. arobust@tedata.net.eg March 29, 2010 ii Sucess is not coming in a day 1 2 Chapter 1 INTRODUCTION 1.1 Introduction Mechanisms

More information

Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis

Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis Courtesy of Design Simulation Technologies, Inc. Used with permission. Dan Frey Today s Agenda Collect assignment #2 Begin mechanisms

More information

MAE 342 Dynamics of Machines. Types of Mechanisms. type and mobility

MAE 342 Dynamics of Machines. Types of Mechanisms. type and mobility MAE 342 Dynamics of Machines Types of Mechanisms Classification of Mechanisms by type and mobility MAE 342 Dynamics of Machines 2 Planar, Spherical and Spatial Mechanisms Planar Mechanisms: all points

More information

SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs

SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs TOM - ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course Theory of Machines GATE, IES & PSUs TOM - ME GATE, IES, PSU 2 C O N T E N T TOPIC 1. MACHANISMS AND

More information

Lecture Note 2: Configuration Space

Lecture Note 2: Configuration Space ECE5463: Introduction to Robotics Lecture Note 2: Configuration Space Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 2 (ECE5463

More information

EEE 187: Robotics Summary 2

EEE 187: Robotics Summary 2 1 EEE 187: Robotics Summary 2 09/05/2017 Robotic system components A robotic system has three major components: Actuators: the muscles of the robot Sensors: provide information about the environment and

More information

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position.

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. Kinematics Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. 1/31 Statics deals with the forces and moments which are aplied on the mechanism

More information

Inherently Balanced Double Bennett Linkage

Inherently Balanced Double Bennett Linkage Inherently Balanced Double Bennett Linkage V. van der Wijk Delft University of Technology - Dep. of Precision and Microsystems Engineering Mechatronic System Design, e-mail: v.vanderwijk@tudelft.nl Abstract.

More information

ON THE RE-CONFIGURABILITY DESIGN OF PARALLEL MACHINE TOOLS

ON THE RE-CONFIGURABILITY DESIGN OF PARALLEL MACHINE TOOLS 33 ON THE RE-CONFIGURABILITY DESIGN OF PARALLEL MACHINE TOOLS Dan Zhang Faculty of Engineering and Applied Science, University of Ontario Institute of Technology Oshawa, Ontario, L1H 7K, Canada Dan.Zhang@uoit.ca

More information

6.141: Robotics systems and science Lecture 13: Grasping and Manipulation

6.141: Robotics systems and science Lecture 13: Grasping and Manipulation 6.141: Robotics systems and science Lecture 13: Grasping and Manipulation Lecture Notes Prepared by Daniela Rus and Seth Teller EECS/MIT Spring 2011 Reading: Chapter3, Craig: Robotics http://courses.csail.mit.edu/6.141/!

More information

A Quantitative Stability Measure for Graspless Manipulation

A Quantitative Stability Measure for Graspless Manipulation A Quantitative Stability Measure for Graspless Manipulation Yusuke MAEDA and Tamio ARAI Department of Precision Engineering, School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 3: Forward and Inverse Kinematics

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 3: Forward and Inverse Kinematics MCE/EEC 647/747: Robot Dynamics and Control Lecture 3: Forward and Inverse Kinematics Denavit-Hartenberg Convention Reading: SHV Chapter 3 Mechanical Engineering Hanz Richter, PhD MCE503 p.1/12 Aims of

More information

240AR059 - Geometric Fundamentals for Robot Design

240AR059 - Geometric Fundamentals for Robot Design Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 240 - ETSEIB - Barcelona School of Industrial Engineering 707 - ESAII - Department of Automatic Control MASTER'S DEGREE IN AUTOMATIC

More information

MEM380 Applied Autonomous Robots Winter Robot Kinematics

MEM380 Applied Autonomous Robots Winter Robot Kinematics MEM38 Applied Autonomous obots Winter obot Kinematics Coordinate Transformations Motivation Ultimatel, we are interested in the motion of the robot with respect to a global or inertial navigation frame

More information

Lecture Note 6: Forward Kinematics

Lecture Note 6: Forward Kinematics ECE5463: Introduction to Robotics Lecture Note 6: Forward Kinematics Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 6 (ECE5463

More information

ME 115(b): Final Exam, Spring

ME 115(b): Final Exam, Spring ME 115(b): Final Exam, Spring 2005-06 Instructions 1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of the exam if you need to ask me a question, or go to dinner,

More information

Robot mechanics and kinematics

Robot mechanics and kinematics University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2017/18 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric Parallel Robots Mechanics and Control H AMID D TAG HI RAD CRC Press Taylor & Francis Group Boca Raton London NewYoric CRC Press Is an Imprint of the Taylor & Francis Croup, an informs business Contents

More information

Industrial Robots : Manipulators, Kinematics, Dynamics

Industrial Robots : Manipulators, Kinematics, Dynamics Industrial Robots : Manipulators, Kinematics, Dynamics z z y x z y x z y y x x In Industrial terms Robot Manipulators The study of robot manipulators involves dealing with the positions and orientations

More information

Connection Elements and Connection Library

Connection Elements and Connection Library Connection Elements and Connection Library Lecture 2 L2.2 Overview Introduction Defining Connector Elements Understanding Connector Sections Understanding Connection Types Understanding Connector Local

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 1: Introduction

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 1: Introduction MCE/EEC 647/747: Robot Dynamics and Control Lecture 1: Introduction Reading: SHV Chapter 1 Robotics and Automation Handbook, Chapter 1 Assigned readings from several articles. Cleveland State University

More information

Rebecca R. Romatoski. B.S. Mechanical Engineering Massachusetts Institute of Technology, 2006

Rebecca R. Romatoski. B.S. Mechanical Engineering Massachusetts Institute of Technology, 2006 Robotic End Effecter for the Introduction to Robotics Laboratory Robotic Arms by Rebecca R. Romatoski B.S. Mechanical Engineering Massachusetts Institute of Technology, 2006 SUBMITTED TO THE DEPARTMENT

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 2 Lecture - 1

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 2 Lecture - 1 Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module - 2 Lecture - 1 The topic of today s lecture is mobility analysis. By mobility

More information

Robot mechanics and kinematics

Robot mechanics and kinematics University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2016/17 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

Dynamics Response of Spatial Parallel Coordinate Measuring Machine with Clearances

Dynamics Response of Spatial Parallel Coordinate Measuring Machine with Clearances Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com Dynamics Response of Spatial Parallel Coordinate Measuring Machine with Clearances Yu DENG, Xiulong CHEN, Suyu WANG Department of mechanical

More information

AC : AN ALTERNATIVE APPROACH FOR TEACHING MULTIBODY DYNAMICS

AC : AN ALTERNATIVE APPROACH FOR TEACHING MULTIBODY DYNAMICS AC 2009-575: AN ALTERNATIVE APPROACH FOR TEACHING MULTIBODY DYNAMICS George Sutherland, Rochester Institute of Technology DR. GEORGE H. SUTHERLAND is a professor in the Manufacturing & Mechanical Engineering

More information

Lecture «Robot Dynamics»: Multi-body Kinematics

Lecture «Robot Dynamics»: Multi-body Kinematics Lecture «Robot Dynamics»: Multi-body Kinematics 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco

More information

Lecture «Robot Dynamics»: Kinematics 3

Lecture «Robot Dynamics»: Kinematics 3 Lecture «Robot Dynamics»: Kinematics 3 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco Hutter,

More information

Structural Configurations of Manipulators

Structural Configurations of Manipulators Structural Configurations of Manipulators 1 In this homework, I have given information about the basic structural configurations of the manipulators with the concerned illustrations. 1) The Manipulator

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Generally all considerations in the force analysis of mechanisms, whether static or dynamic, the links are assumed to be rigid. The complexity of the mathematical analysis of mechanisms

More information

Design of a Three-Axis Rotary Platform

Design of a Three-Axis Rotary Platform Design of a Three-Axis Rotary Platform William Mendez, Yuniesky Rodriguez, Lee Brady, Sabri Tosunoglu Mechanics and Materials Engineering, Florida International University 10555 W Flagler Street, Miami,

More information

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators Robotics and automation Dr. Ibrahim Al-Naimi Chapter two Introduction To Robot Manipulators 1 Robotic Industrial Manipulators A robot manipulator is an electronically controlled mechanism, consisting of

More information

2. Motion Analysis - Sim-Mechanics

2. Motion Analysis - Sim-Mechanics 2 Motion Analysis - Sim-Mechanics Figure 1 - The RR manipulator frames The following table tabulates the summary of different types of analysis that is performed for the RR manipulator introduced in the

More information

Mechanism Synthesis Rules

Mechanism Synthesis Rules Mechanism Synthesis ules Linkage Transformation ules Grashof s Law Inversion ME312: Dynamics of Mechanisms 1 BB LINKAGE TANSFOMATION ULE 1 evolute joints in any loop can be replaced by prismatic joints

More information

Lecture «Robot Dynamics»: Kinematics 3

Lecture «Robot Dynamics»: Kinematics 3 Lecture «Robot Dynamics»: Kinematics 3 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) office hour: LEE

More information

Robotics. SAAST Robotics Robot Arms

Robotics. SAAST Robotics Robot Arms SAAST Robotics 008 Robot Arms Vijay Kumar Professor of Mechanical Engineering and Applied Mechanics and Professor of Computer and Information Science University of Pennsylvania Topics Types of robot arms

More information

ADJUSTABLE GEOMETRIC CONSTRAINTS 2001 MIT PSDAM AND PERG LABS

ADJUSTABLE GEOMETRIC CONSTRAINTS 2001 MIT PSDAM AND PERG LABS ADJUSTABLE GEOMETRIC CONSTRAINTS Why adjust kinematic couplings? KC Repeatability is orders of magnitude better than accuracy Accuracy = f ( manufacture and assemble ) Kinematic Coupling Accuracy Adjusted

More information

MEAM 520. Manipulator Kinematics

MEAM 520. Manipulator Kinematics MEAM 520 Manipulator Kinematics Katherine J. Kuchenbecker, Ph.D. General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania Lecture 4: September

More information

Mobile Robots Locomotion

Mobile Robots Locomotion Mobile Robots Locomotion Institute for Software Technology 1 Course Outline 1. Introduction to Mobile Robots 2. Locomotion 3. Sensors 4. Localization 5. Environment Modelling 6. Reactive Navigation 2 Today

More information

Mechanics Place in Science Mechanisms and Structures Number Synthesis Paradoxes and Isomers Transformations and Inversions Grashof s Law

Mechanics Place in Science Mechanisms and Structures Number Synthesis Paradoxes and Isomers Transformations and Inversions Grashof s Law INTODUCTION TO MECHANISM SYNTHESIS Mechanics Place in Science Mechanisms and Structures Number Synthesis Paradoxes and Isomers Transformations and Inversions Grashof s Law ME312: Dynamics of Mechanisms

More information

Robotics kinematics and Dynamics

Robotics kinematics and Dynamics Robotics kinematics and Dynamics C. Sivakumar Assistant Professor Department of Mechanical Engineering BSA Crescent Institute of Science and Technology 1 Robot kinematics KINEMATICS the analytical study

More information

Internal models for object manipulation: Determining optimal contact locations. Technical Report

Internal models for object manipulation: Determining optimal contact locations. Technical Report Internal models for object manipulation: Determining optimal contact locations Technical Report Department of Computer Science and Engineering University of Minnesota 4-192 EECS Building 200 Union Street

More information

Chapter 3: Kinematics Locomotion. Ross Hatton and Howie Choset

Chapter 3: Kinematics Locomotion. Ross Hatton and Howie Choset Chapter 3: Kinematics Locomotion Ross Hatton and Howie Choset 1 (Fully/Under)Actuated Fully Actuated Control all of the DOFs of the system Controlling the joint angles completely specifies the configuration

More information

[2] J. "Kinematics," in The International Encyclopedia of Robotics, R. Dorf and S. Nof, Editors, John C. Wiley and Sons, New York, 1988.

[2] J. Kinematics, in The International Encyclopedia of Robotics, R. Dorf and S. Nof, Editors, John C. Wiley and Sons, New York, 1988. 92 Chapter 3 Manipulator kinematics The major expense in calculating kinematics is often the calculation of the transcendental functions (sine and cosine). When these functions are available as part of

More information

Constraint and velocity analysis of mechanisms

Constraint and velocity analysis of mechanisms Constraint and velocity analysis of mechanisms Matteo Zoppi Dimiter Zlatanov DIMEC University of Genoa Genoa, Italy Su S ZZ-2 Outline Generalities Constraint and mobility analysis Examples of geometric

More information

CHAPTER 3 MATHEMATICAL MODEL

CHAPTER 3 MATHEMATICAL MODEL 38 CHAPTER 3 MATHEMATICAL MODEL 3.1 KINEMATIC MODEL 3.1.1 Introduction The kinematic model of a mobile robot, represented by a set of equations, allows estimation of the robot s evolution on its trajectory,

More information

Whole-Arm Dexterous Manipulation In The Plane

Whole-Arm Dexterous Manipulation In The Plane Dynamic Whole-Arm Dexterous Manipulation In The Plane S.L. Yeap Dept. of CS syeap@cs. tamu.edu J.C. Trinkle Dept. of CS trink@cs. t amu.edu Texas A&M University, College Station, TX 77843-31 12 Abstract

More information

Kinematic Synthesis. October 6, 2015 Mark Plecnik

Kinematic Synthesis. October 6, 2015 Mark Plecnik Kinematic Synthesis October 6, 2015 Mark Plecnik Classifying Mechanisms Several dichotomies Serial and Parallel Few DOFS and Many DOFS Planar/Spherical and Spatial Rigid and Compliant Mechanism Trade-offs

More information

Lecture VI: Constraints and Controllers

Lecture VI: Constraints and Controllers Lecture VI: Constraints and Controllers Motion Constraints In practice, no rigid body is free to move around on its own. Movement is constrained: wheels on a chair human body parts trigger of a gun opening

More information

Lecture VI: Constraints and Controllers. Parts Based on Erin Catto s Box2D Tutorial

Lecture VI: Constraints and Controllers. Parts Based on Erin Catto s Box2D Tutorial Lecture VI: Constraints and Controllers Parts Based on Erin Catto s Box2D Tutorial Motion Constraints In practice, no rigid body is free to move around on its own. Movement is constrained: wheels on a

More information

Kinematics of Machines. Brown Hills College of Engineering & Technology

Kinematics of Machines. Brown Hills College of Engineering & Technology Introduction: mechanism and machines, kinematic links, kinematic pairs, kinematic chains, plane and space mechanism, kinematic inversion, equivalent linkages, four link planar mechanisms, mobility and

More information

Centre for Autonomous Systems

Centre for Autonomous Systems Robot Henrik I Centre for Autonomous Systems Kungl Tekniska Högskolan hic@kth.se 27th April 2005 Outline 1 duction 2 Kinematic and Constraints 3 Mobile Robot 4 Mobile Robot 5 Beyond Basic 6 Kinematic 7

More information

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation Keyframe animation CS4620/5620: Lecture 30 Animation Keyframing is the technique used for pose-to-pose animation User creates key poses just enough to indicate what the motion is supposed to be Interpolate

More information

Design Contemplation and Modelling of a Bi-Axial Manipulator

Design Contemplation and Modelling of a Bi-Axial Manipulator Design Contemplation and Modelling of a Bi-Axial Manipulator Shuprajhaa T t.shuprajhaa94@gmail.com Vaitheeshwari M, mvaithee3795@gmail.com Subasree S subasreesridhar.12@gmail.com Sivakumar S Assistant

More information

ME 321 Kinematics and Dynamics of Machines

ME 321 Kinematics and Dynamics of Machines .0 INTRODUCTION ME Kinematics and Dynamics of Machines All Text References in these notes are for: Mechanism Design: Analysis and Synthesis, Volume, Fourth Edition, Erdman, Sandor and Kota, Prentice-Hall,

More information

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný Serial Manipulator Statics Robotics Serial Manipulator Statics Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics (CIIRC) Czech Technical University

More information

Jacobians. 6.1 Linearized Kinematics. Y: = k2( e6)

Jacobians. 6.1 Linearized Kinematics. Y: = k2( e6) Jacobians 6.1 Linearized Kinematics In previous chapters we have seen how kinematics relates the joint angles to the position and orientation of the robot's endeffector. This means that, for a serial robot,

More information

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector Inverse Kinematics Given a desired position (p) & orientation (R) of the end-effector q ( q, q, q ) 1 2 n Find the joint variables which can bring the robot the desired configuration z y x 1 The Inverse

More information

Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm

Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm Mohammed Z. Al-Faiz,MIEEE Computer Engineering Dept. Nahrain University Baghdad, Iraq Mohammed S.Saleh

More information

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE Chapter 1. Modeling and Identification of Serial Robots.... 1 Wisama KHALIL and Etienne DOMBRE 1.1. Introduction... 1 1.2. Geometric modeling... 2 1.2.1. Geometric description... 2 1.2.2. Direct geometric

More information

Motion Control (wheeled robots)

Motion Control (wheeled robots) Motion Control (wheeled robots) Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground Definition of required motion -> speed control,

More information

A Parallel Robots Framework to Study Precision Grasping and Dexterous Manipulation

A Parallel Robots Framework to Study Precision Grasping and Dexterous Manipulation 2013 IEEE International Conference on Robotics and Automation (ICRA) Karlsruhe, Germany, May 6-10, 2013 A Parallel Robots Framework to Study Precision Grasping and Dexterous Manipulation Júlia Borràs,

More information

Mobile Robot Kinematics

Mobile Robot Kinematics Mobile Robot Kinematics Dr. Kurtuluş Erinç Akdoğan kurtuluserinc@cankaya.edu.tr INTRODUCTION Kinematics is the most basic study of how mechanical systems behave required to design to control Manipulator

More information

An Improved Dynamic Modeling of a 3-RPS Parallel Manipulator using the concept of DeNOC Matrices

An Improved Dynamic Modeling of a 3-RPS Parallel Manipulator using the concept of DeNOC Matrices An Improved Dynamic Modeling of a 3-RPS Parallel Manipulator using the concept of DeNOC Matrices A. Rahmani Hanzaki, E. Yoosefi Abstract A recursive dynamic modeling of a three-dof parallel robot, namely,

More information

Kinematics of Closed Chains

Kinematics of Closed Chains Chapter 7 Kinematics of Closed Chains Any kinematic chain that contains one or more loops is called a closed chain. Several examples of closed chains were encountered in Chapter 2, from the planar four-bar

More information

Robotics (Kinematics) Winter 1393 Bonab University

Robotics (Kinematics) Winter 1393 Bonab University Robotics () Winter 1393 Bonab University : most basic study of how mechanical systems behave Introduction Need to understand the mechanical behavior for: Design Control Both: Manipulators, Mobile Robots

More information

Lecture «Robot Dynamics»: Kinematic Control

Lecture «Robot Dynamics»: Kinematic Control Lecture «Robot Dynamics»: Kinematic Control 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco Hutter,

More information

Kinematics: Intro. Kinematics is study of motion

Kinematics: Intro. Kinematics is study of motion Kinematics is study of motion Kinematics: Intro Concerned with mechanisms and how they transfer and transform motion Mechanisms can be machines, skeletons, etc. Important for CG since need to animate complex

More information