From Plastic Pipes and Bottles to Bioengineering Applications: Fluid-Structure Interaction Procedures for Flexible Systems

Size: px
Start display at page:

Download "From Plastic Pipes and Bottles to Bioengineering Applications: Fluid-Structure Interaction Procedures for Flexible Systems"

Transcription

1 University College Dublin UNIVERZITET U ZENICI Mašinski fakultet From Plastic Pipes and Bottles to Bioengineering Applications: Fluid-Structure Interaction Procedures for Flexible Systems Aleksandar Karac Zagreb, June 2007

2 FV method Coupling schemes in OpenFOAM Two-system approach: Fluid Solid Analysis method Strongly coupled interacting Solids relatively flexible: plastic pipelines, containers, tanks/reservoir sloshing, airbags, cardiovascular flows One-system approach: Fluid + Solid Analysis method Fully coupled coupled Solid-fluid phase transformations: material processing/forming (moulding, casting, extrusion, welding, ) 2/29

3 FV method C. Greenshields H. Jasak H. Weller Two-system approach: START OF TIME STEP Fluid Solid Analysis method 1. Solve fluid (or 3.) 2. Pass infromation from the fluid to solid (or 4.) 3. Solve structure (or 1.) 4. Pass infromation from the solid to fluid (or 2.) END OF TIME STEP (implicit scheme only) 3/29

4 for ( FV method ) { runtime++, runtimes++;!runtime.end() &&!runtimes.end(); runtime++, runtimes++ # include "movesolidmesh.h" # include "movefluidmesh.h" # include "updateinletdata.h" do { # include "fluid.h" # include "fluidtosolid.h" # include "structure.h" # include "solidtofluid.h" # include "updateproperties.h" Fluid Solid Analysis method } while (initialresidualsolid > convergencetolerancesolid && ++icorrs < ncorrs); # include "calculatefields.h" } } return(0); 4/29

5 FV method C. Greenshields H. Jasak H. Weller Two-system approach: START OF TIME STEP Fluid Solid Analysis method 1. Solve fluid (or 3.) 2. Pass infromation from the fluid to solid (or 4.) 3. Solve structure (or 1.) 4. Pass infromation from the solid to fluid (or 2.) - incompressible flow - compressible flow - multiphase flow - turbulance flows - fluid models - mesh motion possibility -... END OF TIME STEP (implicit scheme only) 5/29

6 FV method C. Greenshields H. Jasak H. Weller Two-system approach: START OF TIME STEP Fluid Solid Analysis method 1. Solve fluid (or 3.) 2. Pass infromation from the fluid to solid (or 4.) - pass tractions (pressure + shear stresses) - one-to-one exchange - exchange via interpolation 3. Solve structure (or 1.) 4. Pass infromation from the solid to fluid (or 2.) END OF TIME STEP (implicit scheme only) 6/29

7 FV method C. Greenshields H. Jasak H. Weller Two-system approach: START OF TIME STEP Fluid Solid Analysis method 1. Solve fluid (or 3.) 2. Pass infromation from the fluid to solid (or 4.) 3. Solve structure (or 1.) 4. Pass infromation from the solid to fluid (or 2.) - small-strains (total Lagrangean, incremental Lagrangean) - large-strains (updated Lagrangean; mesh motion) - material models (elastic, non-linear elastic, elasto-plastic,...) - cohesive boundaries to account for fracture END OF TIME STEP (implicit scheme only) 7/29

8 FV method C. Greenshields H. Jasak H. Weller Two-system approach: START OF TIME STEP Fluid Solid Analysis method 1. Solve fluid (or 3.) 2. Pass infromation from the fluid to solid (or 4.) 3. Solve structure (or 1.) - pass displacement (increments), velocity field - one-to-one exchange - exchange via interpolation 4. Pass infromation from the solid to fluid (or 2.) END OF TIME STEP (implicit scheme only) 8/29

9 FV method C. Greenshields H. Jasak H. Weller Two-system approach: START OF TIME STEP Fluid Solid Analysis method 1. Solve fluid (or 3.) 2. Pass infromation from the fluid to solid (or 4.) 3. Solve structure (or 1.) STABILITY ISSUES 4. Pass infromation from the solid to fluid (or 2.) END OF TIME STEP (implicit scheme only) 9/29

10 FV method C. Greenshields H. Weller One-system approach: Fluid + Solid Analysis method Fluid: t 2 ρvdv+ ρvv nds= 2ηε ηtr( ε) I pi ds 3 n V S S Solid: 2 ρ dv ρ ds 2Nε Ntr( ε) p ds ds t v + vv n = I I 3 n + Σ n V S S S t t 1 2 N= µ t, p= trσ = Kstr ε, 2 t ( ) Σ= µε µ r ε dt 3 I /29

11 Falling bottles and containers Problem description H p =p 0 v v =0? v 1 a) b) c) 11/29

12 Falling bottles and containers Eksperimetnal set-up Upper cap Water-filled bottle Strain gauges Tie bars PT holder Rubber O-ring Pressure transducers PT3 PT1 PT2 SG1 SG2 Jubilee clip Lower cap Rubber cushion SG1 SG2 PT3 12/29

13 Falling bottles and containers Numerical set-up Simple geometry Flat base Free surface (p=const=1bar) Solid Fluid 50 cells Impact end ( V=0, U=0) Curved base 20 cells 3 cells 13/29

14 Falling bottles and containers OpenFOAM simulation simple geometry 14/29

15 Falling bottles and containers OpenFOAM simulation base shape effect 15/29

16 Falling bottles and containers Some quantitative results Pressure, bar experiment FV, two-system FV, one-system Time, ms 16/29

17 Falling bottles and containers Some quantitative results 6 10 Pressure, bar Pressure, bar experiment FV, two-system FV, one-system Time, ms experiment FV, two-system FV, one-system Time, ms 17/29

18 Falling bottles and containers Simulations with fracture numerical s Cohesive zone model Symmetry plane Free surface (fixed pressure and zero velocity gradient) Interface solid Symmetry plane Outside traction free Interface fluid Crack interface solid Base direction mixed Crack interface fluid 18/29

19 Falling bottles and containers Simulations with fracture OpenFOAM simulation 19/29

20 Fracture of PE pipes EPRSC C. Greenshields H. Jasak P. S. Leevers K. C. Pandya V. Tropsa G. Venizelos J. G. Williams Problem description - Small scale steady-state (S4) Video: A. Karac, A. Paizis 20/29

21 Fracture of PE pipes H. Jasak V. Tropsa OpenFOAM simulation 21/29

22 Fracture of PE pipes H. Jasak V. Tropsa OpenFOAM simulation 22/29

23 Bioengineering blood flow related problems Atherosclerosis Abdominal Aortic Aneurysm Fluid-Structure Interaction in Bioengineering by Valentine Kanyanta 23/29

24 Bioengineering - blast trauma to lungs MoD O. Alakija Transport Sport & horse Racing Military/police Experiments on live animals 24/29

25 Bioengineering - blast trauma to lungs MoD O. Alakija Combined numerical/experimental study σ Stress Strain ε Alveoli (70-350µm) σ Bulk Alveolar wall (5µm thick) Damage δ Scale bridging 25/29

26 Bioengineering - blast trauma to lungs MoD O. Alakija v alveoli wall (tissue) air space symmetry on both sides and fixed at the bottom (a) (b) (a) Micrograph of a cross-section through an alveoli duct and sac system (b) Two dimensional mesh of the alveoli stack Wave propagation v=20 m/s 26/29

27 ? Bioengineering - blast trauma to lungs H. Parsa Construction of the surrogate lung model Polymeric foam filled with microcapsules Optical microscope view of a microcapsule 27/29

28 Bioengineering - blast trauma to lungs H. Parsa CT Scan of the surrogate lung * Before St. Vincent s University Hospital CT scanner After * Walsh, C., Final year project, UCD, /29

29 Bioengineering other ongoing projects A. Safari detachment of bacterial biofilms fracture properties of adhesives fracture properties of diamonds OF SCIENCE, TECHNOLOGY for cutting AND MEDICINE tools simulation of 1 st metatarsalphalangeal joint simulation of hip joint 29/29

30 THANK YOU ALEKSANDAR KARAČ Mašinski fakultet Fakultetska ZENICA Bosnia and Herzegovina TEL: +387 (0) ext. 140 FAX: +387 (0) s: akarac@mf.unze.ba aleksandar.karac@ucd.ie A. KARAC, From Plastic Pipes and Bottles to Bioengineering Applications. 3 rd Progress

Example Simulations in OpenFOAM

Example Simulations in OpenFOAM Example Simulations in OpenFOAM Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd, United Kingdom FSB, University of Zagreb, Croatia 18/Nov/2005 Example Simulations in OpenFOAM p.1/26 Outline Objective Present

More information

Finite Volume Methodology for Contact Problems of Linear Elastic Solids

Finite Volume Methodology for Contact Problems of Linear Elastic Solids Finite Volume Methodology for Contact Problems of Linear Elastic Solids H. Jasak Computational Dynamics Ltd. Hythe House 200 Shepherds Bush Road London W6 7NY, England E-mail: h.jasak@cd.co.uk H.G. Weller

More information

Partitioned strongly coupled Fluid-Structure Interaction

Partitioned strongly coupled Fluid-Structure Interaction Partitioned strongly coupled Fluid-Structure Interaction 7 th OpenFOAM Workshop Darmstadt, Germany Manuel Kosel * 1 and Ulrich Heck 2 1 Center for Computational Engineering Science, RWTH Aachen University,

More information

Numerical Modelling in Continuum Mechanics

Numerical Modelling in Continuum Mechanics Numerical Modelling in Continuum Mechanics Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd. United Kingdom 22/Mar/2005 Numerical Modelling in Continuum Mechanics p.1/31 Outline Objective Present a new way of

More information

OpenFOAM Library for Fluid Structure Interaction

OpenFOAM Library for Fluid Structure Interaction OpenFOAM Library for Fluid Structure Interaction 9th OpenFOAM Workshop - Zagreb, Croatia Željko Tuković, P. Cardiff, A. Karač, H. Jasak, A. Ivanković University of Zagreb Faculty of Mechanical Engineering

More information

Overview and Recent Developments of Dynamic Mesh Capabilities

Overview and Recent Developments of Dynamic Mesh Capabilities Overview and Recent Developments of Dynamic Mesh Capabilities Henrik Rusche and Hrvoje Jasak h.rusche@wikki-gmbh.de and h.jasak@wikki.co.uk Wikki Gmbh, Germany Wikki Ltd, United Kingdom 6th OpenFOAM Workshop,

More information

Embedded Reinforcements

Embedded Reinforcements Embedded Reinforcements Gerd-Jan Schreppers, January 2015 Abstract: This paper explains the concept and application of embedded reinforcements in DIANA. Basic assumptions and definitions, the pre-processing

More information

A study of Jumper FIV due to multiphase internal flow: understanding life-cycle fatigue. Alan Mueller & Oleg Voronkov

A study of Jumper FIV due to multiphase internal flow: understanding life-cycle fatigue. Alan Mueller & Oleg Voronkov A study of Jumper FIV due to multiphase internal flow: understanding life-cycle fatigue Alan Mueller & Oleg Voronkov Case description Main structural dimensions [1]: deformable jumper [2] in Mixture on

More information

Offshore Platform Fluid Structure Interaction (FSI) Simulation

Offshore Platform Fluid Structure Interaction (FSI) Simulation Offshore Platform Fluid Structure Interaction (FSI) Simulation Ali Marzaban, CD-adapco Murthy Lakshmiraju, CD-adapco Nigel Richardson, CD-adapco Mike Henneke, CD-adapco Guangyu Wu, Chevron Pedro M. Vargas,

More information

Multi-Physics Simulations in Continuum Mechanics

Multi-Physics Simulations in Continuum Mechanics Multi-Physics Simulations in Continuum Mechanics Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd, United Kingdom FSB, University of Zagreb, Croatia Multi-Physics Simulations in Continuum Mechanics p.1/22 Outline

More information

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions Milovan Perić Contents The need to couple STAR-CCM+ with other theoretical or numerical solutions Coupling approaches: surface and volume

More information

Introduction to OpenFOAM at SIMDI 06

Introduction to OpenFOAM at SIMDI 06 Introduction to OpenFOAM at SIMDI 06 Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd, United Kingdom Introduction to OpenFOAM at SIMDI 06 p.1/20 Open Source CFD Platform OpenFOAM: Open Source Computational

More information

Isogeometric Analysis of Fluid-Structure Interaction

Isogeometric Analysis of Fluid-Structure Interaction Isogeometric Analysis of Fluid-Structure Interaction Y. Bazilevs, V.M. Calo, T.J.R. Hughes Institute for Computational Engineering and Sciences, The University of Texas at Austin, USA e-mail: {bazily,victor,hughes}@ices.utexas.edu

More information

This tutorial illustrates how to set up and solve a problem involving solidification. This tutorial will demonstrate how to do the following:

This tutorial illustrates how to set up and solve a problem involving solidification. This tutorial will demonstrate how to do the following: Tutorial 22. Modeling Solidification Introduction This tutorial illustrates how to set up and solve a problem involving solidification. This tutorial will demonstrate how to do the following: Define a

More information

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction ALE simulations ua sus using Metafor eao 1. Introduction 2. Operator split 3. Convection schemes 4. Rezoning methods 5. Contact with friction 1 Introduction EULERIAN FORMALISM Undistorted mesh Ideal for

More information

Object-Oriented CFD Solver Design

Object-Oriented CFD Solver Design Object-Oriented CFD Solver Design Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd. United Kingdom 10/Mar2005 Object-Oriented CFD Solver Design p.1/29 Outline Objective Present new approach to software design

More information

Element Order: Element order refers to the interpolation of an element s nodal results to the interior of the element. This determines how results can

Element Order: Element order refers to the interpolation of an element s nodal results to the interior of the element. This determines how results can TIPS www.ansys.belcan.com 鲁班人 (http://www.lubanren.com/weblog/) Picking an Element Type For Structural Analysis: by Paul Dufour Picking an element type from the large library of elements in ANSYS can be

More information

Free Surface Flow Simulations

Free Surface Flow Simulations Free Surface Flow Simulations Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd. United Kingdom 11/Jan/2005 Free Surface Flow Simulations p.1/26 Outline Objective Present two numerical modelling approaches for

More information

CFD MODELING FOR PNEUMATIC CONVEYING

CFD MODELING FOR PNEUMATIC CONVEYING CFD MODELING FOR PNEUMATIC CONVEYING Arvind Kumar 1, D.R. Kaushal 2, Navneet Kumar 3 1 Associate Professor YMCAUST, Faridabad 2 Associate Professor, IIT, Delhi 3 Research Scholar IIT, Delhi e-mail: arvindeem@yahoo.co.in

More information

TABLE OF CONTENTS SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 SECTION 3 WAVE REFLECTION AND TRANSMISSION IN RODS Introduction...

TABLE OF CONTENTS SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 SECTION 3 WAVE REFLECTION AND TRANSMISSION IN RODS Introduction... TABLE OF CONTENTS SECTION 1 INTRODUCTION... 1 1.1 Introduction... 1 1.2 Objectives... 1 1.3 Report organization... 2 SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 2.1 Introduction... 3 2.2 Wave propagation

More information

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS March 18-20, 2013 THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS Authors: M.R. Chiarelli, M. Ciabattari, M. Cagnoni, G. Lombardi Speaker:

More information

Mesh Morphing and the Adjoint Solver in ANSYS R14.0. Simon Pereira Laz Foley

Mesh Morphing and the Adjoint Solver in ANSYS R14.0. Simon Pereira Laz Foley Mesh Morphing and the Adjoint Solver in ANSYS R14.0 Simon Pereira Laz Foley 1 Agenda Fluent Morphing-Optimization Feature RBF Morph with ANSYS DesignXplorer Adjoint Solver What does an adjoint solver do,

More information

ANSYS User s Group Non-Linear Adaptive Meshing (NLAD)

ANSYS User s Group Non-Linear Adaptive Meshing (NLAD) 19.2 Release ANSYS User s Group Non-Linear Adaptive Meshing (NLAD) Sriraghav Sridharan Application Engineer, ANSYS Inc Sriraghav.Sridharan@ansys.com 1 2017 ANSYS, Inc. October 10, 2018 Topics Background

More information

VALIDATE SIMULATION TECHNIQUES OF A MOBILE EXPLOSIVE CONTAINMENT VESSEL

VALIDATE SIMULATION TECHNIQUES OF A MOBILE EXPLOSIVE CONTAINMENT VESSEL VALIDATE SIMULATION TECHNIQUES OF A MOBILE EXPLOSIVE CONTAINMENT VESSEL David Karlsson DYNAmore Nordic AB, Sweden KEYWORDS Hexa, Map, Explosive, LS-DYNA ABSTRACT A Mobile Explosive Containment Vessel (MECV)

More information

ALE and Fluid-Structure Interaction in LS-DYNA March 2004

ALE and Fluid-Structure Interaction in LS-DYNA March 2004 ALE and Fluid-Structure Interaction in LS-DYNA March 2004 Workshop Models 1. Taylor bar impact 2. One-dimensional advection test 3. Channel 4. Underwater explosion 5. Bar impacting water surface 6. Sloshing

More information

midas NFX 2017R1 Release Note

midas NFX 2017R1 Release Note Total Solution for True Analysis-driven Design midas NFX 2017R1 Release Note 1 midas NFX R E L E A S E N O T E 2 0 1 7 R 1 Major Improvements Midas NFX is an integrated finite element analysis program

More information

Solid and shell elements

Solid and shell elements Solid and shell elements Theodore Sussman, Ph.D. ADINA R&D, Inc, 2016 1 Overview 2D and 3D solid elements Types of elements Effects of element distortions Incompatible modes elements u/p elements for incompressible

More information

Simulation of Flow Development in a Pipe

Simulation of Flow Development in a Pipe Tutorial 4. Simulation of Flow Development in a Pipe Introduction The purpose of this tutorial is to illustrate the setup and solution of a 3D turbulent fluid flow in a pipe. The pipe networks are common

More information

Computational Models for the Analysis of positive displacement machines: Real Gas and Dynamic Mesh

Computational Models for the Analysis of positive displacement machines: Real Gas and Dynamic Mesh Nicola Casari Alessio Suman Davide Ziviani Michel De Paepe Martijn van den Broek Michele Pinelli nicola.casari@unife.it alessio.suman@unife.it davide.ziviani@ugent.be dziviani@purdue.edu michel.depaepe@ugent.be

More information

Tukovi, Željko; Ivankovic, Alojz; Karac, Aleksandar. Wiley Blackwell (John Wiley & Sons)

Tukovi, Željko; Ivankovic, Alojz; Karac, Aleksandar. Wiley Blackwell (John Wiley & Sons) Provided by the author(s) and University College Dublin Library in accordance with publisher policies. Please cite the published version when available. Title Finite-volume stress analysis in multi-material

More information

Simulating Sinkage & Trim for Planing Boat Hulls. A Fluent Dynamic Mesh 6DOF Tutorial

Simulating Sinkage & Trim for Planing Boat Hulls. A Fluent Dynamic Mesh 6DOF Tutorial Simulating Sinkage & Trim for Planing Boat Hulls A Fluent Dynamic Mesh 6DOF Tutorial 1 Introduction Workshop Description This workshop describes how to perform a transient 2DOF simulation of a planing

More information

CHAPTER 3. Elementary Fluid Dynamics

CHAPTER 3. Elementary Fluid Dynamics CHAPTER 3. Elementary Fluid Dynamics - Understanding the physics of fluid in motion - Derivation of the Bernoulli equation from Newton s second law Basic Assumptions of fluid stream, unless a specific

More information

CODE Product Solutions

CODE Product Solutions CODE Product Solutions Simulation Innovations Glass Fiber Reinforced Structural Components for a Group 1 Child Harold van Aken About Code Product Solutions Engineering service provider Specialised in Multiphysics

More information

Three-dimensional fracture and fragmentation of artificial kidney stones

Three-dimensional fracture and fragmentation of artificial kidney stones Institute of Physics Publishing Journal of Physics: Conference Series 46 (2006) 299 303 doi:10.1088/1742-6596/46/1/041 SciDAC 2006 Three-dimensional fracture and fragmentation of artificial kidney stones

More information

Dynamic Mesh Handling in OpenFOAM

Dynamic Mesh Handling in OpenFOAM Dynamic Mesh Handling in OpenFOAM p. 1/18 Dynamic Mesh Handling in OpenFOAM Hrvoje Jasak h.jasak@wikki.co.uk, hrvoje.jasak@fsb.hr Wikki Ltd, United Kingdom and FSB, University of Zagreb, Croatia 47th AIAA

More information

Support for Multi physics in Chrono

Support for Multi physics in Chrono Support for Multi physics in Chrono The Story Ahead Overview of multi physics strategy in Chrono Summary of handling rigid/flexible body dynamics using Lagrangian approach Summary of handling fluid, and

More information

Turbulencja w mikrokanale i jej wpływ na proces emulsyfikacji

Turbulencja w mikrokanale i jej wpływ na proces emulsyfikacji Polish Academy of Sciences Institute of Fundamental Technological Research Turbulencja w mikrokanale i jej wpływ na proces emulsyfikacji S. Błoński, P.Korczyk, T.A. Kowalewski PRESENTATION OUTLINE 0 Introduction

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model

Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model Boundary Elements XXVII 245 Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model J. J. Rencis & S. R. Pisani Department of Mechanical Engineering,

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

Fluid-Structure Interaction in STAR-CCM+ Alan Mueller CD-adapco

Fluid-Structure Interaction in STAR-CCM+ Alan Mueller CD-adapco Fluid-Structure Interaction in STAR-CCM+ Alan Mueller CD-adapco What is FSI? Air Interaction with a Flexible Structure What is FSI? Water/Air Interaction with a Structure Courtesy CFD Marine Courtesy Germanischer

More information

Aurélien Thinat Stéphane Cordier 1, François Cany

Aurélien Thinat Stéphane Cordier 1, François Cany SimHydro 2012:New trends in simulation - Hydroinformatics and 3D modeling, 12-14 September 2012, Nice Aurélien Thinat, Stéphane Cordier, François Cany Application of OpenFOAM to the study of wave loads

More information

Simulation of Discrete-source Damage Growth in Aircraft Structures: A 3D Finite Element Modeling Approach

Simulation of Discrete-source Damage Growth in Aircraft Structures: A 3D Finite Element Modeling Approach Simulation of Discrete-source Damage Growth in Aircraft Structures: A 3D Finite Element Modeling Approach A.D. Spear 1, J.D. Hochhalter 1, A.R. Ingraffea 1, E.H. Glaessgen 2 1 Cornell Fracture Group, Cornell

More information

Coupled Analysis of FSI

Coupled Analysis of FSI Coupled Analysis of FSI Qin Yin Fan Oct. 11, 2008 Important Key Words Fluid Structure Interface = FSI Computational Fluid Dynamics = CFD Pressure Displacement Analysis = PDA Thermal Stress Analysis = TSA

More information

Drop-Test FSI simulation with Abaqus and FlowVision based on the direct 2-way coupling approach

Drop-Test FSI simulation with Abaqus and FlowVision based on the direct 2-way coupling approach Visit the SIMULIA Resource Center for more customer examples. Drop-Test FSI simulation with Abaqus and FlowVision based on the direct 2-way coupling approach A. Aksenov 1), D.Korenev 1), A. Shyshaeva 1),

More information

COMPUTER AIDED ENGINEERING. Part-1

COMPUTER AIDED ENGINEERING. Part-1 COMPUTER AIDED ENGINEERING Course no. 7962 Finite Element Modelling and Simulation Finite Element Modelling and Simulation Part-1 Modeling & Simulation System A system exists and operates in time and space.

More information

3D Finite Element Software for Cracks. Version 3.2. Benchmarks and Validation

3D Finite Element Software for Cracks. Version 3.2. Benchmarks and Validation 3D Finite Element Software for Cracks Version 3.2 Benchmarks and Validation October 217 1965 57 th Court North, Suite 1 Boulder, CO 831 Main: (33) 415-1475 www.questintegrity.com http://www.questintegrity.com/software-products/feacrack

More information

Non-Newtonian Transitional Flow in an Eccentric Annulus

Non-Newtonian Transitional Flow in an Eccentric Annulus Tutorial 8. Non-Newtonian Transitional Flow in an Eccentric Annulus Introduction The purpose of this tutorial is to illustrate the setup and solution of a 3D, turbulent flow of a non-newtonian fluid. Turbulent

More information

equivalent stress to the yield stess.

equivalent stress to the yield stess. Example 10.2-1 [Ansys Workbench/Thermal Stress and User Defined Result] A 50m long deck sitting on superstructures that sit on top of substructures is modeled by a box shape of size 20 x 5 x 50 m 3. It

More information

Transfer and pouring processes of casting by smoothed particle. hydrodynamic method

Transfer and pouring processes of casting by smoothed particle. hydrodynamic method Transfer and pouring processes of casting by smoothed particle hydrodynamic method M. Kazama¹, K. Ogasawara¹, *T. Suwa¹, H. Ito 2, and Y. Maeda 2 1 Application development div., Next generation technical

More information

THE COMPUTATIONAL MODEL INFLUENCE ON THE NUMERICAL SIMULATION ACCURACY FOR FORMING ALLOY EN AW 5754

THE COMPUTATIONAL MODEL INFLUENCE ON THE NUMERICAL SIMULATION ACCURACY FOR FORMING ALLOY EN AW 5754 THE COMPUTATIONAL MODEL INFLUENCE ON THE NUMERICAL SIMULATION ACCURACY FOR FORMING ALLOY EN AW 5754 Pavel SOLFRONK a, Jiří SOBOTKA a, Pavel DOUBEK a, Lukáš ZUZÁNEK a a TECHNICAL UNIVERSITY OF LIBEREC,

More information

Thin Film Simulation on a Rotating Wafer. B. Gschaider, D. Prieling, H. Steiner, P. Vita

Thin Film Simulation on a Rotating Wafer. B. Gschaider, D. Prieling, H. Steiner, P. Vita Thin Film Simulation on a Rotating Wafer B. Gschaider, D. Prieling, H. Steiner, P. Vita Topics Motivation Finite Area Method Thin Film Model Impinging Jet Polydual Mesh Comparison with 3D Solution Conclusion

More information

Vehicle Load Area Division Wall Integrity during Frontal Crash

Vehicle Load Area Division Wall Integrity during Frontal Crash Vehicle Load Area Division Wall Integrity during Frontal Crash H. Türkmen TOFAS Türk Otomobil Fabrikasi A.S. Abstract : This study addresses design efforts of a vehicle load area division wall and the

More information

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA.

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA. 12 th International LS-DYNA Users Conference FSI/ALE(1) LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA Part 1 Facundo Del

More information

Calculate a solution using the pressure-based coupled solver.

Calculate a solution using the pressure-based coupled solver. Tutorial 19. Modeling Cavitation Introduction This tutorial examines the pressure-driven cavitating flow of water through a sharpedged orifice. This is a typical configuration in fuel injectors, and brings

More information

TryItNow! Step by Step Walkthrough: Spoiler Support

TryItNow! Step by Step Walkthrough: Spoiler Support TryItNow! Step by Step Walkthrough: Spoiler Support 1 2015 ANSYS, Inc. March 28, 2016 TryItNow! Step by Step Walkthrough: Spoiler Support ANSYS designed this TryItNow! experience to give you quick access

More information

Hydro-elastic analysis of a propeller using CFD and FEM co-simulation

Hydro-elastic analysis of a propeller using CFD and FEM co-simulation Fifth International Symposium on Marine Propulsors smp 17, Espoo, Finland, June 2017 Hydro-elastic analysis of a propeller using CFD and FEM co-simulation Vesa Nieminen 1 1 VTT Technical Research Centre

More information

Coupled Simulation of Flow and Body Motion Using Overset Grids. Eberhard Schreck & Milovan Perić

Coupled Simulation of Flow and Body Motion Using Overset Grids. Eberhard Schreck & Milovan Perić Coupled Simulation of Flow and Body Motion Using Overset Grids Eberhard Schreck & Milovan Perić Contents Dynamic Fluid-Body Interaction (DFBI) model in STAR-CCM+ Overset grids method in STAR-CCM+ Advantages

More information

An Introduction to SolidWorks Flow Simulation 2010

An Introduction to SolidWorks Flow Simulation 2010 An Introduction to SolidWorks Flow Simulation 2010 John E. Matsson, Ph.D. SDC PUBLICATIONS www.sdcpublications.com Schroff Development Corporation Chapter 2 Flat Plate Boundary Layer Objectives Creating

More information

Simulation and Validation of Turbulent Pipe Flows

Simulation and Validation of Turbulent Pipe Flows Simulation and Validation of Turbulent Pipe Flows ENGR:2510 Mechanics of Fluids and Transport Processes CFD LAB 1 (ANSYS 17.1; Last Updated: Oct. 10, 2016) By Timur Dogan, Michael Conger, Dong-Hwan Kim,

More information

Auto Injector Syringe. A Fluent Dynamic Mesh 1DOF Tutorial

Auto Injector Syringe. A Fluent Dynamic Mesh 1DOF Tutorial Auto Injector Syringe A Fluent Dynamic Mesh 1DOF Tutorial 1 2015 ANSYS, Inc. June 26, 2015 Prerequisites This tutorial is written with the assumption that You have attended the Introduction to ANSYS Fluent

More information

Finite Element Modeling and Multiphysics Simulation of Air Coupled Ultrasonic with Time Domain Analysis

Finite Element Modeling and Multiphysics Simulation of Air Coupled Ultrasonic with Time Domain Analysis More Info at Open Access Database www.ndt.net/?id=15194 Finite Element Modeling and Multiphysics Simulation of Air Coupled Ultrasonic with Time Domain Analysis Bikash Ghose 1, a, Krishnan Balasubramaniam

More information

Solved with COMSOL Multiphysics 4.2

Solved with COMSOL Multiphysics 4.2 Peristaltic Pump Solved with COMSOL Multiphysics 4.2 Introduction In a peristaltic pump, rotating rollers squeeze a flexible tube. As the pushed-down rollers move along the tube, fluids in the tube follow

More information

Multi-objective adjoint optimization of flow in duct and pipe networks

Multi-objective adjoint optimization of flow in duct and pipe networks Multi-objective adjoint optimization of flow in duct and pipe networks Eugene de Villiers Thomas Schumacher 6th OPENFOAM Workshop PennState University, USA 13-16 June, 2011 info@engys.eu Tel: +44 (0)20

More information

CFD in COMSOL Multiphysics

CFD in COMSOL Multiphysics CFD in COMSOL Multiphysics Christian Wollblad Copyright 2017 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of

More information

EXPERIMENTAL VALIDATION OF STAR-CCM+ FOR LIQUID CONTAINER SLOSH DYNAMICS

EXPERIMENTAL VALIDATION OF STAR-CCM+ FOR LIQUID CONTAINER SLOSH DYNAMICS EXPERIMENTAL VALIDATION OF STAR-CCM+ FOR LIQUID CONTAINER SLOSH DYNAMICS Brandon Marsell a.i. solutions, Launch Services Program, Kennedy Space Center, FL 1 Agenda Introduction Problem Background Experiment

More information

Three-Dimensional Static and Dynamic Stress Intensity Factor Computations Using ANSYS

Three-Dimensional Static and Dynamic Stress Intensity Factor Computations Using ANSYS Three-Dimensional Static and Dynamic Stress Intensity Factor Computations Using ANSYS X. M. Jia Chongqing Communications Research & Design Institute, Chongqing China F. Dai Q. Z. Wang Department of Civil

More information

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich 1 Computational Fluid dynamics Computational fluid dynamics (CFD) is the analysis of systems involving fluid flow, heat

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information

Final project: Design problem

Final project: Design problem ME309 Homework #5 Final project: Design problem Select one of the analysis problems listed below to solve. Your solution, along with a description of your analysis process, should be handed in as a final

More information

Use of STAR-CCM+ in Marine and Off-Shore Engineering - Key Features and Future Developments - M. Perić, F. Schäfer, E. Schreck & J.

Use of STAR-CCM+ in Marine and Off-Shore Engineering - Key Features and Future Developments - M. Perić, F. Schäfer, E. Schreck & J. Use of STAR-CCM+ in Marine and Off-Shore Engineering - Key Features and Future Developments - M. Perić, F. Schäfer, E. Schreck & J. Singh Contents Main features of STAR-CCM+ relevant for marine and offshore

More information

Wall thickness= Inlet: Prescribed mass flux. All lengths in meters kg/m, E Pa, 0.3,

Wall thickness= Inlet: Prescribed mass flux. All lengths in meters kg/m, E Pa, 0.3, Problem description Problem 30: Analysis of fluid-structure interaction within a pipe constriction It is desired to analyze the flow and structural response within the following pipe constriction: 1 1

More information

Modeling and Simulation for Aircraft Structural Repair Using Modern FEA Tools

Modeling and Simulation for Aircraft Structural Repair Using Modern FEA Tools Modeling and Simulation for Aircraft Structural Repair Using Modern FEA Tools December 19-22, 2011 and January 9-12, 2012 Kuang-Hua Chang, Ph.D. Williams Presidential Professor School of Aerospace and

More information

OpenFOAM GUIDE FOR BEGINNERS

OpenFOAM GUIDE FOR BEGINNERS OpenFOAM GUIDE FOR BEGINNERS Authors This guide has been developed by: In association with: Pedro Javier Gamez and Gustavo Raush The Foam House Barcelona ETSEIAT-UPC June 2014 2 OPENFOAM GUIDE FOR BEGINNERS

More information

GALAXY ADVANCED ENGINEERING, INC. P.O. BOX 614 BURLINGAME, CALIFORNIA Tel: (650) Fax: (650)

GALAXY ADVANCED ENGINEERING, INC. P.O. BOX 614 BURLINGAME, CALIFORNIA Tel: (650) Fax: (650) GALAXY ADVANCED ENGINEERING, INC. P.O. BOX 614 BURLINGAME, CALIFORNIA 94011 Tel: (650) 740-3244 Fax: (650) 347-4234 E-mail: bahmanz@aol.com PUFF-TFT/PC A Material Response Computer Code for PC Computer

More information

SIMULATION OF FLOW FIELD AROUND AND INSIDE SCOUR PROTECTION WITH PHYSICAL AND REALISTIC PARTICLE CONFIGURATIONS

SIMULATION OF FLOW FIELD AROUND AND INSIDE SCOUR PROTECTION WITH PHYSICAL AND REALISTIC PARTICLE CONFIGURATIONS XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champaign June 17-22, 2012 SIMULATION OF FLOW FIELD AROUND AND INSIDE SCOUR PROTECTION WITH PHYSICAL AND REALISTIC

More information

SPH: Why and what for?

SPH: Why and what for? SPH: Why and what for? 4 th SPHERIC training day David Le Touzé, Fluid Mechanics Laboratory, Ecole Centrale de Nantes / CNRS SPH What for and why? How it works? Why not for everything? Duality of SPH SPH

More information

Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching

Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching Paul Groenenboom ESI Group Delft, Netherlands Martin Siemann German Aerospace Center (DLR) Stuttgart, Germany

More information

Fluid-Structure Interaction in LS-DYNA: Industrial Applications

Fluid-Structure Interaction in LS-DYNA: Industrial Applications 4 th European LS-DYNA Users Conference Aerospace / Fluid-Struct. Inter. Fluid-Structure Interaction in LS-DYNA: Industrial Applications M hamed Souli Universite des Sciences et Technologie de Lille Laboratoire

More information

PART 1: FLUID-STRUCTURE INTERACTION Simulation of particle filtration processes in deformable media

PART 1: FLUID-STRUCTURE INTERACTION Simulation of particle filtration processes in deformable media Int. Jnl. of Multiphysics Volume 2 Number 2 2008 179 PART 1: FLUID-STRUCTURE INTERACTION Simulation of particle filtration processes in deformable media Marianne Mataln 1, Gernot Boiger 1, Bernhard Gschaider

More information

DESIGN AND ANALYSIS OF MEMBRANE STRUCTURES IN FEM-BASED SOFTWARE MASTER THESIS

DESIGN AND ANALYSIS OF MEMBRANE STRUCTURES IN FEM-BASED SOFTWARE MASTER THESIS DESIGN AND ANALYSIS OF MEMBRANE STRUCTURES IN FEM-BASED SOFTWARE MASTER THESIS ARCHINEER INSTITUTES FOR MEMBRANE AND SHELL TECHNOLOGIES, BUILDING AND REAL ESTATE e.v. ANHALT UNIVERSITY OF APPLIED SCIENCES

More information

WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHERICAL NANOPARTICLES

WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHERICAL NANOPARTICLES November 20, 2018 WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHERICAL NANOPARTICLES Bishal Bhattarai and Nikolai V. Priezjev Department of Mechanical and Materials Engineering

More information

RBF Morph An Add-on Module for Mesh Morphing in ANSYS Fluent

RBF Morph An Add-on Module for Mesh Morphing in ANSYS Fluent RBF Morph An Add-on Module for Mesh Morphing in ANSYS Fluent Gilles Eggenspieler Senior Product Manager 1 Morphing & Smoothing A mesh morpher is a tool capable of performing mesh modifications in order

More information

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research 1 Realtime Water Simulation on GPU Nuttapong Chentanez NVIDIA Research 2 3 Overview Approaches to realtime water simulation Hybrid shallow water solver + particles Hybrid 3D tall cell water solver + particles

More information

ALE and AMR Mesh Refinement Techniques for Multi-material Hydrodynamics Problems

ALE and AMR Mesh Refinement Techniques for Multi-material Hydrodynamics Problems ALE and AMR Mesh Refinement Techniques for Multi-material Hydrodynamics Problems A. J. Barlow, AWE. ICFD Workshop on Mesh Refinement Techniques 7th December 2005 Acknowledgements Thanks to Chris Powell,

More information

RAPID PROTOTYPING FOR SLING DESIGN OPTIMIZATION

RAPID PROTOTYPING FOR SLING DESIGN OPTIMIZATION RAPID PROTOTYPING FOR SLING DESIGN OPTIMIZATION Zaimović-Uzunović, N. * ; Lemeš, S. ** ; Ćurić, D. *** ; Topčić, A. **** * University of Zenica, Fakultetska 1, 72000 Zenica, Bosnia and Herzegovina, nzaimovic@mf.unze.ba

More information

CS 231. Deformation simulation (and faces)

CS 231. Deformation simulation (and faces) CS 231 Deformation simulation (and faces) Deformation BODY Simulation Discretization Spring-mass models difficult to model continuum properties Simple & fast to implement and understand Finite Element

More information

ANSYS AIM Tutorial Turbulent Flow Over a Backward Facing Step

ANSYS AIM Tutorial Turbulent Flow Over a Backward Facing Step ANSYS AIM Tutorial Turbulent Flow Over a Backward Facing Step Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Governing Equation Start-Up Geometry

More information

Using MSC.Nastran for Explicit FEM Simulations

Using MSC.Nastran for Explicit FEM Simulations 3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT III Using MSC.Nastran for Explicit FEM Simulations Patrick Doelfs, Dr. Ingo Neubauer MSC.Software GmbH, D-81829 München, Patrick.Doelfs@mscsoftware.com Abstract:

More information

Tutorial: Hydrodynamics of Bubble Column Reactors

Tutorial: Hydrodynamics of Bubble Column Reactors Tutorial: Introduction The purpose of this tutorial is to provide guidelines and recommendations for solving a gas-liquid bubble column problem using the multiphase mixture model, including advice on solver

More information

OpenFOAM: Open Platform for Complex Physics Simulations

OpenFOAM: Open Platform for Complex Physics Simulations OpenFOAM: Open Platform for Complex Physics Simulations Hrvoje Jasak h.jasak@wikki.co.uk, hrvoje.jasak@fsb.hr FSB, University of Zagreb, Croatia Wikki Ltd, United Kingdom 18th October 2007 OpenFOAM: Open

More information

LS-971 R4-EFG User s Manual

LS-971 R4-EFG User s Manual LS-971 R4-EFG User s Manual January 2009 LSTC Copyright 2003, 2004, 2006, 2007, 2009 by LSTC 1 *SECTION_SOLID_EFG Card 1 Variable SECID ELFORM Type I I ELFORM EQ.41: EFG formulation EQ.42: for 4-noded

More information

Modeling Unsteady Compressible Flow

Modeling Unsteady Compressible Flow Tutorial 4. Modeling Unsteady Compressible Flow Introduction In this tutorial, FLUENT s density-based implicit solver is used to predict the timedependent flow through a two-dimensional nozzle. As an initial

More information

Flow and Heat Transfer in a Mixing Elbow

Flow and Heat Transfer in a Mixing Elbow Flow and Heat Transfer in a Mixing Elbow Objectives The main objectives of the project are to learn (i) how to set up and perform flow simulations with heat transfer and mixing, (ii) post-processing and

More information

3-D Numerical Simulation of Direct Aluminum Extrusion and Die Deformation

3-D Numerical Simulation of Direct Aluminum Extrusion and Die Deformation 3-D Numerical Simulation of Direct Aluminum Extrusion and Die Deformation ABSTRACT W.A.Assaad, University of Twente Enschede, The Netherlands H.J.M. Geijselaers, University of Twente Enschede, The Netherlands

More information

Recent Developments in LS-DYNA II

Recent Developments in LS-DYNA II 9. LS-DYNA Forum, Bamberg 2010 Keynote-Vorträge II Recent Developments in LS-DYNA II J. Hallquist Livermore Software Technology Corporation A - II - 7 Keynote-Vorträge II 9. LS-DYNA Forum, Bamberg 2010

More information

Life Sciences Applications: Modeling and Simulation for Biomedical Device Design SGC 2013

Life Sciences Applications: Modeling and Simulation for Biomedical Device Design SGC 2013 Life Sciences Applications: Modeling and Simulation for Biomedical Device Design Kristian.Debus@cd-adapco.com SGC 2013 Modeling and Simulation for Biomedical Device Design Biomedical device design and

More information

Immersed Boundary Method and Chimera Method applied to Fluid-

Immersed Boundary Method and Chimera Method applied to Fluid- The numericsacademy Fixed Colloquium IBM on Moving Immersed IBM Boundary Applications Methods : Conclusion Current Status and Future Research Directions 15-17 June 2009, Academy Building, Amsterdam, the

More information

Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD)

Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) Fernando Prevedello Regis Ataídes Nícolas Spogis Wagner Ortega Guedes Fabiano Armellini

More information

A Multiple Constraint Approach for Finite Element Analysis of Moment Frames with Radius-cut RBS Connections

A Multiple Constraint Approach for Finite Element Analysis of Moment Frames with Radius-cut RBS Connections A Multiple Constraint Approach for Finite Element Analysis of Moment Frames with Radius-cut RBS Connections Dawit Hailu +, Adil Zekaria ++, Samuel Kinde +++ ABSTRACT After the 1994 Northridge earthquake

More information