Technische Universität München Zentrum Mathematik

Size: px
Start display at page:

Download "Technische Universität München Zentrum Mathematik"

Transcription

1 Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 28 Solutions for Worksheet (28-7-2) Question. concrete Cayley-Klein geometry Classwork a) Given the following dual conic B, determine the corresponding primal conic. B = b) Investigate whether the conic described by the primal-dual pair (, B) is degenerate or not. If it is degenerate, give coordinates for the components into which it decomposes, both primal and dual. c) Now this conic (, B) shall be used as the fundamental conic of a Cayley-Klein geometry. Describe the resulting measurements for distances and angles respectively as hyperbolic, parabolic or elliptic. d) Now assume c ang = 2. Characterize under which conditions the angle between two lines will be real. e) The cross ratio which can be constructed most easily is the one for harmonic sets. Use this to construct two lines which enclose a well-defined and real angle. Base your construction on a coordinate system into which the conic (, B) has been drawn. lso, give an explicit description of the value of the angle you are constructing. a) The primal conic can be computed as the adjugate matrix of the dual conic: = B = b) The conic is degenerated. The primal conic has rank and represents the double line l = (,, ) T, i.e. the x-axis. The dual conic has rank 2 and degenerates into 2 points = (,, ) T and = (2,, ) T. This can easily be verified by adding a suitable anti-symmetric matrix. l = = 2 = c) Distance measuring is Euclidean, i.e. parabolic, because of the double line. ngle measuring is hyperbolic, due to the 2 different points. d) Two lines different from l confine a real angle iff their intersections with l are not separated by and. I.e. when both lie inside of and or outside. In these cases, the cross-ratio is positive and the logarithm is real.

2 e) One can simply construct two points and B which are in harmonic position together with and. Doing so, and should not form a pair, as otherwise the angle is complex. Connecting these points and B with an arbitrary additional point P allows us to precisely determine the angle between the connecting lines P and B P. Together with the tangents to the conic, i.e. the connections of P with and, they form an harmonic set of lines. s and shall not form a pair, the cross-ratio relevant for the angle computation is not, but takes one of the other values possible for harmonic sets. I.e. either 2 or 2. This reciprocal gets transformed into a change of the sign of the angles but when we only consider the absolute value of the angle, we can ignore. The absolute angle is c ang ln(2) = ln(2) 2,3466. In particular, this does not depend on the position of P. So, the blue and red angles shown below are both equal to this value. P P B Question 2. Hyperbolically equidistant points Let, be the two reference points on a line to make hyperbolic distance measurements. Consider three more points, B, C on this line. a) Give a conditions on suitable cross-ratios which describes that, B, = B, C, and deduce a bracket polynomial equation that describes the same. b) In the picture below, construct a point C fulfilling the above distance relation. c) Construct two more steps with the same size in the same direction and try to re-use as much as possible of your previous auxiliary construction. B 2

3 a) In order to have equal distances, we need equal cross-ratios. I.e. (, B;, ) = (B, C;, ). Then we make the same computations as for the angles in RP 2 seen in the lecture: (, B;, ) = (B, C;, ) (, ; B, ) = (B, ; C, ) [B][ ] [ ][B] = [BC][ ] [B ][C] [B][B ][C] = [ ][BC][B] b) The above means that (C; BB; ) forms a quad set. So, we can make the usual quad set construction. c) We can use the lines through and in the construction again. nd also, the right-hand one of B and the one through C. Then, we iterate... B C B C 3

4 B C Question 3. Dual partner Given the following matrix Homework = as well as some other matrices B = B 2 = B 3 = B 4 = 2 2 a) Decide which of these matrices B i will form a valid primal-dual pair together with. Justify your answer using a suitable computation. b) Describe these primal and dual conics graphically, both if they form a valid pair and if they do not. c) Describe which Cayley-Klein geometries will result from each of the valid pairs. 4

5 a) The matrix has rank, so we cannot compute its dual directly. The matrices (, B) form a primal/dual pair iff B = λ E. nd here λ will have to, as has no inverse. 4 B = 4 B 2 = B 3 = 4 So, B 2 and B 3 are dual matrices compatible with. With B 4 we obivously get the zero matrix from B, too, but it does not represent a conic. b) represents as a primal matrix with rank a degenerate conic consisting of a double line. B 3 has rank 2 and therefore represents two distinct points on this line. B has rank and gives, hence, a double point on this line. B has rank 2 and so it represents two points. But they do not lie on, as otherwise B would be a dual partner to. = (,, ) B ˆ= (,, ) B 2 ˆ= (,, ) B 3 ˆ= (,, ) B B B 2 B 3 B 3 c) B 2 leads with a double point on a double line to a Galilean geometry. Measuring both distances and angles are parabolic/euclidean. B 3 leads with two real points on a double line to a pseudo-euclidean geometry. Measuring distances is parabolic/euclidean and measuring angles is hyperbolic. Question 4. Very degenerate a) Choose a degenerate conic where both primal and dual matrix have rank. State the matrices explicitly, and draw the resulting conic in a coordinate system. b) With respect to this Cayley-Klein geometry, construct a sequence of at least five equidistant points on an arbitrary line. c) lso construct a pencil of at least five equiangular lines through a common point. I.e., two consecutive lines of that sequence should form the same angle with one another. 5

6 The picture containing all steps can be found after the full discussion of the single parts. a) s the fundamental object has to be drawn and used for constructions, it should be finite. possible choice is = B = This conic is the y-axis as a double line with the origin as a double point on it. b) The construction of projective scales or projectively equidistant sequences of points can be done as we are used to in RP 2. The starting points are P and P and the vanishing point P, in which their connecting line and the reference conic intersect. c) For any given point Q there is exactly one tangent to the fundamental object. Namely, the connection g to the origin. Drawing any line not going through Q, one can use its intersection with the tangent as the point at infinity. One can now construct a sequence of equidistant points w.r.t. this point. Consecutive connecting lines g i of these points with Q have the same angle, since, first, the tangent takes on the role of the point at infinity for the angle measurement and, second, the cross-ratio of the lines equals the cross-ratio of the intersection points. 6

7 P P P 4 P 3 P 2 P B g 4 g 3 g 2 g g g Q 7

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 208 https://www-m0.ma.tum.de/bin/view/lehre/ss8/pgss8/webhome Solutions for

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Question 1. Incidence matrix with gaps Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 2016 www-m10.ma.tum.de/projektivegeometriess16

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. r. r. Jürgen Richter-ebert, ernhard Werner Projective eometry SS 8 https://www-m.ma.tum.de/bin/view/lehre/ss8/pss8/webome Solutions for Worksheet

More information

CS-9645 Introduction to Computer Vision Techniques Winter 2019

CS-9645 Introduction to Computer Vision Techniques Winter 2019 Table of Contents Projective Geometry... 1 Definitions...1 Axioms of Projective Geometry... Ideal Points...3 Geometric Interpretation... 3 Fundamental Transformations of Projective Geometry... 4 The D

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Projective 3D Geometry (Back to Chapter 2) Lecture 6 2 Singular Value Decomposition Given a

More information

Projective 2D Geometry

Projective 2D Geometry Projective D Geometry Multi View Geometry (Spring '08) Projective D Geometry Prof. Kyoung Mu Lee SoEECS, Seoul National University Homogeneous representation of lines and points Projective D Geometry Line

More information

The Simplex Algorithm

The Simplex Algorithm The Simplex Algorithm Uri Feige November 2011 1 The simplex algorithm The simplex algorithm was designed by Danzig in 1947. This write-up presents the main ideas involved. It is a slight update (mostly

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Structure Computation Lecture 18 March 22, 2005 2 3D Reconstruction The goal of 3D reconstruction

More information

Auto-calibration. Computer Vision II CSE 252B

Auto-calibration. Computer Vision II CSE 252B Auto-calibration Computer Vision II CSE 252B 2D Affine Rectification Solve for planar projective transformation that maps line (back) to line at infinity Solve as a Householder matrix Euclidean Projective

More information

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24 Convex Optimization Convex Sets ENSAE: Optimisation 1/24 Today affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes

More information

ENTIRELY CIRCULAR QUARTICS IN THE PSEUDO-EUCLIDEAN PLANE

ENTIRELY CIRCULAR QUARTICS IN THE PSEUDO-EUCLIDEAN PLANE Acta Math. Hungar., 134 (4) (2012), 571 582 DOI: 10.1007/s10474-011-0174-3 First published online November 29, 2011 ENTIRELY CIRCULAR QUARTICS IN THE PSEUDO-EUCLIDEAN PLANE E. JURKIN and N. KOVAČEVIĆ Faculty

More information

Provide a drawing. Mark any line with three points in blue color.

Provide a drawing. Mark any line with three points in blue color. Math 3181 Name: Dr. Franz Rothe August 18, 2014 All3181\3181_fall14h1.tex Homework has to be turned in this handout. For extra space, use the back pages, or blank pages between. The homework can be done

More information

Projective geometry for Computer Vision

Projective geometry for Computer Vision Department of Computer Science and Engineering IIT Delhi NIT, Rourkela March 27, 2010 Overview Pin-hole camera Why projective geometry? Reconstruction Computer vision geometry: main problems Correspondence

More information

Part II. Working and Playing with Geometry

Part II. Working and Playing with Geometry Part II Working and Playing with Geometry 129 Need to play is the mother of all invention. Kristina Brenneman, Portland Tribune, 2005 So far we have prepared a solid basis for projective geometry with

More information

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Advances in Metric-neutral Visualization

Advances in Metric-neutral Visualization Advances in Metric-neutral Visualization Charles Gunn Institut für Mathematik Geometry and Visualization Group Technisches Universität Berlin GraVisMa 2010, Brno, October 7, 2010 Overview The talk will

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

Package RConics. R topics documented: February 19, Type Package Title Computations on Conics Version 1.0 Date Author Emanuel Huber

Package RConics. R topics documented: February 19, Type Package Title Computations on Conics Version 1.0 Date Author Emanuel Huber Type Package Title Computations on Conics Version 1.0 Date 2014-02-21 Author Emanuel Huber Package RConics February 19, 2015 Maintainer Emanuel Huber Solve some conic related

More information

Planes Intersecting Cones: Static Hypertext Version

Planes Intersecting Cones: Static Hypertext Version Page 1 of 12 Planes Intersecting Cones: Static Hypertext Version On this page, we develop some of the details of the plane-slicing-cone picture discussed in the introduction. The relationship between the

More information

Epipolar Geometry and the Essential Matrix

Epipolar Geometry and the Essential Matrix Epipolar Geometry and the Essential Matrix Carlo Tomasi The epipolar geometry of a pair of cameras expresses the fundamental relationship between any two corresponding points in the two image planes, and

More information

Problem 3.1 (Building up geometry). For an axiomatically built-up geometry, six groups of axioms needed:

Problem 3.1 (Building up geometry). For an axiomatically built-up geometry, six groups of axioms needed: Math 3181 Dr. Franz Rothe September 29, 2016 All3181\3181_fall16h3.tex Names: Homework has to be turned in this handout. For extra space, use the back pages, or put blank pages between. The homework can

More information

MAT 3271: Selected Solutions to the Assignment 6

MAT 3271: Selected Solutions to the Assignment 6 Chapter 2: Major Exercises MAT 3271: Selected Solutions to the Assignment 6 1. Since a projective plan is a model of incidence geometry, Incidence Axioms 1-3 and Propositions 2.1-2.5 (which follow logically

More information

Interpretations and Models. Chapter Axiomatic Systems and Incidence Geometry

Interpretations and Models. Chapter Axiomatic Systems and Incidence Geometry Interpretations and Models Chapter 2.1-2.4 - Axiomatic Systems and Incidence Geometry Axiomatic Systems in Mathematics The gold standard for rigor in an area of mathematics Not fully achieved in most areas

More information

TECHNISCHE UNIVERSITÄT BERLIN WS2005 Fachbereich 3 - Mathematik Prof. Dr. U. Pinkall / Charles Gunn Abgabe:

TECHNISCHE UNIVERSITÄT BERLIN WS2005 Fachbereich 3 - Mathematik Prof. Dr. U. Pinkall / Charles Gunn Abgabe: TECHNISCHE UNIVERSITÄT BERLIN WS2005 Fachbereich 3 - Mathematik Prof. Dr. U. Pinkall / Charles Gunn Abgabe: 27.10.2005 1. Übung Geometrie I (Lines in P 2 (R), Separation, Desargues) 1. Aufgabe Line equations

More information

Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points.

Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points. Math 3181 Dr. Franz Rothe Name: All3181\3181_spr13t1.tex 1 Solution of Test I Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points. Definition

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Sameer Agarwal LECTURE 1 Image Formation 1.1. The geometry of image formation We begin by considering the process of image formation when a

More information

If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: a b 1.

If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: a b 1. ASSIGNMENT ON STRAIGHT LINES LEVEL 1 (CBSE/NCERT/STATE BOARDS) 1 Find the angle between the lines joining the points (0, 0), (2, 3) and the points (2, 2), (3, 5). 2 What is the value of y so that the line

More information

Lecture: Convex Sets

Lecture: Convex Sets /24 Lecture: Convex Sets http://bicmr.pku.edu.cn/~wenzw/opt-27-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/24 affine and convex sets some

More information

1 Projective Geometry

1 Projective Geometry CIS8, Machine Perception Review Problem - SPRING 26 Instructions. All coordinate systems are right handed. Projective Geometry Figure : Facade rectification. I took an image of a rectangular object, and

More information

The focus and the median of a non-tangential quadrilateral in the isotropic plane

The focus and the median of a non-tangential quadrilateral in the isotropic plane MATHEMATICAL COMMUNICATIONS 117 Math. Commun., Vol. 15, No. 1, pp. 117-17 (010) The focus and the median of a non-tangential quadrilateral in the isotropic plane Vladimir Volenec 1,, Jelena Beban-Brkić

More information

FIGURES FOR SOLUTIONS TO SELECTED EXERCISES. V : Introduction to non Euclidean geometry

FIGURES FOR SOLUTIONS TO SELECTED EXERCISES. V : Introduction to non Euclidean geometry FIGURES FOR SOLUTIONS TO SELECTED EXERCISES V : Introduction to non Euclidean geometry V.1 : Facts from spherical geometry V.1.1. The objective is to show that the minor arc m does not contain a pair of

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. r. r. Jürgen Richter-ebert, ernhard Werner Projective eometry SS www-m.ma.tum.de/projektiveeometriess Solutions for Worksheet (--) Question. Moulton

More information

3D Computer Vision II. Reminder Projective Geometry, Transformations

3D Computer Vision II. Reminder Projective Geometry, Transformations 3D Computer Vision II Reminder Projective Geometry, Transformations Nassir Navab" based on a course given at UNC by Marc Pollefeys & the book Multiple View Geometry by Hartley & Zisserman" October 21,

More information

1 Solution of Homework

1 Solution of Homework Math 3181 Dr. Franz Rothe February 2, 2012 All3181\4080_spr12h1.tex Name: Use the back pages for extra space due date: February 10 1 Solution of Homework Figure 1: A neutral construction of the tangents

More information

Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by

Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by a two dimensional (plane) curve C in three dimensional space a line L in a plane not parallel to the one in

More information

Projective spaces and Bézout s theorem

Projective spaces and Bézout s theorem Projective spaces and Bézout s theorem êaû{0 Mijia Lai 5 \ laimijia@sjtu.edu.cn Outline 1. History 2. Projective spaces 3. Conics and cubics 4. Bézout s theorem and the resultant 5. Cayley-Bacharach theorem

More information

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important.

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important. Homogeneous Coordinates Overall scaling is NOT important. CSED44:Introduction to Computer Vision (207F) Lecture8: Camera Models Bohyung Han CSE, POSTECH bhhan@postech.ac.kr (",, ) ()", ), )) ) 0 It is

More information

2 Solution of Homework

2 Solution of Homework Math 3181 Name: Dr. Franz Rothe February 6, 2014 All3181\3181_spr14h2.tex Homework has to be turned in this handout. The homework can be done in groups up to three due February 11/12 2 Solution of Homework

More information

Projective geometry and the extended Euclidean plane

Projective geometry and the extended Euclidean plane Chapter 2 Projective geometry and the extended Euclidean plane Math 4520, Fall 2017 As we can see from Hilbert s treatment, a completely worked out axiom system for geometry in the plane is quite complicated.

More information

Basic Euclidean Geometry

Basic Euclidean Geometry hapter 1 asic Euclidean Geometry This chapter is not intended to be a complete survey of basic Euclidean Geometry, but rather a review for those who have previously taken a geometry course For a definitive

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Carsten Rother 09/12/2013 Computer Vision I: Multi-View 3D reconstruction Roadmap this lecture Computer Vision I: Multi-View

More information

Course Number 432/433 Title Algebra II (A & B) H Grade # of Days 120

Course Number 432/433 Title Algebra II (A & B) H Grade # of Days 120 Whitman-Hanson Regional High School provides all students with a high- quality education in order to develop reflective, concerned citizens and contributing members of the global community. Course Number

More information

Camera Model and Calibration

Camera Model and Calibration Camera Model and Calibration Lecture-10 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t R 2 3,t 3 Camera 1 Camera

More information

Computer Vision I - Appearance-based Matching and Projective Geometry

Computer Vision I - Appearance-based Matching and Projective Geometry Computer Vision I - Appearance-based Matching and Projective Geometry Carsten Rother 05/11/2015 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation

More information

ASSIGNMENT BOOKLET. Bachelor s Degree Programme. Analytical Geometry

ASSIGNMENT BOOKLET. Bachelor s Degree Programme. Analytical Geometry ASSIGNMENT BOOKLET MTE-05 Bachelor s Degree Programme Analytical Geometry (Valid from st January, 0 to st December, 0) School of Sciences Indira Gandhi National Open University Maidan Garhi New Delhi-0068

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

Introduction to Transformations. In Geometry

Introduction to Transformations. In Geometry + Introduction to Transformations In Geometry + What is a transformation? A transformation is a copy of a geometric figure, where the copy holds certain properties. Example: copy/paste a picture on your

More information

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018)

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018) Homework Assignment Sheet I (Due 16-March-2018) Assignment 1 Let f, g : N R with f(n) := 8n + 4 and g(n) := 1 5 n log 2 n. Prove explicitly that f O(g) and f o(g). Assignment 2 How can you generalize the

More information

Convex Optimization. 2. Convex Sets. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University. SJTU Ying Cui 1 / 33

Convex Optimization. 2. Convex Sets. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University. SJTU Ying Cui 1 / 33 Convex Optimization 2. Convex Sets Prof. Ying Cui Department of Electrical Engineering Shanghai Jiao Tong University 2018 SJTU Ying Cui 1 / 33 Outline Affine and convex sets Some important examples Operations

More information

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition.

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition. Chapter 3 Quadric hypersurfaces 3.1 Quadric hypersurfaces. 3.1.1 Denition. Denition 1. In an n-dimensional ane space A; given an ane frame fo;! e i g: A quadric hypersurface in A is a set S consisting

More information

Workshop 2 in Minkowski Geometry: Conic sections Shadowing Euclidean and Minkowski Geometry

Workshop 2 in Minkowski Geometry: Conic sections Shadowing Euclidean and Minkowski Geometry Workshop at IME-10 July 2004 econd part Workshop 2 in Minkowski Geometry: onic sections hadowing Euclidean and Minkowski Geometry In the second part of the workshop we will investigate conic sections in

More information

The equal tangents property

The equal tangents property The equal tangents property J. Jerónimo-Castro, G. Ruiz-Hernández and S. Tabachnikov April 29, 2012 Abstract Let M be a C 2 -smooth strictly convex closed surface in R 3 and denote by H the set of points

More information

A Transformation Based on the Cubic Parabola y = x 3

A Transformation Based on the Cubic Parabola y = x 3 Journal for Geometry and Graphics Volume 10 (2006), No. 1, 15 21. A Transformation Based on the Cubic Parabola y = x 3 Eugeniusz Korczak ul. św. Rocha 6B m. 5, PL 61-142 Poznań, Poland email: ekorczak@math.put.poznan.pl

More information

Camera model and multiple view geometry

Camera model and multiple view geometry Chapter Camera model and multiple view geometry Before discussing how D information can be obtained from images it is important to know how images are formed First the camera model is introduced and then

More information

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz Epipolar Geometry Prof. D. Stricker With slides from A. Zisserman, S. Lazebnik, Seitz 1 Outline 1. Short introduction: points and lines 2. Two views geometry: Epipolar geometry Relation point/line in two

More information

Scaling the Topology of Symmetric, Second-Order Planar Tensor Fields

Scaling the Topology of Symmetric, Second-Order Planar Tensor Fields Scaling the Topology of Symmetric, Second-Order Planar Tensor Fields Xavier Tricoche, Gerik Scheuermann, and Hans Hagen University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany E-mail:

More information

Pre AP Geometry. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry

Pre AP Geometry. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry Pre AP Geometry Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Geometry 1 The content of the mathematics standards is intended to support the following five goals for students: becoming

More information

PS 3.5 : Problem Solving with Trigonometry Unit 3 Trigonometry

PS 3.5 : Problem Solving with Trigonometry Unit 3 Trigonometry (A) Lesson Context BIG PICTURE of this UNIT: How do I determine the measure of angles in geometric shapes, without direct measurement? How do I solve for sides or angles in right triangles? How can I solve

More information

Parallel and perspective projections such as used in representing 3d images.

Parallel and perspective projections such as used in representing 3d images. Chapter 5 Rotations and projections In this chapter we discuss Rotations Parallel and perspective projections such as used in representing 3d images. Using coordinates and matrices, parallel projections

More information

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity CSCI5254: Convex Optimization & Its Applications Convex Sets subspaces, affine sets, and convex sets operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Aspects of Geometry. Finite models of the projective plane and coordinates

Aspects of Geometry. Finite models of the projective plane and coordinates Review Sheet There will be an exam on Thursday, February 14. The exam will cover topics up through material from projective geometry through Day 3 of the DIY Hyperbolic geometry packet. Below are some

More information

You try: What is the definition of an angle bisector? You try: You try: is the bisector of ABC. BD is the bisector of ABC. = /4.MD.

You try: What is the definition of an angle bisector? You try: You try: is the bisector of ABC. BD is the bisector of ABC. = /4.MD. US Geometry 1 What is the definition of a midpoint? midpoint of a line segment is the point that bisects the line segment. That is, M is the midpoint of if M M. 1 What is the definition of an angle bisector?

More information

A Stratified Approach for Camera Calibration Using Spheres

A Stratified Approach for Camera Calibration Using Spheres IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. Y, MONTH YEAR 1 A Stratified Approach for Camera Calibration Using Spheres Kwan-Yee K. Wong, Member, IEEE, Guoqiang Zhang, Student-Member, IEEE and Zhihu

More information

Final Exam 1:15-3:15 pm Thursday, December 13, 2018

Final Exam 1:15-3:15 pm Thursday, December 13, 2018 Final Exam 1:15-3:15 pm Thursday, December 13, 2018 Instructions: Answer all questions in the space provided (or attach additional pages as needed). You are permitted to use pencils/pens, one cheat sheet

More information

Graphs and Network Flows IE411. Lecture 20. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 20. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 20 Dr. Ted Ralphs IE411 Lecture 20 1 Network Simplex Algorithm Input: A network G = (N, A), a vector of capacities u Z A, a vector of costs c Z A, and a vector of

More information

Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel. 1. Axioms for a finite AFFINE plane of order n.

Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel. 1. Axioms for a finite AFFINE plane of order n. Math 532, 736I: Modern Geometry Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel Part 1: 1. Axioms for a finite AFFINE plane of order n. AA1: There exist at least 4 points, no

More information

Geometric transformations in 3D and coordinate frames. Computer Graphics CSE 167 Lecture 3

Geometric transformations in 3D and coordinate frames. Computer Graphics CSE 167 Lecture 3 Geometric transformations in 3D and coordinate frames Computer Graphics CSE 167 Lecture 3 CSE 167: Computer Graphics 3D points as vectors Geometric transformations in 3D Coordinate frames CSE 167, Winter

More information

Geometry. Every Simplicial Polytope with at Most d + 4 Vertices Is a Quotient of a Neighborly Polytope. U. H. Kortenkamp. 1.

Geometry. Every Simplicial Polytope with at Most d + 4 Vertices Is a Quotient of a Neighborly Polytope. U. H. Kortenkamp. 1. Discrete Comput Geom 18:455 462 (1997) Discrete & Computational Geometry 1997 Springer-Verlag New York Inc. Every Simplicial Polytope with at Most d + 4 Vertices Is a Quotient of a Neighborly Polytope

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

Structure from Motion CSC 767

Structure from Motion CSC 767 Structure from Motion CSC 767 Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R,t R 2,t 2 R 3,t 3 Camera??

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

Tangency of Conics and Quadrics

Tangency of Conics and Quadrics Proc. of the 6th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Elounda, Greece, August 21-23, 26 (pp21-29) Tangency of Conics and Quadrics SUDANTHI N. R. WIJEWICKREMA,

More information

Introduction to Geometric Algebra Lecture V

Introduction to Geometric Algebra Lecture V Introduction to Geometric Algebra Lecture V Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br Visgraf - Summer School in Computer Graphics - 2010 CG UFRGS Lecture

More information

Stereo Vision. MAN-522 Computer Vision

Stereo Vision. MAN-522 Computer Vision Stereo Vision MAN-522 Computer Vision What is the goal of stereo vision? The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in

More information

Inversive Plane Geometry

Inversive Plane Geometry Inversive Plane Geometry An inversive plane is a geometry with three undefined notions: points, circles, and an incidence relation between points and circles, satisfying the following three axioms: (I.1)

More information

Math 155, Lecture Notes- Bonds

Math 155, Lecture Notes- Bonds Math 155, Lecture Notes- Bonds Name Section 10.1 Conics and Calculus In this section, we will study conic sections from a few different perspectives. We will consider the geometry-based idea that conics

More information

Chapter 9 Topics in Analytic Geometry

Chapter 9 Topics in Analytic Geometry Chapter 9 Topics in Analytic Geometry What You ll Learn: 9.1 Introduction to Conics: Parabolas 9.2 Ellipses 9.3 Hyperbolas 9.5 Parametric Equations 9.6 Polar Coordinates 9.7 Graphs of Polar Equations 9.1

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.1: 3D Geometry Jürgen Sturm Technische Universität München Points in 3D 3D point Augmented vector Homogeneous

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Definition 2 (Projective plane). A projective plane is a class of points, and a class of lines satisfying the axioms:

Definition 2 (Projective plane). A projective plane is a class of points, and a class of lines satisfying the axioms: Math 3181 Name: Dr. Franz Rothe January 30, 2014 All3181\3181_spr14h2.tex Homework has to be turned in this handout. The homework can be done in groups up to three due February 11/12 2 Homework 1 Definition

More information

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation and the type of an object. Even simple scaling turns a

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Exercises for Chapter Three You know you've got to exercise your brain just like your muscles. Will Rogers ( )

Exercises for Chapter Three You know you've got to exercise your brain just like your muscles. Will Rogers ( ) Exercises for Chapter Three You know you've got to exercise your brain just like your muscles. Will Rogers (1879 1935) Investigation Exercise 3.1. (a) Construct a tessellation. (Directions for construction.)

More information

(1) Page #1 24 all. (2) Page #7-21 odd, all. (3) Page #8 20 Even, Page 35 # (4) Page #1 8 all #13 23 odd

(1) Page #1 24 all. (2) Page #7-21 odd, all. (3) Page #8 20 Even, Page 35 # (4) Page #1 8 all #13 23 odd Geometry/Trigonometry Unit 1: Parallel Lines Notes Name: Date: Period: # (1) Page 25-26 #1 24 all (2) Page 33-34 #7-21 odd, 23 28 all (3) Page 33-34 #8 20 Even, Page 35 #40 44 (4) Page 60 61 #1 8 all #13

More information

CIRCULAR QUARTICS IN THE ISOTROPIC PLANE GENERATED BY PROJECTIVELY LINKED PENCILS OF CONICS

CIRCULAR QUARTICS IN THE ISOTROPIC PLANE GENERATED BY PROJECTIVELY LINKED PENCILS OF CONICS Acta Math. Hungar., 130 (1 2) (2011), 35 49 DOI: 10.1007/s10474-010-0038-2 First published online November 3, 2010 CIRCULAR QUARTICS IN THE ISOTROPIC PLANE GENERATED BY PROJECTIVELY LINKED PENCILS OF CONICS

More information

GEOMETRY R Unit 4: More Transformations / Compositions. Day Classwork Homework Monday 10/16. Perpendicular Bisector Relationship to Transformations

GEOMETRY R Unit 4: More Transformations / Compositions. Day Classwork Homework Monday 10/16. Perpendicular Bisector Relationship to Transformations GEOMETRY R Unit 4: More Transformations / Compositions Day Classwork Homework Monday 10/16 Perpendicular Bisector Relationship to Transformations HW 4.1 Tuesday 10/17 Construction of Parallel Lines Through

More information

4 Visualization and. Approximation

4 Visualization and. Approximation 4 Visualization and Approximation b A slope field for the differential equation y tan(x + y) tan(x) tan(y). It is not always possible to write down an explicit formula for the solution to a differential

More information

Computer Vision I - Appearance-based Matching and Projective Geometry

Computer Vision I - Appearance-based Matching and Projective Geometry Computer Vision I - Appearance-based Matching and Projective Geometry Carsten Rother 01/11/2016 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 More on Single View Geometry Lecture 11 2 In Chapter 5 we introduced projection matrix (which

More information

Section Congruence Through Constructions

Section Congruence Through Constructions Section 10.1 - Congruence Through Constructions Definitions: Similar ( ) objects have the same shape but not necessarily the same size. Congruent ( =) objects have the same size as well as the same shape.

More information

. The differential of y f (x)

. The differential of y f (x) Calculus I - Prof D Yuen Exam Review version 11/14/01 Please report any typos Derivative Rules Of course you have to remember all your derivative rules Implicit Differentiation Differentiate both sides

More information

Output: For each size provided as input, a figure of that size is to appear, followed by a blank line.

Output: For each size provided as input, a figure of that size is to appear, followed by a blank line. Problem 1: Divisor Differences Develop a program that, given integers m and k satisfying m > k > 0, lists every pair of positive integers (i,j) such that j i = k and both i and j are divisors of m. Input:

More information

The statement implies that any three intersection points of two distinct planes lie on a line.

The statement implies that any three intersection points of two distinct planes lie on a line. Math 3181 Dr. Franz Rothe February 23, 2015 All3181\3181_spr15ts1.tex 1 Solution of Test Name: Problem 1.1. The second part of Hilbert s Proposition 1 states: Any two different planes have either no point

More information

GSAC TALK: THE WORD PROBLEM. 1. The 8-8 Tessellation. Consider the following infinite tessellation of the open unit disc. Actually, we want to think

GSAC TALK: THE WORD PROBLEM. 1. The 8-8 Tessellation. Consider the following infinite tessellation of the open unit disc. Actually, we want to think GSAC TALK: THE WORD PROBLEM 1. The 8-8 Tessellation Consider the following infinite tessellation of the open unit disc. Actually, we want to think of the disc as a model for R 2 and we can do that using

More information

Rectification and Distortion Correction

Rectification and Distortion Correction Rectification and Distortion Correction Hagen Spies March 12, 2003 Computer Vision Laboratory Department of Electrical Engineering Linköping University, Sweden Contents Distortion Correction Rectification

More information

Computer Vision. 2. Projective Geometry in 3D. Lars Schmidt-Thieme

Computer Vision. 2. Projective Geometry in 3D. Lars Schmidt-Thieme Computer Vision 2. Projective Geometry in 3D Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany 1 / 26 Syllabus Mon.

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 6 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 19, 2012 Andre Tkacenko

More information