Mechanics Place in Science Mechanisms and Structures Number Synthesis Paradoxes and Isomers Transformations and Inversions Grashof s Law

Size: px
Start display at page:

Download "Mechanics Place in Science Mechanisms and Structures Number Synthesis Paradoxes and Isomers Transformations and Inversions Grashof s Law"

Transcription

1 INTODUCTION TO MECHANISM SYNTHESIS Mechanics Place in Science Mechanisms and Structures Number Synthesis Paradoxes and Isomers Transformations and Inversions Grashof s Law ME312: Dynamics of Mechanisms 1

2 The Ultimate Goal is to Synthesize Machine Elements Manufacturing Materials Statics Strength of Martials Advanced Strength Machine Design Mechanics Kinetics Dynamics Thermo-Fluids Kinematics ADV. DYN. & KINEMATICS MECHANISM DESIGN/SYNTHESIS Controls ME312: Dynamics of Mechanisms 2

3 Historical Perspective of Kinematics BC Archimedes of Syracuse Archimede s Screw Claw of Archimedes Heat ay Equilibrium of Planes Description of lever 1 st Century AD Hero of Alexandria Named Components Wedge, Lever, Screw, Windlass, & Pulley Jacob Leupold First to ecognize Machine Components 9 Volume Series of Books Published 1817 James Watt & Oliver Evans Straight-Line Linkage for Steam Engine Coupler Link Motion in 4-Bar BC Mesopotamia Lever Inclined Plane Wedge 28 BC Marcus Vitruvius De Architecture Earliest Writing on the Subject Moving Heavy Objects 1588 amelli Arteficiose Machine Describes Each Machine of the Time Without recognition of similarity of components Euler Mechanica Sive Motus Scienta Analytice Exposita Analytical Treatment of Mechanisms Planar Motion ME312: Dynamics of Mechanisms 3

4 Historical Perspective of Kinematics Early 1800 s Gaspard Monge L Ecole Polytechnic in Paris Inventor of Descriptive Geometry Course in Elements of Machines 1834 Europe and Andre-Marie Ampere Australia L Ecole Polytechnic Essai sur la Philosophie de Science First to use term Cinématique 1875 Franz euleaux Theoretische Kinematik Mechanism Synthesis 1940 s Interest Builds In US Early 1811 Jean Nicolas Pierre Hachette L Ecole Polytechnic in Paris First Mechanisms Book 1841 obert Willis University of Cambridge, England Mechanism Synthesis 1876 Alexander Kennedy Theoretische Kinematik Translated to English ME312: Dynamics of Mechanisms 4

5 Historical Perspective of Kinematics Machine de Marly (1684) Bachannan Paddle Wheel (1813) Created to pump water to the Gardens in the Palace of Versailles Delivered water to aqueduct 533 ft above river Pumps driven by parallelograph linkages ME312: Dynamics of Mechanisms 5

6 Machines/Kinetics and Mechanisms/Kinematics Machines: A combination of resistant bodies so arranged that by their means the mechanical forces of the nature can be compelled to do work accompanied by certain determinate motions. MECHANISMS: An assemblage of resistant bodies, connected by movable joints, to form a closed kinematic chain with one link fixed and having the purpose of transforming motion. Structures: An assemblage of resistant bodies connected by joints (or not) that do no work, and do not transfer motion. It is intended to be rigid. ME312: Dynamics of Mechanisms 6

7 Synthesis of Several Mechanisms will be Considered Gears Linkages CAMs Belts, Pulleys, And Chains ME312: Dynamics of Mechanisms 7

8 Mechanisms are Synthesized to Produce Various Types of Motion PLANA MOTION: All motion contained to one geometric Plane or Parallel Planes. ectilinear Translation: All Points of the body move in parallel straight line paths. TANSLATION otation: Each point the body remains a constant distance from a fixed axis that is perpendicular to the plane of motion. otation and Translation: Combination of the above two. OTATION COMBINATION ME312: Dynamics of Mechanisms 8

9 Curvilinear Translation a Special Case of Translation Curvilinear Translation: The paths of the points are identical curves parallel to a fixed plane. ME312: Dynamics of Mechanisms 9

10 Non-Planar Motion Can Also Be Generated By Mechanisms Helical Motion: each point of the body has motion of rotation about a fixed axis and at the same time has translation parallel to the axis. Spherical Motion: each point of the body has motion about a fixed point while remaining at a constant distance from it. Spatial Motion: the body moves with rotations about three non-parallel axes and translates in three independent directions. ME312: Dynamics of Mechanisms 10

11 Cycle, Period, and Phase of Motion Cycle: When the parts of a mechanism have passed through all the possible positions they can assume after starting from some simultaneous set of relative positions and have returned to their original relative positions. Period: The time required for a cycle of motion. Phase: The simultaneous relative position of a mechanism at a given instant during a cycle. ME312: Dynamics of Mechanisms 11

12 A Link Is A igid Body Having Two or More Nodes Unary Binary Ternary Quaternary Pentagonal Nodes/Pairing Elements: Points at which links can be attached. The order of the link is determined by the attachments used. Joints/Kinematic Pairs: Allows relative motion between links. Joint Classes: a kinematic pair is of the j th class if it diminishes the relative motion of linked bodies by j Degrees of Freedom (DoF) ME312: Dynamics of Mechanisms 12

13 Kinematic Chains are Formed by Connecting Links with Pairs Open Kinematic Chain: A chain with one or more open loops. Closed Kinematic Chain: A chain that forms one or more closed loops. Simple-Closed Chain: Chain consisting of entirely binary links and is closed. Compound Closed Chain: Chain including other than binary links that is closed. B B ME312: Dynamics of Mechanisms 13 P

14 Joint Classification, Kinematic Pairs Type of contact between elements Line Point Surface Degrees of Freedom Allowed Type of Physical Closure Force Form Higher Pairs Lower Pairs Number of Links Joined (Order) ME312: Dynamics of Mechanisms 14

15 Joint Closure Classified as Lower Pairs and Higher Pairs Form Closed, otating FULL Pin Joint Form Closed, Translating FULL Slider Joint Force Closed, Link against a plane HALF Joint Form Closed, Pin in Slot HALF Joint ME312: Dynamics of Mechanisms 15

16 Degrees of Freedom or Mobility The number of inputs needed to provide in order to create a predictable output The number of independent coordinates required to define its position P B B ME312: Dynamics of Mechanisms 16

17 1 DOF, Class I Kinematic Pairs as Defined by euleaux evolute () Prismatic (P) Helical (H) Lower Pair Contact Plainer & 3D Joint 1 DOF - Lower Pair Contact Plainer & 3D Joint 1 DOF - s Lower Pair Contact Plainer & 3D Joint 1 DOF Input -, Output s Input - s, Output - ME312: Dynamics of Mechanisms 17

18 2 DOF, Class II Kinematic Pairs as Defined by euleaux Cam (C a ) Cylinder (C) Slotted Spherical (S l ) Higher Pair Contact P Plainer & 3D Joint 2 DOF -,s Lower Pair Contact P 3D Joint 2 DOF s, Lower Pair Contact 3D Joint 2 DOF -, ME312: Dynamics of Mechanisms 18

19 3 DOF, Class III Kinematic Pairs as Defined by euleaux Spherical (S) Spherical Slotted Cylinder (C) Plane Pair (P l ) Lower Pair Contact 3D Joint 3 DOF:,, Lower Pair Contact P 3D Joint 3 DOF:,, s Lower Pair Contact P 3D Joint 2 DOF -,, s ME312: Dynamics of Mechanisms 19

20 4 DOF, Class IV Kinematic Pairs as Defined by euleaux Spherical Grove (S g ) Cylindrical Plane Pair (C p ) Lower Pair Contact P 3D Joint 4 DOF:,,, s Lower Pair Contact PP 3D Joint 4 DOF:,, s, t ME312: Dynamics of Mechanisms 20

21 5 DOF, Class V Kinematic Pairs as Defined by euleaux Spherical Plane (S p ) Lower Pair Contact PP 3D Joint 4 DOF:,,, s, t ME312: Dynamics of Mechanisms 21

22 Planar Mechanisms Each link has 3 DoF when moving relative to a fixed link n link planar mechanism (one link is considered FIXED) has 3(n-1) degrees of freedom before joints are connected Connecting a revolute pair 1 DoF 2 constraints 2 DoF 1 constraint Mobility of Mechanism Constraints of all joints minus total DoF of unconnected links ME312: Dynamics of Mechanisms 22

23 Mobility Calculation L- number of links M- mobility of planar n-link mechanism j 1- number of 1 DoF pairs j 2 - number of 2 DoF pairs Kutzbach Criterion M = 3 (L-1) - 2 j 1 - j 2 Grübler Criterion M = 3 (L-1) - 2 j 1 ME312: Dynamics of Mechanisms 23

24 Mobility Criterion: Kutzbach or Gruebler M=1 Mechanism can be driven by a single input direction M=2 Two separate input motions are necessary to produce constrained motion for the mechanism Differential Mechanism M=0 Motion is impossible and the mechanism is a structure Exact Constraint M=-1 edundant constraint Pre-Load ME312: Dynamics of Mechanisms 24

25 Example: Calculate the Mobility Slipping ME312: Dynamics of Mechanisms 25

26 Example: Calculate the Mobility ME312: Dynamics of Mechanisms 26

27 Example: Calculate the Mobility ME312: Dynamics of Mechanisms 27

28 Order of a Joint is One Less than the Number of Links Joined First order pin Joint Second order pin Joint ME312: Dynamics of Mechanisms 28

29 Example: Calculate the Mobility ME312: Dynamics of Mechanisms 29

30 Example: Calculate the Mobility ME312: Dynamics of Mechanisms 30

31 Example: Calculate the Mobility ME312: Dynamics of Mechanisms 31

32 Kutzback Criterion for Half Joints Particular attention should be paid to the contact between the wheel and the fixed link Slipping ME312: Dynamics of Mechanisms 32

33 Example: Calculate the Mobility ME312: Dynamics of Mechanisms 33

34 Example: Calculate the Mobility ME312: Dynamics of Mechanisms 34

35 Spatial Mechanism Mobility Kutzbach Criterion M 6 ( L 1) 5 j 4 j 3 j 2 j j Where j 3-3 Dof joints j 4-4 Dof joints j 5-5 Dof joints ME312: Dynamics of Mechanisms 35

36 Mobility Paradoxes Over-constrained Linkage with edundant Constraint E-quintet, Delta Triplet M=0 E-quintet M=1 ME312: Dynamics of Mechanisms 36

37 Mobility Paradoxes Over-constrained Linkage with edundant Constraint ME312: Dynamics of Mechanisms 37

38 Mobility Paradoxes Passive or Idle Degree of Freedom ME312: Dynamics of Mechanisms 38

39 Example: Calculate the Mobility ME312: Dynamics of Mechanisms 39

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS Kinematics Fundamentals CREATING OF KINEMATIC CHAINS Mechanism Definitions 1. a system or structure of moving parts that performs some function 2. is each system reciprocally joined moveable bodies the

More information

Modelling of mechanical system CREATING OF KINEMATIC CHAINS

Modelling of mechanical system CREATING OF KINEMATIC CHAINS Modelling of mechanical system CREATING OF KINEMATIC CHAINS Mechanism Definitions 1. a system or structure of moving parts that performs some function 2. is each system reciprocally joined moveable bodies

More information

KINEMATICS OF MACHINES. Dr.V.SUNDARESWARAN PROFESSOR OF MECHANICAL ENGG. COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY CHENNAI

KINEMATICS OF MACHINES. Dr.V.SUNDARESWARAN PROFESSOR OF MECHANICAL ENGG. COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY CHENNAI KINEMATICS OF MACHINES Dr.V.SUNDARESWARAN PROFESSOR OF MECHANICAL ENGG. COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY CHENNAI 600 025 MECHANICS Science dealing with motion DIVISIONS OF MECHANICS Statics

More information

Theory of Machines Course # 1

Theory of Machines Course # 1 Theory of Machines Course # 1 Ayman Nada Assistant Professor Jazan University, KSA. arobust@tedata.net.eg March 29, 2010 ii Sucess is not coming in a day 1 2 Chapter 1 INTRODUCTION 1.1 Introduction Mechanisms

More information

SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs

SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs TOM - ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course Theory of Machines GATE, IES & PSUs TOM - ME GATE, IES, PSU 2 C O N T E N T TOPIC 1. MACHANISMS AND

More information

ME 321 Kinematics and Dynamics of Machines

ME 321 Kinematics and Dynamics of Machines .0 INTRODUCTION ME Kinematics and Dynamics of Machines All Text References in these notes are for: Mechanism Design: Analysis and Synthesis, Volume, Fourth Edition, Erdman, Sandor and Kota, Prentice-Hall,

More information

Mechanism Synthesis Rules

Mechanism Synthesis Rules Mechanism Synthesis ules Linkage Transformation ules Grashof s Law Inversion ME312: Dynamics of Mechanisms 1 BB LINKAGE TANSFOMATION ULE 1 evolute joints in any loop can be replaced by prismatic joints

More information

September 20, Chapter 5. Simple Mechanisms. Mohammad Suliman Abuhaiba, Ph.D., PE

September 20, Chapter 5. Simple Mechanisms. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 5 Simple Mechanisms 1 Mohammad Suliman Abuhaiba, Ph.D., PE 2 Assignment #1 All questions at the end of chapter 1 st Exam: Saturday 29/9/2018 3 Kinematic Link or Element kinematic link (link) or

More information

Analytical and Applied Kinematics

Analytical and Applied Kinematics Analytical and Applied Kinematics Vito Moreno moreno@engr.uconn.edu 860-614-2365 (cell) http://www.engr.uconn.edu/~moreno Office EB1, hours Thursdays 10:00 to 5:00 1 This course introduces a unified and

More information

WEEKS 1-2 MECHANISMS

WEEKS 1-2 MECHANISMS References WEEKS 1-2 MECHANISMS (METU, Department of Mechanical Engineering) Text Book: Mechanisms Web Page: http://www.me.metu.edu.tr/people/eres/me301/in dex.ht Analitik Çözümlü Örneklerle Mekanizma

More information

Kinematics of Machines. Brown Hills College of Engineering & Technology

Kinematics of Machines. Brown Hills College of Engineering & Technology Introduction: mechanism and machines, kinematic links, kinematic pairs, kinematic chains, plane and space mechanism, kinematic inversion, equivalent linkages, four link planar mechanisms, mobility and

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Generally all considerations in the force analysis of mechanisms, whether static or dynamic, the links are assumed to be rigid. The complexity of the mathematical analysis of mechanisms

More information

MAE 342 Dynamics of Machines. Types of Mechanisms. type and mobility

MAE 342 Dynamics of Machines. Types of Mechanisms. type and mobility MAE 342 Dynamics of Machines Types of Mechanisms Classification of Mechanisms by type and mobility MAE 342 Dynamics of Machines 2 Planar, Spherical and Spatial Mechanisms Planar Mechanisms: all points

More information

SolidWorks Assembly Files. Assemblies Mobility. The Mating Game Mating features. Mechanical Mates Relative rotation about axes

SolidWorks Assembly Files. Assemblies Mobility. The Mating Game Mating features. Mechanical Mates Relative rotation about axes Assemblies Mobility SolidWorks Assembly Files An assembly file is a collection of parts The first part brought into an assembly file is fixed Other parts are constrained relative to that part (or other

More information

DESIGN AND ANALYSIS OF WEIGHT SHIFT STEERING MECHANISM BASED ON FOUR BAR MECHANISM

DESIGN AND ANALYSIS OF WEIGHT SHIFT STEERING MECHANISM BASED ON FOUR BAR MECHANISM International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 12, December 2017, pp. 417 424, Article ID: IJMET_08_12_041 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=12

More information

Chapter 4. Mechanism Design and Analysis

Chapter 4. Mechanism Design and Analysis Chapter 4. Mechanism Design and Analysis All mechanical devices containing moving parts are composed of some type of mechanism. A mechanism is a group of links interacting with each other through joints

More information

Kinematics: Intro. Kinematics is study of motion

Kinematics: Intro. Kinematics is study of motion Kinematics is study of motion Kinematics: Intro Concerned with mechanisms and how they transfer and transform motion Mechanisms can be machines, skeletons, etc. Important for CG since need to animate complex

More information

Taibah University Mechanical Engineering

Taibah University Mechanical Engineering Instructor: Chapter 2 Kinematics Fundamentals 1. Introduction 2. Degrees of Freedom 3. Types of Motion 4. Links, Joints, and Kinematic Chains 5. Determining Degree of Freedom Degree of Freedom in Planar

More information

[Hasan*, 4.(7): July, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Hasan*, 4.(7): July, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY STUDY OF EPICYCLIC GEAR TRAINS USING GRAPH THEORY Dr. Ali Hasan* * Mech. Engg.Deptt.,Jamia Millia Islamia, New Delhi. ABSTRACT

More information

CHAPTER 1 : KINEMATICS

CHAPTER 1 : KINEMATICS KINEMATICS : It relates to the study of the relative motion between the parts of a machine. Let us consider a reciprocating engine, in this the piston is made to reciprocate in the cylinderdue to the applied

More information

MACHINES AND MECHANISMS

MACHINES AND MECHANISMS MACHINES AND MECHANISMS APPLIED KINEMATIC ANALYSIS Fourth Edition David H. Myszka University of Dayton PEARSON ж rentice Hall Pearson Education International Boston Columbus Indianapolis New York San Francisco

More information

J. Michael McCarthy. Type Synthesis. Gruebler s Equation, Assur Groups, Baranov Trusses, Graph Theory and Rigidity Theory

J. Michael McCarthy. Type Synthesis. Gruebler s Equation, Assur Groups, Baranov Trusses, Graph Theory and Rigidity Theory J. Michael McCarthy Type Synthesis Gruebler s Equation, Assur Groups, Baranov Trusses, Graph Theory and Rigidity Theory Simple Machines The classification of machines was introduced during the Renaissance

More information

Computational Design + Fabrication: 4D Analysis

Computational Design + Fabrication: 4D Analysis Computational Design + Fabrication: 4D Analysis Jonathan Bachrach EECS UC Berkeley October 6, 2015 Today 1 News Torque and Work Simple Machines Closed Chains Analysis Paper Review Lab 3 Critique News 2

More information

MACHINE THEORY Bachelor in Mechanical Engineering INTRODUCTION TO MACHINE DESIGN

MACHINE THEORY Bachelor in Mechanical Engineering INTRODUCTION TO MACHINE DESIGN MACHINE THEORY Bachelor in Mechanical Engineering INTRODUCTION TO MACHINE DESIGN Ignacio Valiente Blanco José Luis Pérez Díaz David Mauricio Alba Lucero Efrén Díez Jiménez Timm Lauri Berit Sanders Machine

More information

11. Kinematic models of contact Mechanics of Manipulation

11. Kinematic models of contact Mechanics of Manipulation 11. Kinematic models of contact Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 11. Mechanics of Manipulation p.1 Lecture 11. Kinematic models

More information

Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis

Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis Courtesy of Design Simulation Technologies, Inc. Used with permission. Dan Frey Today s Agenda Collect assignment #2 Begin mechanisms

More information

Lecture 3. Planar Kinematics

Lecture 3. Planar Kinematics Matthew T. Mason Mechanics of Manipulation Outline Where are we? s 1. Foundations and general concepts. 2.. 3. Spherical and spatial kinematics. Readings etc. The text: By now you should have read Chapter

More information

Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture 03 Introduction to Robot and Robotics (Contd.) (Refer Slide Time: 00:34) Now,

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 2 Lecture - 1

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 2 Lecture - 1 Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module - 2 Lecture - 1 The topic of today s lecture is mobility analysis. By mobility

More information

Overview. What is mechanism? What will I learn today? ME 311: Dynamics of Machines and Mechanisms Lecture 2: Synthesis

Overview. What is mechanism? What will I learn today? ME 311: Dynamics of Machines and Mechanisms Lecture 2: Synthesis Overview ME 311: Dynamics of Machines and Mechanisms Lecture 2: Synthesis By Suril Shah Some fundamentals Synthesis Function, path and motion generation Limiting condition Dimensional synthesis 1 2 What

More information

Definitions. Kinematics the study of constrained motion without regard to forces that cause that motion

Definitions. Kinematics the study of constrained motion without regard to forces that cause that motion Notes_0_0 of efinitions Kinematics the stud of constrained motion without regard to forces that cause that motion namics the stud of how forces cause motion ausalit the relationship between cause and effect

More information

Mechanisms. Updated: 18Apr16 v7

Mechanisms. Updated: 18Apr16 v7 Mechanisms Updated: 8Apr6 v7 Mechanism Converts input motion or force into a desired output with four combinations of input and output motion Rotational to Oscillating Rotational to Rotational Rotational

More information

A rigid body free to move in a reference frame will, in the general case, have complex motion, which is simultaneously a combination of rotation and

A rigid body free to move in a reference frame will, in the general case, have complex motion, which is simultaneously a combination of rotation and 050389 - Analtical Elements of Mechanisms Introduction. Degrees of Freedom he number of degrees of freedom (DOF) of a sstem is equal to the number of independent parameters (measurements) that are needed

More information

SYNTHESIS OF PLANAR MECHANISMS FOR PICK AND PLACE TASKS WITH GUIDING LOCATIONS

SYNTHESIS OF PLANAR MECHANISMS FOR PICK AND PLACE TASKS WITH GUIDING LOCATIONS Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2013 August 4-7, 2013, Portland, Oregon, USA DETC2013-12021

More information

Lesson 1: Introduction to Pro/MECHANICA Motion

Lesson 1: Introduction to Pro/MECHANICA Motion Lesson 1: Introduction to Pro/MECHANICA Motion 1.1 Overview of the Lesson The purpose of this lesson is to provide you with a brief overview of Pro/MECHANICA Motion, also called Motion in this book. Motion

More information

1.9 Snap Action Mechanisms 19

1.9 Snap Action Mechanisms 19 Theory of Mechanism and Machines Chapter- Introduction Prepared y rij hooshan sst. Professor. S.. College of Engg. nd Technology Mathura, Uttar Pradesh, (India) Supported y: Purvi hooshan In This Chapter

More information

Lecture Note 2: Configuration Space

Lecture Note 2: Configuration Space ECE5463: Introduction to Robotics Lecture Note 2: Configuration Space Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 2 (ECE5463

More information

Kinematic Synthesis. October 6, 2015 Mark Plecnik

Kinematic Synthesis. October 6, 2015 Mark Plecnik Kinematic Synthesis October 6, 2015 Mark Plecnik Classifying Mechanisms Several dichotomies Serial and Parallel Few DOFS and Many DOFS Planar/Spherical and Spatial Rigid and Compliant Mechanism Trade-offs

More information

Kinematics - Introduction. Robotics. Kinematics - Introduction. Vladimír Smutný

Kinematics - Introduction. Robotics. Kinematics - Introduction. Vladimír Smutný Kinematics - Introduction Robotics Kinematics - Introduction Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics (CIIRC) Czech Technical University

More information

OPTIMAL KINEMATIC DESIGN OF A CAR AXLE GUIDING MECHANISM IN MBS SOFTWARE ENVIRONMENT

OPTIMAL KINEMATIC DESIGN OF A CAR AXLE GUIDING MECHANISM IN MBS SOFTWARE ENVIRONMENT OPTIMAL KINEMATIC DESIGN OF A CAR AXLE GUIDING MECHANISM IN MBS SOFTWARE ENVIRONMENT Dr. eng. Cătălin ALEXANDRU Transilvania University of Braşov, calex@unitbv.ro Abstract: This work deals with the optimal

More information

Human Motion. Session Speaker Dr. M. D. Deshpande. AML2506 Biomechanics and Flow Simulation PEMP-AML2506

Human Motion. Session Speaker Dr. M. D. Deshpande. AML2506 Biomechanics and Flow Simulation PEMP-AML2506 AML2506 Biomechanics and Flow Simulation Day 02A Kinematic Concepts for Analyzing Human Motion Session Speaker Dr. M. D. Deshpande 1 Session Objectives At the end of this session the delegate would have

More information

Mechanical Electrical Digital

Mechanical Electrical Digital Mechatronics I: Mechanical Systems Richard Voyles Week 1 Based on notes from Paul Rullkoetter Mechatronic Systems Mechanical Structure Actuats Senss Transducers DAC ADC Computer Digital Processing Element

More information

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1 CHAPTER 1 INTRODUCTION Modern mechanical and aerospace systems are often very complex and consist of many components interconnected by joints and force elements such as springs, dampers, and actuators.

More information

MECHANICS OF MACHINERY

MECHANICS OF MACHINERY MECHNICS OF MCHINERY (For B.E. Mechanical Engineering Students) s per New Revised Syllabus of PJ bdul Kalam Technological University Dr. S. Ramachandran, M.E., Ph.D., Dr..G. Mathew, PhD (NIT-Durgapur)

More information

The hood (3) is linked to the body (1) through two rocker links (2 and 4).

The hood (3) is linked to the body (1) through two rocker links (2 and 4). DESIGN OF MACHINERY - th Ed SOLUTION MANUAL -- PROBLEM - Find three (or other number as assigned) of the following common devices. Sketch careful kinematic diagrams and find their total degrees of freedom.

More information

2.007 Design and Manufacturing I Spring 2009

2.007 Design and Manufacturing I Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 2.007 Design and Manufacturing I Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 2.007 Design and Manufacturing

More information

KINEMATICS OF AN OVERCONSTRAINED MECHANISM IN PRACTICE

KINEMATICS OF AN OVERCONSTRAINED MECHANISM IN PRACTICE KINEMTICS OF N OVERCONSTRINED MECHNISM IN PRCTICE Vandan Kamlakar Gundale* bstract: In 1939 Paul Schatz, a Swiss anthroposophist and geometrician had invented a mechanism which with few links generates

More information

INTRODUCTION CHAPTER 1

INTRODUCTION CHAPTER 1 CHAPTER 1 INTRODUCTION Modern mechanical and aerospace systems are often very complex and consist of many components interconnected by joints and force elements such as springs, dampers, and actuators.

More information

Lecture Note 2: Configuration Space

Lecture Note 2: Configuration Space ECE5463: Introduction to Robotics Lecture Note 2: Configuration Space Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 2 (ECE5463

More information

MECHANICAL ENGINEERING

MECHANICAL ENGINEERING MECHANICAL ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-II FROM (1995-2018) UPSC Engineering Services Examination State Engineering Service Examination & Public Sector Examination. IES MASTER PUBLICATION

More information

Industrial Robots : Manipulators, Kinematics, Dynamics

Industrial Robots : Manipulators, Kinematics, Dynamics Industrial Robots : Manipulators, Kinematics, Dynamics z z y x z y x z y y x x In Industrial terms Robot Manipulators The study of robot manipulators involves dealing with the positions and orientations

More information

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric Parallel Robots Mechanics and Control H AMID D TAG HI RAD CRC Press Taylor & Francis Group Boca Raton London NewYoric CRC Press Is an Imprint of the Taylor & Francis Croup, an informs business Contents

More information

EEE 187: Robotics Summary 2

EEE 187: Robotics Summary 2 1 EEE 187: Robotics Summary 2 09/05/2017 Robotic system components A robotic system has three major components: Actuators: the muscles of the robot Sensors: provide information about the environment and

More information

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators Robotics and automation Dr. Ibrahim Al-Naimi Chapter two Introduction To Robot Manipulators 1 Robotic Industrial Manipulators A robot manipulator is an electronically controlled mechanism, consisting of

More information

Robotics kinematics and Dynamics

Robotics kinematics and Dynamics Robotics kinematics and Dynamics C. Sivakumar Assistant Professor Department of Mechanical Engineering BSA Crescent Institute of Science and Technology 1 Robot kinematics KINEMATICS the analytical study

More information

1. Introduction 1 2. Mathematical Representation of Robots

1. Introduction 1 2. Mathematical Representation of Robots 1. Introduction 1 1.1 Introduction 1 1.2 Brief History 1 1.3 Types of Robots 7 1.4 Technology of Robots 9 1.5 Basic Principles in Robotics 12 1.6 Notation 15 1.7 Symbolic Computation and Numerical Analysis

More information

Lecture Note 6: Forward Kinematics

Lecture Note 6: Forward Kinematics ECE5463: Introduction to Robotics Lecture Note 6: Forward Kinematics Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 6 (ECE5463

More information

Mechanism and Robot Kinematics, Part I: Algebraic Foundations

Mechanism and Robot Kinematics, Part I: Algebraic Foundations Mechanism and Robot Kinematics, Part I: Algebraic Foundations Charles Wampler General Motors R&D Center In collaboration with Andrew Sommese University of Notre Dame Overview Why kinematics is (mostly)

More information

Shape and Function in Mechanical Devices

Shape and Function in Mechanical Devices Shape and Function in Mechanical Devices Leo Joskowicz Department of Computer Science Courant Institute of Mathematical Sciences, New York University 251 Mercer Street, New York, NY 10012 joskowic@nyu-csd2.arpa

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 3 Lecture - 1

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 3 Lecture - 1 Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module - 3 Lecture - 1 In an earlier lecture, we have already mentioned that there

More information

Position Analysis

Position Analysis Position Analysis 2015-03-02 Position REVISION The position of a point in the plane can be defined by the use of a position vector Cartesian coordinates Polar coordinates Each form is directly convertible

More information

Robotics. SAAST Robotics Robot Arms

Robotics. SAAST Robotics Robot Arms SAAST Robotics 008 Robot Arms Vijay Kumar Professor of Mechanical Engineering and Applied Mechanics and Professor of Computer and Information Science University of Pennsylvania Topics Types of robot arms

More information

2.1 Introduction. 2.2 Degree of Freedom DOF of a rigid body

2.1 Introduction. 2.2 Degree of Freedom DOF of a rigid body Chapter 2 Kinematics 2.1 Introduction 2.2 Degree of Freedom 2.2.1 DOF of a rigid body In order to control and guide the mechanisms to move as we desired, we need to set proper constraints. In order to

More information

Synthesis of Planar Mechanisms, Part XI: Al-Jazari Quick Return-Motion Mechanism Galal Ali Hassaan Emeritus Professor, Mechanical Design & Production

Synthesis of Planar Mechanisms, Part XI: Al-Jazari Quick Return-Motion Mechanism Galal Ali Hassaan Emeritus Professor, Mechanical Design & Production Synthesis of Planar Mechanisms, Part XI: Al-Jazari Quick Return-Motion Mechanism Galal Ali Hassaan Emeritus Professor, Mechanical Design & Production Department. Faculty of Engineering, Cairo University,

More information

MEM380 Applied Autonomous Robots Winter Robot Kinematics

MEM380 Applied Autonomous Robots Winter Robot Kinematics MEM38 Applied Autonomous obots Winter obot Kinematics Coordinate Transformations Motivation Ultimatel, we are interested in the motion of the robot with respect to a global or inertial navigation frame

More information

DOUBLE CIRCULAR-TRIANGULAR SIX-DEGREES-OF- FREEDOM PARALLEL ROBOT

DOUBLE CIRCULAR-TRIANGULAR SIX-DEGREES-OF- FREEDOM PARALLEL ROBOT DOUBLE CIRCULAR-TRIANGULAR SIX-DEGREES-OF- FREEDOM PARALLEL ROBOT V. BRODSKY, D. GLOZMAN AND M. SHOHAM Department of Mechanical Engineering Technion-Israel Institute of Technology Haifa, 32000 Israel E-mail:

More information

Kinematic Design Principles

Kinematic Design Principles Kinematic Design Principles BJ Furman 24SEP97 Introduction Machines and instruments are made up of elements that are suitably arranged and many of which that are movably connected. Two parts that are in

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module 10 Lecture 1

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module 10 Lecture 1 Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module 10 Lecture 1 So far, in this course we have discussed planar linkages, which

More information

Week 12 - Lecture Mechanical Event Simulation. ME Introduction to CAD/CAE Tools

Week 12 - Lecture Mechanical Event Simulation. ME Introduction to CAD/CAE Tools Week 12 - Lecture Mechanical Event Simulation Lecture Topics Mechanical Event Simulation Overview Additional Element Types Joint Component Description General Constraint Refresh Mesh Control Force Estimation

More information

The Configuration Space Method for Kinematic Design of Mechanisms

The Configuration Space Method for Kinematic Design of Mechanisms The Configuration Space Method for Kinematic Design of Mechanisms Elisha Sacks and Leo Joskowicz The MIT Press Cambridge, Massachusetts London, England ( 2010 Massachusetts Institute of Technology All

More information

ME 115(b): Final Exam, Spring

ME 115(b): Final Exam, Spring ME 115(b): Final Exam, Spring 2011-12 Instructions 1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of the exam if you need to ask me a question, or go to dinner,

More information

Synthesis of Simple Planar Linkages

Synthesis of Simple Planar Linkages MEAM 211 Synthesis of Simple Planar Linkages Professor Vijay Kumar Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania January 15, 2006 1 Introduction Planar linkages

More information

Configuration Space. Chapter 2

Configuration Space. Chapter 2 Chapter 2 Configuration Space A typical robot is mechanically constructed from several bodies, or links, that are connected by various types of joints. The robot moves when certain joints are driven by

More information

3. Manipulator Kinematics. Division of Electronic Engineering Prof. Jaebyung Park

3. Manipulator Kinematics. Division of Electronic Engineering Prof. Jaebyung Park 3. Manipulator Kinematics Division of Electronic Engineering Prof. Jaebyung Park Introduction Kinematics Kinematics is the science of motion which treats motion without regard to the forces that cause

More information

Position and Displacement Analysis

Position and Displacement Analysis Position and Displacement Analysis Introduction: In this chapter we introduce the tools to identifying the position of the different points and links in a given mechanism. Recall that for linkages with

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute We know how to describe the transformation of a single rigid object w.r.t. a single

More information

ME Week 11 Create Joints Project

ME Week 11 Create Joints Project One of the most important elements of dynamic simulation is setting up and verifying that proper joints are created. Joints are links between two rigid components that applies force from the first component

More information

Design of the linkages type tracking mechanisms of the solar energy conversion systems by using Multi Body Systems Method

Design of the linkages type tracking mechanisms of the solar energy conversion systems by using Multi Body Systems Method Design of the linkages type tracking mechanisms of the solar energy conversion systems by using Multi Body Systems Method M.Comsit * I.Visa Transilvania University of Brasov Transilvania University of

More information

https://www.youtube.com/watch?v=qeb2yxmqogi

https://www.youtube.com/watch?v=qeb2yxmqogi Name _Greg Brulo https://www.youtube.com/watch?v=qeb2yxmqogi Scissor Jack The scissor jack is a popular jack found in a vehicles flat tire kit. The operator cranks the input rod to raise and lower the

More information

Constraint and velocity analysis of mechanisms

Constraint and velocity analysis of mechanisms Constraint and velocity analysis of mechanisms Matteo Zoppi Dimiter Zlatanov DIMEC University of Genoa Genoa, Italy Su S ZZ-2 Outline Generalities Constraint and mobility analysis Examples of geometric

More information

Animations in Creo 3.0

Animations in Creo 3.0 Animations in Creo 3.0 ME170 Part I. Introduction & Outline Animations provide useful demonstrations and analyses of a mechanism's motion. This document will present two ways to create a motion animation

More information

Synthesis of Spatial RPRP Loops for a Given Screw System

Synthesis of Spatial RPRP Loops for a Given Screw System Synthesis of Spatial RPRP Loops for a Given Screw System A. Perez-Gracia Institut de Robotica i Informatica Industrial (IRI) UPC/CSIC, Barcelona, Spain and: College of Engineering, Idaho State Univesity,

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

Singularity Analysis of an Extensible Kinematic Architecture: Assur Class N, Order N 1

Singularity Analysis of an Extensible Kinematic Architecture: Assur Class N, Order N 1 David H. Myszka e-mail: dmyszka@udayton.edu Andrew P. Murray e-mail: murray@notes.udayton.edu University of Dayton, Dayton, OH 45469 James P. Schmiedeler The Ohio State University, Columbus, OH 43210 e-mail:

More information

Basilio Bona ROBOTICA 03CFIOR 1

Basilio Bona ROBOTICA 03CFIOR 1 Kinematic chains 1 Readings & prerequisites Chapter 2 (prerequisites) Reference systems Vectors Matrices Rotations, translations, roto-translations Homogeneous representation of vectors and matrices Chapter

More information

Path Curvature of the Single Flier Eight-Bar Linkage

Path Curvature of the Single Flier Eight-Bar Linkage Gordon R. Pennock ASME Fellow Associate Professor Edward C. Kinzel Research Assistant School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907-2088 Path Curvature of the Single

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction This dissertation will describe the mathematical modeling and development of an innovative, three degree-of-freedom robotic manipulator. The new device, which has been named the

More information

User s Guide WATT 1.5. Heron Technologies bv P.O.Box AA Hengelo The Netherlands

User s Guide WATT 1.5. Heron Technologies bv P.O.Box AA Hengelo The Netherlands WATT 1.5 Heron Technologies bv P.O.Box 2 7550 AA Hengelo The Netherlands 1 Proprietary notice Heron Technologies bv, owns both this software program and its documentation. Both the program and the documentation

More information

Kinematics of pantograph masts

Kinematics of pantograph masts Kinematics of pantograph masts B. P. Nagaraj, R. Pandiyan ISRO Satellite Centre, Bangalore, 560 017, India and Ashitava Ghosal Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 560

More information

DETC APPROXIMATE MOTION SYNTHESIS OF SPHERICAL KINEMATIC CHAINS

DETC APPROXIMATE MOTION SYNTHESIS OF SPHERICAL KINEMATIC CHAINS Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007 September 4-7, 2007, Las Vegas, Nevada, USA DETC2007-34372

More information

Mechanism Design. Four-bar coupler-point curves

Mechanism Design. Four-bar coupler-point curves Mechanism Design Four-bar coupler-point curves Four-bar coupler-point curves A coupler is the most interesting link in any linkage. It is in complex motion, and thus points on the coupler can have path

More information

CONNECTIVITY IN OPEN AND CLOSED LOOP ROBOTIC MECHANISMS

CONNECTIVITY IN OPEN AND CLOSED LOOP ROBOTIC MECHANISMS CONNECTIVITY IN OPEN AND CLOSED LOOP ROBOTIC MECHANISMS Moshe Shoham Department of Mechanical Engineering Technion-Israel Institute of Technology Technion City, Haifa 000, Israel Bernard Roth Department

More information

Rotating Table with Parallel Kinematic Featuring a Planar Joint

Rotating Table with Parallel Kinematic Featuring a Planar Joint Rotating Table with Parallel Kinematic Featuring a Planar Joint Stefan Bracher *, Luc Baron and Xiaoyu Wang Ecole Polytechnique de Montréal, C.P. 679, succ. C.V. H3C 3A7 Montréal, QC, Canada Abstract In

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Kinematic chains Readings & prerequisites From the MSMS course one shall already be familiar with Reference systems and transformations Vectors

More information

Development of Solid Models and Multimedia Presentations of Kinematic Pairs

Development of Solid Models and Multimedia Presentations of Kinematic Pairs Session 2793 Development of Solid Models and Multimedia Presentations of Kinematic Pairs Scott Michael Wharton, Dr. Yesh P. Singh The University of Texas at San Antonio, San Antonio, Texas Abstract Understanding

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Control Part 4 Other control strategies These slides are devoted to two advanced control approaches, namely Operational space control Interaction

More information

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position.

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. Kinematics Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. 1/31 Statics deals with the forces and moments which are aplied on the mechanism

More information

Homework 1 - Grade - ME-3610-001 - Dynamics of Machinery - Tennessee Technologic... Page 1 of 21 My Home Email Calendar Logged in as scanfield 9/26/2011 ME-3610-001 - Dynamics of Machinery Course Home

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 3: Forward and Inverse Kinematics

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 3: Forward and Inverse Kinematics MCE/EEC 647/747: Robot Dynamics and Control Lecture 3: Forward and Inverse Kinematics Denavit-Hartenberg Convention Reading: SHV Chapter 3 Mechanical Engineering Hanz Richter, PhD MCE503 p.1/12 Aims of

More information

240AR059 - Geometric Fundamentals for Robot Design

240AR059 - Geometric Fundamentals for Robot Design Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 240 - ETSEIB - Barcelona School of Industrial Engineering 707 - ESAII - Department of Automatic Control MASTER'S DEGREE IN AUTOMATIC

More information