o Compare results with theory and empiric al data ChapterT-1- Flow across a Tube Bank Problem Description

Size: px
Start display at page:

Download "o Compare results with theory and empiric al data ChapterT-1- Flow across a Tube Bank Problem Description"

Transcription

1 Obiectives o Creating the SolidWorks model of the tube bank. Setting up Flow Simulation projects for extemal flow o Inserting boundary condition. Running the calculations ' Using cut plots and Xy prots to visualize the resulting flow field o Compare results with theory and empiric al data Problem Description In this chapter, we will use Flow Simulation to study the two-dimensional flow across a tube bank' we will use a total of twelve 20 mm diametercylinders in an in-line arrangement. The cylinders will have a temperature of 373.2K and the free stream velocity of the air will be 4 m/s. Thc temperature and velocity fields will be shown inside the tube bank and the development of both temperature and velocity profiles after the tube bank. The exit temperature of the fluid from Flow simulation calculations will be compared with theoretical and empirical results. Figure 7.0 SolidWorks model of in-linc tube bank ChapterT-1-

2 ttizard - lnitial and Ambient fonditionl )0 1t) t) Parametet Psrameter Definition Thermodynamic Parameters Farameters: Fressure Temperature Veloci$r Parameters Fararneter: Velocity in X direction Velocity in Y direrrtion Velocity in Z direclisn Value User Delined Pressure, temperature Pa t Velocity 4 m/s 0 mrs 0 mis Figure 7.8b) Setting the velocity in the X-direction 5 E f o Figure 7.8c) Setting the result resolution Modifvinq the Computational Domain and Mesh 9. Select Flow Simulation>>Computational Domain... Click on the Boundary Condition tab and select XY - Plane Flow from the 2D plane flow: drop down menu. Click on the OK button to exit the Computational Domain window. Select Flow Simulation>>Initial Mesh... Uncheck thc Automatic setting box at the bottom of the window. Change the Number of cells per X: to 198 and set Number of cells per Y: to 300 and Number of cells per Zz to l. Click on the OK button to exit the Initial Mesh window. Flouc Snulatitn i bvn&+, H Proie':t Insert pt' eeneral Settirrgs... EJ Unts,,. computational Dcrnain,,. Figure 7.9a) Modiffing the computational domain Chapter7-6-

3 Flord S{adatxn I urgow tk Proiect Si=e BoundaryCondition Color Setting 2D plane flow: Figure 7.9b) Selecting2D plane flow Insert ff Generalsetthgs.,, Units,.. Q Comput"tionalDomain... ffi rnmatmesh,,, Figure 7.9c) Modifiing initial mesh Easrc Mesh Solid/FliJ lrrerface Eahirg Cels Nurorer Chamab Number o[ ceil' Nurnber of cells perx: Number of cells per!': Number ol cels per Z: 198 Ior: I l-c"*"r_l i- H+-l Figure 7.9d) Setting the number of cells lnsertin g Boundarv Conditions l0' Select lsometric view from the view orientation drop down menu in the graphics window. Select Flow Simulation>>Insert>>Boundary condition... Select,t ",*"1u. cylindrical surfaces' click on the * wall button in the Type portion of the Boundary condition window and select Real wall' Adjust the wall remperature 3 b 373.2K by clicking on the button and enter the numerical value in the wall Parameters window. click ok v2 to exit the Boundary Condition lg \-- ' I lroretric E El I not*es ard zonr Ere m#l to the ism-etric viee{ riertetidn Figure 7.10a) Selecting an isometric view Figure 7.10b) Selection of cylindrical surfaces Chapter 7-7 -

4 7.13a) shows the pressure gradient along the tube bank. distribution in the same cross section and figure 7.13c) Figure 7.13b) is showing the velocity is showing the temperature distribution. Flilir; Lu,rrn -,r,,tn l;lll,l l.lx:t: hx:l: Figure 7.13a) Pressure distribution along the tube bank Figure 7.13b) Velocity distribution along the tube bank Figure 7.13c) Temperaturc distribution along the tube bank Creatins Sketch for XY Plots 14. Click on the I FeatureManager design tree and select the tr'ront Plane. Click on the Sketch tools tab and select Line. Draw a 50 mm long vertical line starting at (X,Y) : (275 mm, 0), see figure 7.l4a). Exit the Line Properties window and draw two more vertical lines with the same length starting at (X,Y): (300 mm, 0) and (X,n: Q25 mm, 0). Close the Insert Line window and select I *.Oorrd from the SolidWorks Menu. Rename the new sketch to the name x:275, 300, 325 mm as shown in figure 7.14d). Chapter 7-1{1-

5 Place the files "xy-prot figure 7.14f)" and..xy-plot figure 7Ja$,, into the Locar Disk (c:)/program f iles/soridworks corp/soridworks Frow simuration /lang/english/templated(y-plots folder to make it available in the Template list. click on the =';' Flow Simulation analysis tree tab. Right click Xy plot and select Insert... check the Temperature box. open the Resolution portion of the Xy plot window and slide the Geometry Resolution as far as it gocs to the right. open the options portion of the Xy plot window and selcct the template xy-plot figure 7.14f) from the template drop down menu. click on the 9 FeatureManager design tree and select the sketch x:27s,300, 325 mm. click ok */ to exitthe XY Plot window. An Excel file will open with a graph of the temperahre across the exit of the tube bank, see figure 7.!4t).Repeat this step once again but choose to check the X - component of velocity box and select the xy-prot figure 7 Jagtemplate. Puun.tEr$ ', sr-i,do A n!r:r,ud', Adffiiond porarnctctr./, E7E,oo.4 Lr'ol'l ', / t Ji5,UU : A 5r-r.r-rrr Figure 7.14a) Drawing a vertical line for the Xy_plot i Re$utld [-n"uru, the prnt. assenb,yl, or drav+rng Figure 7.14b) Rebuilding the new sketch Figure 7.14c) Sketch with three lines for temperature profiles ChapterT-tt-

6 qi E ($ fntine tube bank. (In-Line tube Banlr 5tudy) ':-.1 Sensors + A I Annotations + gl 5olid Bodies(lZ) $] material <not specified> (i Front Phre $ {2 Top Plar'e Rigtrt etan" [. origin * le Extrudel E t I *: ris,3oo, szsmm Figure 7.l4d) Rename the new sketch Figure 7.l4e) Different settings for XY Plot T (K) 300..]li' "r x =275mm x=300mm -x=325mm 295 '07,,/ - thsery Y (m) Figure 7.14D Exit temperatures for the tube bank from Flow Simulation compared with calculations (full line) Chapter7-l2-

7 x=275mm -'---- x=300mm - ---x=325mm v (m) 7.149) Exit vclocities for the tube bank from Flow Simulation Theorv and Empirical Data 15' The Reynolds number for a tube bank is defined based on the maximum velocity u,,". (m/s) in the bank: R D,^o, --!-^g'!- (l) where D (m) is the diameter of the tubes and u (m/s) is the kinematic viscosity of the fluid. t il_+ Figure 7.15a) Geometry of in_line tube bank For the in-line tube arrangement, see figure 7.1Sa),the maximum velocity is related to the approach velocity U: vmax tr - fi - Sru (2) Chapter7-13-

8 For the staggered tube arrangement, see figure 7.15b), the maximum velocity is determined by equation (2) if 2AD> Ar.If 2AD< A7,the maximum velocity is determined by (3) U-+ i: Figure 7.15b) Geometry of staggered tube bank The pressure drop across the tube bank is given by the following equation: ^ n _ NiXpItkM tlr -- ) (4) where llr is the number of rows of tubes in the flow direction,./ is the friction factor, T is a correction factor and p (kg/m^3) is the density of the fluid. The friction factor for in-line and staggered tube banks can be determined from figures 7.l5c) and 7.15d), respectively. ij B".t * 6 4 6sl0l I * 6lt16P I { 6110"3 I r ot11/ 3 { 6r1g'r 1 ft*on*. 6 r+l# Figure 7.15c) Friction factors for in-line tube bank, from Cengel (2003) Chapter7-14-

An Introduction to SolidWorks Flow Simulation 2010

An Introduction to SolidWorks Flow Simulation 2010 An Introduction to SolidWorks Flow Simulation 2010 John E. Matsson, Ph.D. SDC PUBLICATIONS www.sdcpublications.com Schroff Development Corporation Chapter 2 Flat Plate Boundary Layer Objectives Creating

More information

SolidWorks Flow Simulation 2014

SolidWorks Flow Simulation 2014 An Introduction to SolidWorks Flow Simulation 2014 John E. Matsson, Ph.D. SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following websites

More information

SOLIDWORKS Flow Simulation 2015

SOLIDWORKS Flow Simulation 2015 An Introduction to SOLIDWORKS Flow Simulation 2015 John E. Matsson, Ph.D. SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following websites

More information

SOLIDWORKS Flow Simulation 2016

SOLIDWORKS Flow Simulation 2016 An Introduction to SOLIDWORKS Flow Simulation 2016 John E. Matsson, Ph.D. SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following websites

More information

ANSYS AIM Tutorial Steady Flow Past a Cylinder

ANSYS AIM Tutorial Steady Flow Past a Cylinder ANSYS AIM Tutorial Steady Flow Past a Cylinder Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Solution Domain Boundary Conditions Start-Up

More information

SOLIDWORKS Flow Simulation 2015

SOLIDWORKS Flow Simulation 2015 An Introduction to SOLIDWORKS Flow Simulation 2015 John E. Matsson, Ph.D. SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following websites

More information

Isotropic Porous Media Tutorial

Isotropic Porous Media Tutorial STAR-CCM+ User Guide 3927 Isotropic Porous Media Tutorial This tutorial models flow through the catalyst geometry described in the introductory section. In the porous region, the theoretical pressure drop

More information

Simulation of Laminar Pipe Flows

Simulation of Laminar Pipe Flows Simulation of Laminar Pipe Flows 57:020 Mechanics of Fluids and Transport Processes CFD PRELAB 1 By Timur Dogan, Michael Conger, Maysam Mousaviraad, Tao Xing and Fred Stern IIHR-Hydroscience & Engineering

More information

Heat Exchanger Efficiency

Heat Exchanger Efficiency 6 Heat Exchanger Efficiency Flow Simulation can be used to study the fluid flow and heat transfer for a wide variety of engineering equipment. In this example we use Flow Simulation to determine the efficiency

More information

Verification of Laminar and Validation of Turbulent Pipe Flows

Verification of Laminar and Validation of Turbulent Pipe Flows 1 Verification of Laminar and Validation of Turbulent Pipe Flows 1. Purpose ME:5160 Intermediate Mechanics of Fluids CFD LAB 1 (ANSYS 18.1; Last Updated: Aug. 1, 2017) By Timur Dogan, Michael Conger, Dong-Hwan

More information

Steady Flow: Lid-Driven Cavity Flow

Steady Flow: Lid-Driven Cavity Flow STAR-CCM+ User Guide Steady Flow: Lid-Driven Cavity Flow 2 Steady Flow: Lid-Driven Cavity Flow This tutorial demonstrates the performance of STAR-CCM+ in solving a traditional square lid-driven cavity

More information

Tutorial 2. Modeling Periodic Flow and Heat Transfer

Tutorial 2. Modeling Periodic Flow and Heat Transfer Tutorial 2. Modeling Periodic Flow and Heat Transfer Introduction: Many industrial applications, such as steam generation in a boiler or air cooling in the coil of an air conditioner, can be modeled as

More information

Simulation and Validation of Turbulent Pipe Flows

Simulation and Validation of Turbulent Pipe Flows Simulation and Validation of Turbulent Pipe Flows ENGR:2510 Mechanics of Fluids and Transport Processes CFD LAB 1 (ANSYS 17.1; Last Updated: Oct. 10, 2016) By Timur Dogan, Michael Conger, Dong-Hwan Kim,

More information

Simulation of Turbulent Flow around an Airfoil

Simulation of Turbulent Flow around an Airfoil Simulation of Turbulent Flow around an Airfoil ENGR:2510 Mechanics of Fluids and Transfer Processes CFD Pre-Lab 2 (ANSYS 17.1; Last Updated: Nov. 7, 2016) By Timur Dogan, Michael Conger, Andrew Opyd, Dong-Hwan

More information

Flow Sim. Chapter 14 P-51. A. Set Up. B. Create Flow Simulation Project. Step 1. Click Flow Simulation. SolidWorks 10 Flow Sim P-51 Page 14-1

Flow Sim. Chapter 14 P-51. A. Set Up. B. Create Flow Simulation Project. Step 1. Click Flow Simulation. SolidWorks 10 Flow Sim P-51 Page 14-1 Chapter 14 A. Set Up. P-51 Flow Sim Step 1. If necessary, open your ASSEMBLY file. Step 2. Click Tools Menu > Add-Ins. Step 3. In the dialog box, scroll down to Flow Simulation and place a check in the

More information

Flow Sim. Chapter 16. Airplane. A. Enable Flow Simulation. Step 1. If necessary, open your ASSEMBLY file.

Flow Sim. Chapter 16. Airplane. A. Enable Flow Simulation. Step 1. If necessary, open your ASSEMBLY file. Chapter 16 Airplane Flow Sim A. Enable Flow Simulation. Step 1. If necessary, open your ASSEMBLY file. Step 2. If necessary, turn on Flow Simulation, click the flyout of Options on the Standard toolbar

More information

Module D: Laminar Flow over a Flat Plate

Module D: Laminar Flow over a Flat Plate Module D: Laminar Flow over a Flat Plate Summary... Problem Statement Geometry and Mesh Creation Problem Setup Solution. Results Validation......... Mesh Refinement.. Summary This ANSYS FLUENT tutorial

More information

Solution Recording and Playback: Vortex Shedding

Solution Recording and Playback: Vortex Shedding STAR-CCM+ User Guide 6663 Solution Recording and Playback: Vortex Shedding This tutorial demonstrates how to use the solution recording and playback module for capturing the results of transient phenomena.

More information

Compressible Flow in a Nozzle

Compressible Flow in a Nozzle SPC 407 Supersonic & Hypersonic Fluid Dynamics Ansys Fluent Tutorial 1 Compressible Flow in a Nozzle Ahmed M Nagib Elmekawy, PhD, P.E. Problem Specification Consider air flowing at high-speed through a

More information

FEMLAB Exercise 1 for ChE366

FEMLAB Exercise 1 for ChE366 FEMLAB Exercise 1 for ChE366 Problem statement Consider a spherical particle of radius r s moving with constant velocity U in an infinitely long cylinder of radius R that contains a Newtonian fluid. Let

More information

Flow Sim. Chapter 16. Airplane. A. Add-In. Step 1. If necessary, open your ASSEMBLY file.

Flow Sim. Chapter 16. Airplane. A. Add-In. Step 1. If necessary, open your ASSEMBLY file. Chapter 16 A. Add-In. Step 1. If necessary, open your ASSEMBLY file. Airplane Flow Sim Step 2. Click Tools Menu > Add-Ins. Step 3. In the dialog box, scroll down to Flow Simulation and place a check in

More information

Non-Newtonian Transitional Flow in an Eccentric Annulus

Non-Newtonian Transitional Flow in an Eccentric Annulus Tutorial 8. Non-Newtonian Transitional Flow in an Eccentric Annulus Introduction The purpose of this tutorial is to illustrate the setup and solution of a 3D, turbulent flow of a non-newtonian fluid. Turbulent

More information

First Steps - Conjugate Heat Transfer

First Steps - Conjugate Heat Transfer COSMOSFloWorks 2004 Tutorial 2 First Steps - Conjugate Heat Transfer This First Steps - Conjugate Heat Transfer tutorial covers the basic steps to set up a flow analysis problem including conduction heat

More information

Flow Sim. Chapter 12. F1 Car. A. Enable Flow Simulation. Step 1. If necessary, open your ASSEMBLY file.

Flow Sim. Chapter 12. F1 Car. A. Enable Flow Simulation. Step 1. If necessary, open your ASSEMBLY file. Chapter 12 F1 Car Flow Sim A. Enable Flow Simulation. Step 1. If necessary, open your ASSEMBLY file. Step 2. If necessary, turn on Flow Simulation, click the flyout of Options on the Standard toolbar and

More information

FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016

FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016 FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016 Note: These instructions are based on an older version of FLUENT, and some of the instructions

More information

Modeling Evaporating Liquid Spray

Modeling Evaporating Liquid Spray Tutorial 16. Modeling Evaporating Liquid Spray Introduction In this tutorial, FLUENT s air-blast atomizer model is used to predict the behavior of an evaporating methanol spray. Initially, the air flow

More information

Supersonic Flow Over a Wedge

Supersonic Flow Over a Wedge SPC 407 Supersonic & Hypersonic Fluid Dynamics Ansys Fluent Tutorial 2 Supersonic Flow Over a Wedge Ahmed M Nagib Elmekawy, PhD, P.E. Problem Specification A uniform supersonic stream encounters a wedge

More information

µ = Pa s m 3 The Reynolds number based on hydraulic diameter, D h = 2W h/(w + h) = 3.2 mm for the main inlet duct is = 359

µ = Pa s m 3 The Reynolds number based on hydraulic diameter, D h = 2W h/(w + h) = 3.2 mm for the main inlet duct is = 359 Laminar Mixer Tutorial for STAR-CCM+ ME 448/548 March 30, 2014 Gerald Recktenwald gerry@pdx.edu 1 Overview Imagine that you are part of a team developing a medical diagnostic device. The device has a millimeter

More information

ANSYS AIM Tutorial Compressible Flow in a Nozzle

ANSYS AIM Tutorial Compressible Flow in a Nozzle ANSYS AIM Tutorial Compressible Flow in a Nozzle Author(s): Sebastian Vecchi Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Pre-Analysis Start-Up Geometry Import Geometry Mesh

More information

ANSYS AIM Tutorial Turbulent Flow Over a Backward Facing Step

ANSYS AIM Tutorial Turbulent Flow Over a Backward Facing Step ANSYS AIM Tutorial Turbulent Flow Over a Backward Facing Step Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Governing Equation Start-Up Geometry

More information

Simulation of Turbulent Flow around an Airfoil

Simulation of Turbulent Flow around an Airfoil 1. Purpose Simulation of Turbulent Flow around an Airfoil ENGR:2510 Mechanics of Fluids and Transfer Processes CFD Lab 2 (ANSYS 17.1; Last Updated: Nov. 7, 2016) By Timur Dogan, Michael Conger, Andrew

More information

Simulation of Flow Development in a Pipe

Simulation of Flow Development in a Pipe Tutorial 4. Simulation of Flow Development in a Pipe Introduction The purpose of this tutorial is to illustrate the setup and solution of a 3D turbulent fluid flow in a pipe. The pipe networks are common

More information

TUTORIAL#3. Marek Jaszczur. Boundary Layer on a Flat Plate W1-1 AGH 2018/2019

TUTORIAL#3. Marek Jaszczur. Boundary Layer on a Flat Plate W1-1 AGH 2018/2019 TUTORIAL#3 Boundary Layer on a Flat Plate Marek Jaszczur AGH 2018/2019 W1-1 Problem specification TUTORIAL#3 Boundary Layer - on a flat plate Goal: Solution for boudary layer 1. Creating 2D simple geometry

More information

TUTORIAL#4. Marek Jaszczur. Turbulent Thermal Boundary Layer on a Flat Plate W1-1 AGH 2018/2019

TUTORIAL#4. Marek Jaszczur. Turbulent Thermal Boundary Layer on a Flat Plate W1-1 AGH 2018/2019 TUTORIAL#4 Turbulent Thermal Boundary Layer on a Flat Plate Marek Jaszczur AGH 2018/2019 W1-1 Problem specification TUTORIAL#4 Turbulent Thermal Boundary Layer - on a flat plate Goal: Solution for Non-isothermal

More information

First Steps - Ball Valve Design

First Steps - Ball Valve Design COSMOSFloWorks 2004 Tutorial 1 First Steps - Ball Valve Design This First Steps tutorial covers the flow of water through a ball valve assembly before and after some design changes. The objective is to

More information

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Objective: The objective of this laboratory is to introduce how to use FLUENT to solve both transient and natural convection problems.

More information

First Steps - Ball Valve Design

First Steps - Ball Valve Design COSMOSFloWorks 2004 Tutorial 1 First Steps - Ball Valve Design This First Steps tutorial covers the flow of water through a ball valve assembly before and after some design changes. The objective is to

More information

ISSN(PRINT): ,(ONLINE): ,VOLUME-1,ISSUE-1,

ISSN(PRINT): ,(ONLINE): ,VOLUME-1,ISSUE-1, NUMERICAL ANALYSIS OF THE TUBE BANK PRESSURE DROP OF A SHELL AND TUBE HEAT EXCHANGER Kartik Ajugia, Kunal Bhavsar Lecturer, Mechanical Department, SJCET Mumbai University, Maharashtra Assistant Professor,

More information

Project 2 Solution. General Procedure for Model Setup

Project 2 Solution. General Procedure for Model Setup Project 2 Solution MAE598 Applied Computational Fluid Dynamics Shashank Kunjibettu General Procedure for Model Setup Step 1: Model the given component using design modeler Step 2: Meshing is done for the

More information

Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow

Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow Excerpt from the Proceedings of the COMSOL Conference 8 Boston Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow E. Kaufman

More information

SOLIDWORKS Flow Simulation Options

SOLIDWORKS Flow Simulation Options SOLIDWORKS Flow Simulation Options SOLIDWORKS Flow Simulation includes an options dialogue window that allows for defining default options to use for a new project. Some of the options included are unit

More information

Modeling Evaporating Liquid Spray

Modeling Evaporating Liquid Spray Tutorial 17. Modeling Evaporating Liquid Spray Introduction In this tutorial, the air-blast atomizer model in ANSYS FLUENT is used to predict the behavior of an evaporating methanol spray. Initially, the

More information

Tutorial to simulate a thermoelectric module with heatsink in ANSYS

Tutorial to simulate a thermoelectric module with heatsink in ANSYS Tutorial to simulate a thermoelectric module with heatsink in ANSYS Few details can be found in the pictures attached. All the material properties can be found in Dr. Lee s book and on the web. Don t blindly

More information

Air Movement. Air Movement

Air Movement. Air Movement 2018 Air Movement In this tutorial you will create an air flow using a supply vent on one side of a room and an open vent on the opposite side. This is a very simple PyroSim/FDS simulation, but illustrates

More information

Solved with COMSOL Multiphysics 4.0a. COPYRIGHT 2010 COMSOL AB.

Solved with COMSOL Multiphysics 4.0a. COPYRIGHT 2010 COMSOL AB. Journal Bearing Introduction Journal bearings are used to carry radial loads, for example, to support a rotating shaft. A simple journal bearing consists of two rigid cylinders. The outer cylinder (bearing)

More information

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn Backward facing step Homework Department of Fluid Mechanics Budapest University of Technology and Economics Budapest, 2010 autumn Updated: October 26, 2010 CONTENTS i Contents 1 Introduction 1 2 The problem

More information

Simulation of nasal. flow...

Simulation of nasal. flow... ...... Simulation of nasal flow Development of a process for estimating the pressure drop W.Liu, U.Janoske Lehrstuhl Strömungsmechanik, Bergische Universität Wuppertal B.Schmalenbeck, S.Langenberg, KWG

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS Dr W. Malalasekera Version 3.0 August 2013 1 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE

More information

Ashwin Shridhar et al. Int. Journal of Engineering Research and Applications ISSN : , Vol. 5, Issue 6, ( Part - 5) June 2015, pp.

Ashwin Shridhar et al. Int. Journal of Engineering Research and Applications ISSN : , Vol. 5, Issue 6, ( Part - 5) June 2015, pp. RESEARCH ARTICLE OPEN ACCESS Conjugate Heat transfer Analysis of helical fins with airfoil crosssection and its comparison with existing circular fin design for air cooled engines employing constant rectangular

More information

Simulation of Turbulent Flow in an Asymmetric Diffuser

Simulation of Turbulent Flow in an Asymmetric Diffuser Simulation of Turbulent Flow in an Asymmetric Diffuser 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 3 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University of Iowa C.

More information

Tutorial: Simulating a 3D Check Valve Using Dynamic Mesh 6DOF Model And Diffusion Smoothing

Tutorial: Simulating a 3D Check Valve Using Dynamic Mesh 6DOF Model And Diffusion Smoothing Tutorial: Simulating a 3D Check Valve Using Dynamic Mesh 6DOF Model And Diffusion Smoothing Introduction The purpose of this tutorial is to demonstrate how to simulate a ball check valve with small displacement

More information

CFD Modelling in the Cement Industry

CFD Modelling in the Cement Industry CFD Modelling in the Cement Industry Victor J. Turnell, P.E., Turnell Corp., USA, describes computational fluid dynamics (CFD) simulation and its benefits in applications in the cement industry. Introduction

More information

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workshop 2 Transonic Flow Over a NACA 0012 Airfoil. Introduction to CFX WS2-1 Goals The purpose of this tutorial is to introduce the user to modelling flow in high speed external aerodynamic applications.

More information

Blank. Chapter 1. CO2 Rail Car. A. New Metric Part. Step 1. Click File Menu > New. B. Body. Step 1. Click Right Plane

Blank. Chapter 1. CO2 Rail Car. A. New Metric Part. Step 1. Click File Menu > New. B. Body. Step 1. Click Right Plane Chapter 1 A. New Metric Part. Step 1. Click File Menu > New. CO2 Rail Car Blank Step 2. Click Part Metric from the list and click OK, Fig. 1. If you are not using SolidWorks templates (you should be),

More information

Calculate a solution using the pressure-based coupled solver.

Calculate a solution using the pressure-based coupled solver. Tutorial 19. Modeling Cavitation Introduction This tutorial examines the pressure-driven cavitating flow of water through a sharpedged orifice. This is a typical configuration in fuel injectors, and brings

More information

Simulation of Turbulent Flow over the Ahmed Body

Simulation of Turbulent Flow over the Ahmed Body Simulation of Turbulent Flow over the Ahmed Body 58:160 Intermediate Mechanics of Fluids CFD LAB 4 By Timur K. Dogan, Michael Conger, Maysam Mousaviraad, and Fred Stern IIHR-Hydroscience & Engineering

More information

ANSYS AIM Tutorial Flow over an Ahmed Body

ANSYS AIM Tutorial Flow over an Ahmed Body Author(s): Sebastian Vecchi Created using ANSYS AIM 18.1 ANSYS AIM Tutorial Flow over an Ahmed Body Problem Specification Start Up Geometry Import Geometry Enclose Suppress Mesh Set Mesh Controls Generate

More information

Tail Hook. Chapter 14. Airplane. A. Construction Rectangle. Step 1. Click File Menu > New, click Part and OK.

Tail Hook. Chapter 14. Airplane. A. Construction Rectangle. Step 1. Click File Menu > New, click Part and OK. Chapter 14 Airplane Tail Hook A. Construction Rectangle. Step 1. Click File Menu > New, click Part and OK. Step 2. Click Right (plane) in the Feature Manager and click Sketch from the Content toolbar,

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

equivalent stress to the yield stess.

equivalent stress to the yield stess. Example 10.2-1 [Ansys Workbench/Thermal Stress and User Defined Result] A 50m long deck sitting on superstructures that sit on top of substructures is modeled by a box shape of size 20 x 5 x 50 m 3. It

More information

Simulation of Turbulent Flow over the Ahmed Body

Simulation of Turbulent Flow over the Ahmed Body 1 Simulation of Turbulent Flow over the Ahmed Body ME:5160 Intermediate Mechanics of Fluids CFD LAB 4 (ANSYS 18.1; Last Updated: Aug. 18, 2016) By Timur Dogan, Michael Conger, Dong-Hwan Kim, Maysam Mousaviraad,

More information

ANSYS AIM Tutorial Fluid Flow Through a Transition Duct

ANSYS AIM Tutorial Fluid Flow Through a Transition Duct ANSYS AIM Tutorial Fluid Flow Through a Transition Duct Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Start Up Geometry Import Geometry Extracting Volume Suppress

More information

Appendix: To be performed during the lab session

Appendix: To be performed during the lab session Appendix: To be performed during the lab session Flow over a Cylinder Two Dimensional Case Using ANSYS Workbench Simple Mesh Latest revision: September 18, 2014 The primary objective of this Tutorial is

More information

COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING

COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING 2015 WJTA-IMCA Conference and Expo November 2-4 New Orleans, Louisiana Paper COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING J. Schneider StoneAge, Inc. Durango, Colorado, U.S.A.

More information

Computational Simulation of the Wind-force on Metal Meshes

Computational Simulation of the Wind-force on Metal Meshes 16 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 2007 Computational Simulation of the Wind-force on Metal Meshes Ahmad Sharifian & David R. Buttsworth Faculty

More information

Wall thickness= Inlet: Prescribed mass flux. All lengths in meters kg/m, E Pa, 0.3,

Wall thickness= Inlet: Prescribed mass flux. All lengths in meters kg/m, E Pa, 0.3, Problem description Problem 30: Analysis of fluid-structure interaction within a pipe constriction It is desired to analyze the flow and structural response within the following pipe constriction: 1 1

More information

Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow Introduction This tutorial illustrates the setup and solution of the two-dimensional turbulent fluid flow and heat

More information

Strömningslära Fluid Dynamics. Computer laboratories using COMSOL v4.4

Strömningslära Fluid Dynamics. Computer laboratories using COMSOL v4.4 UMEÅ UNIVERSITY Department of Physics Claude Dion Olexii Iukhymenko May 15, 2015 Strömningslära Fluid Dynamics (5FY144) Computer laboratories using COMSOL v4.4!! Report requirements Computer labs must

More information

A B C D E. Settings Choose height, H, free stream velocity, U, and fluid (dynamic viscosity and density ) so that: Reynolds number

A B C D E. Settings Choose height, H, free stream velocity, U, and fluid (dynamic viscosity and density ) so that: Reynolds number Individual task Objective To derive the drag coefficient for a 2D object, defined as where D (N/m) is the aerodynamic drag force (per unit length in the third direction) acting on the object. The object

More information

Modeling External Compressible Flow

Modeling External Compressible Flow Tutorial 3. Modeling External Compressible Flow Introduction The purpose of this tutorial is to compute the turbulent flow past a transonic airfoil at a nonzero angle of attack. You will use the Spalart-Allmaras

More information

F-1 Car. Blank. in the Feature Manager and click Sketch from the Content toolbar, Fig. 3. Origin. on the Features toolbar.

F-1 Car. Blank. in the Feature Manager and click Sketch from the Content toolbar, Fig. 3. Origin. on the Features toolbar. Chapter 1 A. New Metric Part. Step 1. Click File Menu > New. F-1 Car Blank Step 2. Click Part Metric from the list of templates and click OK, Fig. 1. If you are not using SOLIDWORKS templates (you should

More information

RhinoCFD Tutorial. Flow Past a Sphere

RhinoCFD Tutorial. Flow Past a Sphere RhinoCFD Tutorial Flow Past a Sphere RhinoCFD Ocial document produced by CHAM September 26, 2017 Introduction Flow Past a Sphere This tutorial will describe a simple calculation of ow around a sphere and

More information

Problem description. The FCBI-C element is used in the fluid part of the model.

Problem description. The FCBI-C element is used in the fluid part of the model. Problem description This tutorial illustrates the use of ADINA for analyzing the fluid-structure interaction (FSI) behavior of a flexible splitter behind a 2D cylinder and the surrounding fluid in a channel.

More information

Using a Single Rotating Reference Frame

Using a Single Rotating Reference Frame Tutorial 9. Using a Single Rotating Reference Frame Introduction This tutorial considers the flow within a 2D, axisymmetric, co-rotating disk cavity system. Understanding the behavior of such flows is

More information

c Fluent Inc. May 16,

c Fluent Inc. May 16, Tutorial 1. Office Ventilation Introduction: This tutorial demonstrates how to model an office shared by two people working at computers, using Airpak. In this tutorial, you will learn how to: Open a new

More information

Flow and Heat Transfer in a Mixing Elbow

Flow and Heat Transfer in a Mixing Elbow Flow and Heat Transfer in a Mixing Elbow Objectives The main objectives of the project are to learn (i) how to set up and perform flow simulations with heat transfer and mixing, (ii) post-processing and

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1 Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose ME:5160 Intermediate Mechanics of Fluids CFD LAB 2 (ANSYS 19.1; Last Updated: Aug. 7, 2018) By Timur Dogan, Michael Conger,

More information

Workbench Tutorial Flow Over an Airfoil, Page 1 ANSYS Workbench Tutorial Flow Over an Airfoil

Workbench Tutorial Flow Over an Airfoil, Page 1 ANSYS Workbench Tutorial Flow Over an Airfoil Workbench Tutorial Flow Over an Airfoil, Page 1 ANSYS Workbench Tutorial Flow Over an Airfoil Authors: Scott Richards, Keith Martin, and John M. Cimbala, Penn State University Latest revision: 17 January

More information

Grid. Apr 09, 1998 FLUENT 5.0 (2d, segregated, lam) Grid. Jul 31, 1998 FLUENT 5.0 (2d, segregated, lam)

Grid. Apr 09, 1998 FLUENT 5.0 (2d, segregated, lam) Grid. Jul 31, 1998 FLUENT 5.0 (2d, segregated, lam) Tutorial 2. Around an Airfoil Transonic Turbulent Flow Introduction: The purpose of this tutorial is to compute the turbulent flow past a transonic airfoil at a non-zero angle of attack. You will use the

More information

Computational Fluid Dynamics (CFD) Simulation in Air Duct Channels Using STAR CCM+

Computational Fluid Dynamics (CFD) Simulation in Air Duct Channels Using STAR CCM+ Available onlinewww.ejaet.com European Journal of Advances in Engineering and Technology, 2017,4 (3): 216-220 Research Article ISSN: 2394-658X Computational Fluid Dynamics (CFD) Simulation in Air Duct

More information

STAR-CCM+: Wind loading on buildings SPRING 2018

STAR-CCM+: Wind loading on buildings SPRING 2018 STAR-CCM+: Wind loading on buildings SPRING 2018 1. Notes on the software 2. Assigned exercise (submission via Blackboard; deadline: Thursday Week 3, 11 pm) 1. NOTES ON THE SOFTWARE STAR-CCM+ generates

More information

Solar Car. Chassis. in the Feature Manager and click Sketch from the Content toolbar, Fig. 2. Origin. on the Command Manager toolbar. Fig.

Solar Car. Chassis. in the Feature Manager and click Sketch from the Content toolbar, Fig. 2. Origin. on the Command Manager toolbar. Fig. Chapter 1 A. New Part. Step 1. Click File Menu > New. Solar Car Chassis Step 2. Click Part from the list and click OK, Fig. 1. B. Sketch Chassis. Step 1. Click Right Plane in the Feature Manager and click

More information

Workbench Tutorial Minor Losses, Page 1 Tutorial Minor Losses using Pointwise and FLUENT

Workbench Tutorial Minor Losses, Page 1 Tutorial Minor Losses using Pointwise and FLUENT Workbench Tutorial Minor Losses, Page 1 Tutorial Minor Losses using Pointwise and FLUENT Introduction This tutorial provides instructions for meshing two internal flows. Pointwise software will be used

More information

CFD modelling of thickened tailings Final project report

CFD modelling of thickened tailings Final project report 26.11.2018 RESEM Remote sensing supporting surveillance and operation of mines CFD modelling of thickened tailings Final project report Lic.Sc.(Tech.) Reeta Tolonen and Docent Esa Muurinen University of

More information

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS March 18-20, 2013 THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS Authors: M.R. Chiarelli, M. Ciabattari, M. Cagnoni, G. Lombardi Speaker:

More information

McNair Scholars Research Journal

McNair Scholars Research Journal McNair Scholars Research Journal Volume 2 Article 1 2015 Benchmarking of Computational Models against Experimental Data for Velocity Profile Effects on CFD Analysis of Adiabatic Film-Cooling Effectiveness

More information

The viscous forces on the cylinder are proportional to the gradient of the velocity field at the

The viscous forces on the cylinder are proportional to the gradient of the velocity field at the Fluid Dynamics Models : Flow Past a Cylinder Flow Past a Cylinder Introduction The flow of fluid behind a blunt body such as an automobile is difficult to compute due to the unsteady flows. The wake behind

More information

Tutorial Turbulent Flow and Minor Loss through a Pipe Elbow, Page 1 Pointwise to OpenFOAM Tutorial Minor Losses through a Pipe Elbow

Tutorial Turbulent Flow and Minor Loss through a Pipe Elbow, Page 1 Pointwise to OpenFOAM Tutorial Minor Losses through a Pipe Elbow Tutorial Turbulent Flow and Minor Loss through a Pipe Elbow, Page 1 Pointwise to OpenFOAM Tutorial Minor Losses through a Pipe Elbow Introduction This tutorial provides instructions for meshing an internal

More information

Tutorial: Hydrodynamics of Bubble Column Reactors

Tutorial: Hydrodynamics of Bubble Column Reactors Tutorial: Introduction The purpose of this tutorial is to provide guidelines and recommendations for solving a gas-liquid bubble column problem using the multiphase mixture model, including advice on solver

More information

ANSYS Workbench Guide

ANSYS Workbench Guide ANSYS Workbench Guide Introduction This document serves as a step-by-step guide for conducting a Finite Element Analysis (FEA) using ANSYS Workbench. It will cover the use of the simulation package through

More information

INVESTIGATION OF HYDRAULIC PERFORMANCE OF A FLAP TYPE CHECK VALVE USING CFD AND EXPERIMENTAL TECHNIQUE

INVESTIGATION OF HYDRAULIC PERFORMANCE OF A FLAP TYPE CHECK VALVE USING CFD AND EXPERIMENTAL TECHNIQUE International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 1, January 2019, pp. 409 413, Article ID: IJMET_10_01_042 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtype=

More information

Revolve 3D geometry to display a 360-degree image.

Revolve 3D geometry to display a 360-degree image. Tutorial 24. Turbo Postprocessing Introduction This tutorial demonstrates the turbomachinery postprocessing capabilities of FLUENT. In this example, you will read the case and data files (without doing

More information

Computational Study of Laminar Flowfield around a Square Cylinder using Ansys Fluent

Computational Study of Laminar Flowfield around a Square Cylinder using Ansys Fluent MEGR 7090-003, Computational Fluid Dynamics :1 7 Spring 2015 Computational Study of Laminar Flowfield around a Square Cylinder using Ansys Fluent Rahul R Upadhyay Master of Science, Dept of Mechanical

More information

Using the Eulerian Multiphase Model for Granular Flow

Using the Eulerian Multiphase Model for Granular Flow Tutorial 21. Using the Eulerian Multiphase Model for Granular Flow Introduction Mixing tanks are used to maintain solid particles or droplets of heavy fluids in suspension. Mixing may be required to enhance

More information

Chair. Top Rail. on the Standard Views toolbar. (Ctrl-7) on the Weldments toolbar. at bottom left corner of display to deter- mine sketch plane.

Chair. Top Rail. on the Standard Views toolbar. (Ctrl-7) on the Weldments toolbar. at bottom left corner of display to deter- mine sketch plane. Chapter 7 A. 3D Sketch. Step 1. If necessary, open your CHAIR file. Chair Top Rail Step 2. Click Isometric on the Standard Views toolbar. (Ctrl-7) Step 3. Zoom in around top of back leg, Fig. 1. To zoom,

More information

Numerical analysis of fluid flow inside air intake system

Numerical analysis of fluid flow inside air intake system Numerical analysis of fluid flow inside air intake system Numerical analysis of fluid flow inside air intake system Regis Ataides Martin Kessler Marcelo Kruger Geraldo Severi Jr. Cesareo de La Rosa Siqueira

More information

Memo Block. This lesson includes the commands Sketch, Extruded Boss/Base, Extruded Cut, Shell, Polygon and Fillet.

Memo Block. This lesson includes the commands Sketch, Extruded Boss/Base, Extruded Cut, Shell, Polygon and Fillet. Commands Used New Part This lesson includes the commands Sketch, Extruded Boss/Base, Extruded Cut, Shell, Polygon and Fillet. Click File, New on the standard toolbar. Select Part from the New SolidWorks

More information

Effect of Position of Wall Mounted Surface Protrusion in Drag Characteristics At Low Reynolds Number

Effect of Position of Wall Mounted Surface Protrusion in Drag Characteristics At Low Reynolds Number ISSN (e): 2250 3005 Volume, 07 Issue, 11 November 2017 International Journal of Computational Engineering Research (IJCER) Effect of Position of Wall Mounted Surface Protrusion in Drag Characteristics

More information

Module 1.3W Distributed Loading of a 1D Cantilever Beam

Module 1.3W Distributed Loading of a 1D Cantilever Beam Module 1.3W Distributed Loading of a 1D Cantilever Beam Table of Contents Page Number Problem Description 2 Theory 2 Workbench Analysis System 4 Engineering Data 5 Geometry 6 Model 11 Setup 13 Solution

More information

Benchmark on the numerical simulation of a tube bundle vibration under cross flow

Benchmark on the numerical simulation of a tube bundle vibration under cross flow Benchmark on the numerical simulation of a tube bundle vibration under cross flow Fabien Huvelin (University of Lille & EDF R&D) Marcus Vinicius Girao de Morais (University of Cergy-Pontoise & CEA) Franck

More information