assessment of its interpretable features

Size: px
Start display at page:

Download "assessment of its interpretable features"

Transcription

1 Black-box model explained through an assessment of its interpretable features Francesco Ventura, Tania Cerquitelli, Francesco Giacalone

2 Introduction In the last few years algorithms have been widely exploited in many practical use cases influencing various aspects of our life Even more complex machine learning algorithms support the data-driven decision-making process They can support the user in the decision making process They can make decision automatically It is very difficult to ascertain why and how they produce a certain output wrongdoing is possible

3 Introduction The most efficient machine learning algorithms operate essentially as black boxes E.g. deep neural networks Neural network architectures present a natural propensity to opacity in terms of understanding data processing and prediction The need for algorithmic transparency becomes even more prominent Focus on image classification through Deep Convolutional Neural Networks

4 EBAnO (Explaining BlAck-box model) To put existing, effective, and efficient DCNN to practical use cases. To provide explanations about the outcome produced through a deep convolutional neural network To define an explanation as the influence analysis of an interpretable set of features Oriented to black-box models the user is agnostic about the model the explanation takes into account the model

5 EBAnO (Explaining BlAck-box model) Given an input image It defines a set of interpretable features Interpretable features as set of correlated pixel The user is able to understand the semantic meaning of the set of pixels It exploits an iterative process of feature perturbations and classification It produces a prediction-local transparency report Specifically for a class of interest It produces two quality indexes Influence Relation (IR) Influence Relation Precision (IRP) It produces a visual report

6 EBAnO Process

7 Interpretable feature extraction Definition of a set of interpretable features to correctly explain the forecasting/classification of a black-box model It exploit Hypercolumns analysis of the DCNN Given a black box CNN composed of many layers and an image 1. Process the image with a CNN and get its representation through the most representative convolutional layers. 2. Extract the hypercolumns for each pixel of the image 3. A matrix of vectors is generated where each cell of the matrix represents the hypercolumn of an input pixel 4. Clustering analysis of the hypercolumns exploiting the k-means algorithm

8 Interpretable feature extraction Interpretable features Groups of pixels highly correlated within the black-box-model Hypercolumns are used to identify correlated portions of the image instead of well defined objects Interpretable features should be neither too specific nor too general a single pixel of an image is both totally trifling and completely opaque portions of image defined by a set of correlated pixels are more effective. The output of the cluster analysis produces k groups of correlated pixels corresponding to k interpretable features.

9 Explanation process For the original image EBAnO calculates the set of probability values for each membership class For each interpretable feature it starts an iterative process of 1. blur perturbation of the original image in correspondence of the given feature 2. Prediction of the set of probability values for each membership class of the perturbed image exploiting the black-box model

10 Transparency report Given a class of interest (e.g. the real class of the image) EBAnO computes two indices to explain the black-box model behaviour: The IR index (Influence Relation ) measures the local influence of the input feature with respect to the class of interest. The IRP index (Influence Relation Precision ) measures the inter-class influence of input features EBAnO produces a visual report Qualitative representation of the influence of each feature over the classification process Based on IR index

11 Transparency report: IR The IR index is calculated for each feature of an image It represents the ratio between the probability of the original image to belong to the class of interest and the corresponding probability obtained after the perturbation of the image. It ranges in [0,inf) IR values higher then 1 represent a positive influence of the feature IR values lower then 1 represent a negative influence over the prediction of the class of interest

12 Transparency report: IRP The IRP index is calculated for each feature of an image It is computed as the ratio between the IR value for the target class and the weighted average of IR for the whole set of predicted classes the weights correspond to the probabilities of the predicted membership class for the original image For IRP values lower than 1 the input feature not only has an impact on the predicted class but also on all the others For IRP value higher than 1, the importance of the input feature for the real class is significant with respect to the whole set of predicted classes. IRP represents the ability of an input feature to uniquely represent the class of the original image

13 Experimental results Preliminary implementation Developed in python Exploiting Keras with Tensorflow backend VGG16 as black-box model CNN for image classification Pre-Trained on imagenet 16 layers (convolutional and fully connected) 1000 classes 85 images 75 belong to different classes 10 belong to class pizza Extraction of 10 interpretable features for each image Hypercolumns extracted from last 10 convolutional layers

14 Experimental results: original prediction Class P(C) % hand_blower washbasin soap_dispenser toilet_seat 8.77 toilet_tissue 7.35 mouse 5.10

15 Experimental results: feature extraction

16 Experimental results: mouse class IR and IRP Feature Perturbation P(c)% IR IRP

17 Experimental results: mouse class visual report

18 Experimental results: IRP evaluation P(c=pizza)% = 3.71%

19 Influence Relation Influence Relation Precision

20 Influence Relation Feature 9 Influence Relation Precision

21 Conclusion and future works EBAnO is a preliminary project It is able to provide interpretable explanation for the image classification task through DCNN Analysis improvements Identify global influence explanations Make indexes and reports more user friendly Extend the analysis to different models E.G. VGG_19, Inception_v3, Resnet_v2 Support of different types of unstructured data E.G. Textual analysis

22 Thank you! Francesco Ventura, Tania Cerquitelli, Francesco Giacalone

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python:

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: Code Mania 2019 Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: 1. Introduction to Artificial Intelligence 2. Introduction to python programming and Environment

More information

Scalable and Modularized RTL Compilation of Convolutional Neural Networks onto FPGA

Scalable and Modularized RTL Compilation of Convolutional Neural Networks onto FPGA Scalable and Modularized RTL Compilation of Convolutional Neural Networks onto FPGA Yufei Ma, Naveen Suda, Yu Cao, Jae-sun Seo, Sarma Vrudhula School of Electrical, Computer and Energy Engineering School

More information

Video Object Segmentation using Deep Learning

Video Object Segmentation using Deep Learning Video Object Segmentation using Deep Learning Update Presentation, Week 2 Zack While Advised by: Rui Hou, Dr. Chen Chen, and Dr. Mubarak Shah May 26, 2017 Youngstown State University 1 Table of Contents

More information

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python.

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python. Inception and Residual Networks Hantao Zhang Deep Learning with Python https://en.wikipedia.org/wiki/residual_neural_network Deep Neural Network Progress from Large Scale Visual Recognition Challenge (ILSVRC)

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA January 31, 2018 1 / 30 OUTLINE 1 Keras: Introduction 2 Installing Keras 3 Keras: Building, Testing, Improving A Simple Network 2 / 30

More information

Predicting ground-level scene Layout from Aerial imagery. Muhammad Hasan Maqbool

Predicting ground-level scene Layout from Aerial imagery. Muhammad Hasan Maqbool Predicting ground-level scene Layout from Aerial imagery Muhammad Hasan Maqbool Objective Given the overhead image predict its ground level semantic segmentation Predicted ground level labeling Overhead/Aerial

More information

Using Machine Learning for Classification of Cancer Cells

Using Machine Learning for Classification of Cancer Cells Using Machine Learning for Classification of Cancer Cells Camille Biscarrat University of California, Berkeley I Introduction Cell screening is a commonly used technique in the development of new drugs.

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

Demystifying Deep Learning

Demystifying Deep Learning Demystifying Deep Learning Let the computers do the hard work Jérémy Huard 2015 The MathWorks, Inc. 1 2 Why MATLAB for Deep Learning? MATLAB is Productive MATLAB is Fast MATLAB Integrates with Open Source

More information

NVIDIA DLI HANDS-ON TRAINING COURSE CATALOG

NVIDIA DLI HANDS-ON TRAINING COURSE CATALOG NVIDIA DLI HANDS-ON TRAINING COURSE CATALOG Valid Through July 31, 2018 INTRODUCTION The NVIDIA Deep Learning Institute (DLI) trains developers, data scientists, and researchers on how to use artificial

More information

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta Encoder-Decoder Networks for Semantic Segmentation Sachin Mehta Outline > Overview of Semantic Segmentation > Encoder-Decoder Networks > Results What is Semantic Segmentation? Input: RGB Image Output:

More information

What was Monet seeing while painting? Translating artworks to photo-realistic images M. Tomei, L. Baraldi, M. Cornia, R. Cucchiara

What was Monet seeing while painting? Translating artworks to photo-realistic images M. Tomei, L. Baraldi, M. Cornia, R. Cucchiara What was Monet seeing while painting? Translating artworks to photo-realistic images M. Tomei, L. Baraldi, M. Cornia, R. Cucchiara COMPUTER VISION IN THE ARTISTIC DOMAIN The effectiveness of Computer Vision

More information

Photo-realistic Renderings for Machines Seong-heum Kim

Photo-realistic Renderings for Machines Seong-heum Kim Photo-realistic Renderings for Machines 20105034 Seong-heum Kim CS580 Student Presentations 2016.04.28 Photo-realistic Renderings for Machines Scene radiances Model descriptions (Light, Shape, Material,

More information

Deep Learning and Its Applications

Deep Learning and Its Applications Convolutional Neural Network and Its Application in Image Recognition Oct 28, 2016 Outline 1 A Motivating Example 2 The Convolutional Neural Network (CNN) Model 3 Training the CNN Model 4 Issues and Recent

More information

Classifying Depositional Environments in Satellite Images

Classifying Depositional Environments in Satellite Images Classifying Depositional Environments in Satellite Images Alex Miltenberger and Rayan Kanfar Department of Geophysics School of Earth, Energy, and Environmental Sciences Stanford University 1 Introduction

More information

ECE 5470 Classification, Machine Learning, and Neural Network Review

ECE 5470 Classification, Machine Learning, and Neural Network Review ECE 5470 Classification, Machine Learning, and Neural Network Review Due December 1. Solution set Instructions: These questions are to be answered on this document which should be submitted to blackboard

More information

Event: PASS SQL Saturday - DC 2018 Presenter: Jon Tupitza, CTO Architect

Event: PASS SQL Saturday - DC 2018 Presenter: Jon Tupitza, CTO Architect Event: PASS SQL Saturday - DC 2018 Presenter: Jon Tupitza, CTO Architect BEOP.CTO.TP4 Owner: OCTO Revision: 0001 Approved by: JAT Effective: 08/30/2018 Buchanan & Edwards Proprietary: Printed copies of

More information

CS 523: Multimedia Systems

CS 523: Multimedia Systems CS 523: Multimedia Systems Angus Forbes creativecoding.evl.uic.edu/courses/cs523 Today - Convolutional Neural Networks - Work on Project 1 http://playground.tensorflow.org/ Convolutional Neural Networks

More information

TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK

TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK 1 Po-Jen Lai ( 賴柏任 ), 2 Chiou-Shann Fuh ( 傅楸善 ) 1 Dept. of Electrical Engineering, National Taiwan University, Taiwan 2 Dept.

More information

Tutorial on Machine Learning Tools

Tutorial on Machine Learning Tools Tutorial on Machine Learning Tools Yanbing Xue Milos Hauskrecht Why do we need these tools? Widely deployed classical models No need to code from scratch Easy-to-use GUI Outline Matlab Apps Weka 3 UI TensorFlow

More information

Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task

Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task Kyunghee Kim Stanford University 353 Serra Mall Stanford, CA 94305 kyunghee.kim@stanford.edu Abstract We use a

More information

MoonRiver: Deep Neural Network in C++

MoonRiver: Deep Neural Network in C++ MoonRiver: Deep Neural Network in C++ Chung-Yi Weng Computer Science & Engineering University of Washington chungyi@cs.washington.edu Abstract Artificial intelligence resurges with its dramatic improvement

More information

A Neural Algorithm of Artistic Style. Leon A. Gatys, Alexander S. Ecker, Matthias Bethge

A Neural Algorithm of Artistic Style. Leon A. Gatys, Alexander S. Ecker, Matthias Bethge A Neural Algorithm of Artistic Style Leon A. Gatys, Alexander S. Ecker, Matthias Bethge Presented by Shishir Mathur (1 Sept 2016) What is this paper This is the research paper behind Prisma It creates

More information

Vulnerability of machine learning models to adversarial examples

Vulnerability of machine learning models to adversarial examples Vulnerability of machine learning models to adversarial examples Petra Vidnerová Institute of Computer Science The Czech Academy of Sciences Hora Informaticae 1 Outline Introduction Works on adversarial

More information

A Deep Learning Approach to Vehicle Speed Estimation

A Deep Learning Approach to Vehicle Speed Estimation A Deep Learning Approach to Vehicle Speed Estimation Benjamin Penchas bpenchas@stanford.edu Tobin Bell tbell@stanford.edu Marco Monteiro marcorm@stanford.edu ABSTRACT Given car dashboard video footage,

More information

PIXELS TO VOXELS: MODELING VISUAL REPRESENTATION IN THE HUMAN BRAIN

PIXELS TO VOXELS: MODELING VISUAL REPRESENTATION IN THE HUMAN BRAIN PIXELS TO VOXELS: MODELING VISUAL REPRESENTATION IN THE HUMAN BRAIN By Pulkit Agrawal, Dustin Stansbury, Jitendra Malik, Jack L. Gallant University of California Berkeley Presented by Tim Patzelt AGENDA

More information

Fuzzy Set Theory in Computer Vision: Example 3

Fuzzy Set Theory in Computer Vision: Example 3 Fuzzy Set Theory in Computer Vision: Example 3 Derek T. Anderson and James M. Keller FUZZ-IEEE, July 2017 Overview Purpose of these slides are to make you aware of a few of the different CNN architectures

More information

Deep Learning With Noise

Deep Learning With Noise Deep Learning With Noise Yixin Luo Computer Science Department Carnegie Mellon University yixinluo@cs.cmu.edu Fan Yang Department of Mathematical Sciences Carnegie Mellon University fanyang1@andrew.cmu.edu

More information

Semantic Image Search. Alex Egg

Semantic Image Search. Alex Egg Semantic Image Search Alex Egg Inspiration Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing

More information

Kaggle Data Science Bowl 2017 Technical Report

Kaggle Data Science Bowl 2017 Technical Report Kaggle Data Science Bowl 2017 Technical Report qfpxfd Team May 11, 2017 1 Team Members Table 1: Team members Name E-Mail University Jia Ding dingjia@pku.edu.cn Peking University, Beijing, China Aoxue Li

More information

INTRODUCTION TO DEEP LEARNING

INTRODUCTION TO DEEP LEARNING INTRODUCTION TO DEEP LEARNING CONTENTS Introduction to deep learning Contents 1. Examples 2. Machine learning 3. Neural networks 4. Deep learning 5. Convolutional neural networks 6. Conclusion 7. Additional

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

Tutorial on Keras CAP ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY

Tutorial on Keras CAP ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY Tutorial on Keras CAP 6412 - ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY Deep learning packages TensorFlow Google PyTorch Facebook AI research Keras Francois Chollet (now at Google) Chainer Company

More information

DEEP BLIND IMAGE QUALITY ASSESSMENT

DEEP BLIND IMAGE QUALITY ASSESSMENT DEEP BLIND IMAGE QUALITY ASSESSMENT BY LEARNING SENSITIVITY MAP Jongyoo Kim, Woojae Kim and Sanghoon Lee ICASSP 2018 Deep Learning and Convolutional Neural Networks (CNNs) SOTA in computer vision & image

More information

Hand Written Digit Recognition Using Tensorflow and Python

Hand Written Digit Recognition Using Tensorflow and Python Hand Written Digit Recognition Using Tensorflow and Python Shekhar Shiroor Department of Computer Science College of Engineering and Computer Science California State University-Sacramento Sacramento,

More information

NVIDIA DEEP LEARNING INSTITUTE

NVIDIA DEEP LEARNING INSTITUTE NVIDIA DEEP LEARNING INSTITUTE TRAINING CATALOG Valid Through July 31, 2018 INTRODUCTION The NVIDIA Deep Learning Institute (DLI) trains developers, data scientists, and researchers on how to use artificial

More information

Image Transformation via Neural Network Inversion

Image Transformation via Neural Network Inversion Image Transformation via Neural Network Inversion Asha Anoosheh Rishi Kapadia Jared Rulison Abstract While prior experiments have shown it is possible to approximately reconstruct inputs to a neural net

More information

A Quick Guide on Training a neural network using Keras.

A Quick Guide on Training a neural network using Keras. A Quick Guide on Training a neural network using Keras. TensorFlow and Keras Keras Open source High level, less flexible Easy to learn Perfect for quick implementations Starts by François Chollet from

More information

A Text Classification Model Using Convolution Neural Network and Recurrent Neural Network

A Text Classification Model Using Convolution Neural Network and Recurrent Neural Network Volume 119 No. 15 2018, 1549-1554 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ A Text Classification Model Using Convolution Neural Network and Recurrent

More information

Demystifying Deep Learning

Demystifying Deep Learning Demystifying Deep Learning Mandar Gujrathi Mandar.Gujrathi@mathworks.com.au 2015 The MathWorks, Inc. 1 2 Deep Learning Applications Voice assistants (speech to text) Teaching character to beat video game

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

Convolutional Neural Networks

Convolutional Neural Networks NPFL114, Lecture 4 Convolutional Neural Networks Milan Straka March 25, 2019 Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics unless otherwise

More information

Introduction to Deep Learning in Signal Processing & Communications with MATLAB

Introduction to Deep Learning in Signal Processing & Communications with MATLAB Introduction to Deep Learning in Signal Processing & Communications with MATLAB Dr. Amod Anandkumar Pallavi Kar Application Engineering Group, Mathworks India 2019 The MathWorks, Inc. 1 Different Types

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

Real-time Object Detection CS 229 Course Project

Real-time Object Detection CS 229 Course Project Real-time Object Detection CS 229 Course Project Zibo Gong 1, Tianchang He 1, and Ziyi Yang 1 1 Department of Electrical Engineering, Stanford University December 17, 2016 Abstract Objection detection

More information

Finding Tiny Faces Supplementary Materials

Finding Tiny Faces Supplementary Materials Finding Tiny Faces Supplementary Materials Peiyun Hu, Deva Ramanan Robotics Institute Carnegie Mellon University {peiyunh,deva}@cs.cmu.edu 1. Error analysis Quantitative analysis We plot the distribution

More information

Algorithm Engineering Applied To Graph Clustering

Algorithm Engineering Applied To Graph Clustering Algorithm Engineering Applied To Graph Clustering Insights and Open Questions in Designing Experimental Evaluations Marco 1 Workshop on Communities in Networks 14. March, 2008 Louvain-la-Neuve Outline

More information

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager Characterization and Benchmarking of Deep Learning Natalia Vassilieva, PhD Sr. Research Manager Deep learning applications Vision Speech Text Other Search & information extraction Security/Video surveillance

More information

Joint Object Detection and Viewpoint Estimation using CNN features

Joint Object Detection and Viewpoint Estimation using CNN features Joint Object Detection and Viewpoint Estimation using CNN features Carlos Guindel, David Martín and José M. Armingol cguindel@ing.uc3m.es Intelligent Systems Laboratory Universidad Carlos III de Madrid

More information

Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction

Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction by Noh, Hyeonwoo, Paul Hongsuck Seo, and Bohyung Han.[1] Presented : Badri Patro 1 1 Computer Vision Reading

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 개발에서구현까지 MATLAB 환경에서의딥러닝 김종남 Application Engineer 2015 The MathWorks, Inc. 2 3 Why MATLAB for Deep Learning? MATLAB is Productive MATLAB is Fast MATLAB Integrates with Open Source

More information

Application of Deep Learning Techniques in Satellite Telemetry Analysis.

Application of Deep Learning Techniques in Satellite Telemetry Analysis. Application of Deep Learning Techniques in Satellite Telemetry Analysis. Greg Adamski, Member of Technical Staff L3 Technologies Telemetry and RF Products Julian Spencer Jones, Spacecraft Engineer Telenor

More information

Hello Edge: Keyword Spotting on Microcontrollers

Hello Edge: Keyword Spotting on Microcontrollers Hello Edge: Keyword Spotting on Microcontrollers Yundong Zhang, Naveen Suda, Liangzhen Lai and Vikas Chandra ARM Research, Stanford University arxiv.org, 2017 Presented by Mohammad Mofrad University of

More information

Customer Clustering using RFM analysis

Customer Clustering using RFM analysis Customer Clustering using RFM analysis VASILIS AGGELIS WINBANK PIRAEUS BANK Athens GREECE AggelisV@winbank.gr DIMITRIS CHRISTODOULAKIS Computer Engineering and Informatics Department University of Patras

More information

POINT CLOUD DEEP LEARNING

POINT CLOUD DEEP LEARNING POINT CLOUD DEEP LEARNING Innfarn Yoo, 3/29/28 / 57 Introduction AGENDA Previous Work Method Result Conclusion 2 / 57 INTRODUCTION 3 / 57 2D OBJECT CLASSIFICATION Deep Learning for 2D Object Classification

More information

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal Object Detection Lecture 10.3 - Introduction to deep learning (CNN) Idar Dyrdal Deep Learning Labels Computational models composed of multiple processing layers (non-linear transformations) Used to learn

More information

CNN Visualizations. Seoul AI Meetup Martin Kersner, 2018/01/06

CNN Visualizations. Seoul AI Meetup Martin Kersner, 2018/01/06 CNN Visualizations Seoul AI Meetup Martin Kersner, 2018/01/06 Content 1. Visualization of convolutional weights from the first layer 2. Visualization of patterns learned by higher layers 3. Weakly Supervised

More information

Flow-Based Video Recognition

Flow-Based Video Recognition Flow-Based Video Recognition Jifeng Dai Visual Computing Group, Microsoft Research Asia Joint work with Xizhou Zhu*, Yuwen Xiong*, Yujie Wang*, Lu Yuan and Yichen Wei (* interns) Talk pipeline Introduction

More information

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna,

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna, Convolutional Neural Networks: Applications and a short timeline 7th Deep Learning Meetup Kornel Kis Vienna, 1.12.2016. Introduction Currently a master student Master thesis at BME SmartLab Started deep

More information

ABSTRACT I. INTRODUCTION. Dr. J P Patra 1, Ajay Singh Thakur 2, Amit Jain 2. Professor, Department of CSE SSIPMT, CSVTU, Raipur, Chhattisgarh, India

ABSTRACT I. INTRODUCTION. Dr. J P Patra 1, Ajay Singh Thakur 2, Amit Jain 2. Professor, Department of CSE SSIPMT, CSVTU, Raipur, Chhattisgarh, India International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume 3 Issue 4 ISSN : 2456-3307 Image Recognition using Machine Learning Application

More information

ConvolutionalNN's... ConvNet's... deep learnig

ConvolutionalNN's... ConvNet's... deep learnig Deep Learning ConvolutionalNN's... ConvNet's... deep learnig Markus Thaler, TG208 tham@zhaw.ch www.zhaw.ch/~tham Martin Weisenhorn, TB427 weie@zhaw.ch 20.08.2018 1 Neural Networks Classification: up to

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Artificial Intelligence Introduction Handwriting Recognition Kadir Eren Unal ( ), Jakob Heyder ( )

Artificial Intelligence Introduction Handwriting Recognition Kadir Eren Unal ( ), Jakob Heyder ( ) Structure: 1. Introduction 2. Problem 3. Neural network approach a. Architecture b. Phases of CNN c. Results 4. HTM approach a. Architecture b. Setup c. Results 5. Conclusion 1.) Introduction Artificial

More information

Transfer Learning. Style Transfer in Deep Learning

Transfer Learning. Style Transfer in Deep Learning Transfer Learning & Style Transfer in Deep Learning 4-DEC-2016 Gal Barzilai, Ram Machlev Deep Learning Seminar School of Electrical Engineering Tel Aviv University Part 1: Transfer Learning in Deep Learning

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Polytechnic University of Tirana

Polytechnic University of Tirana 1 Polytechnic University of Tirana Department of Computer Engineering SIBORA THEODHOR ELINDA KAJO M ECE 2 Computer Vision OCR AND BEYOND THE PRESENTATION IS ORGANISED IN 3 PARTS : 3 Introduction, previous

More information

DEFECT INSPECTION FROM SCRATCH TO PRODUCTION. Andrew Liu, Ryan Shen Deep Learning Solution Architect

DEFECT INSPECTION FROM SCRATCH TO PRODUCTION. Andrew Liu, Ryan Shen Deep Learning Solution Architect DEFECT INSPECTION FROM SCRATCH TO PRODUCTION Andrew Liu, Ryan Shen Deep Learning Solution Architect Defect Inspection and its challenges AGENDA NGC Docker images Model set up - Unet Data preparation -

More information

arxiv: v1 [cs.cv] 20 Dec 2016

arxiv: v1 [cs.cv] 20 Dec 2016 End-to-End Pedestrian Collision Warning System based on a Convolutional Neural Network with Semantic Segmentation arxiv:1612.06558v1 [cs.cv] 20 Dec 2016 Heechul Jung heechul@dgist.ac.kr Min-Kook Choi mkchoi@dgist.ac.kr

More information

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs Zhipeng Yan, Moyuan Huang, Hao Jiang 5/1/2017 1 Outline Background semantic segmentation Objective,

More information

An Exploration of Computer Vision Techniques for Bird Species Classification

An Exploration of Computer Vision Techniques for Bird Species Classification An Exploration of Computer Vision Techniques for Bird Species Classification Anne L. Alter, Karen M. Wang December 15, 2017 Abstract Bird classification, a fine-grained categorization task, is a complex

More information

Visual object classification by sparse convolutional neural networks

Visual object classification by sparse convolutional neural networks Visual object classification by sparse convolutional neural networks Alexander Gepperth 1 1- Ruhr-Universität Bochum - Institute for Neural Dynamics Universitätsstraße 150, 44801 Bochum - Germany Abstract.

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA February 9, 2017 1 / 24 OUTLINE 1 Introduction Keras: Deep Learning library for Theano and TensorFlow 2 Installing Keras Installation

More information

CNN Basics. Chongruo Wu

CNN Basics. Chongruo Wu CNN Basics Chongruo Wu Overview 1. 2. 3. Forward: compute the output of each layer Back propagation: compute gradient Updating: update the parameters with computed gradient Agenda 1. Forward Conv, Fully

More information

Yelp Restaurant Photo Classification

Yelp Restaurant Photo Classification Yelp Restaurant Photo Classification Rajarshi Roy Stanford University rroy@stanford.edu Abstract The Yelp Restaurant Photo Classification challenge is a Kaggle challenge that focuses on the problem predicting

More information

LSTM: An Image Classification Model Based on Fashion-MNIST Dataset

LSTM: An Image Classification Model Based on Fashion-MNIST Dataset LSTM: An Image Classification Model Based on Fashion-MNIST Dataset Kexin Zhang, Research School of Computer Science, Australian National University Kexin Zhang, U6342657@anu.edu.au Abstract. The application

More information

An Introduction to Deep Learning with RapidMiner. Philipp Schlunder - RapidMiner Research

An Introduction to Deep Learning with RapidMiner. Philipp Schlunder - RapidMiner Research An Introduction to Deep Learning with RapidMiner Philipp Schlunder - RapidMiner Research What s in store for today?. Things to know before getting started 2. What s Deep Learning anyway? 3. How to use

More information

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN CS6501: Deep Learning for Visual Recognition Object Detection I: RCNN, Fast-RCNN, Faster-RCNN Today s Class Object Detection The RCNN Object Detector (2014) The Fast RCNN Object Detector (2015) The Faster

More information

arxiv: v1 [cs.lg] 31 Oct 2018

arxiv: v1 [cs.lg] 31 Oct 2018 UNDERSTANDING DEEP NEURAL NETWORKS USING TOPOLOGICAL DATA ANALYSIS DANIEL GOLDFARB arxiv:1811.00852v1 [cs.lg] 31 Oct 2018 Abstract. Deep neural networks (DNN) are black box algorithms. They are trained

More information

Counting Passenger Vehicles from Satellite Imagery

Counting Passenger Vehicles from Satellite Imagery Counting Passenger Vehicles from Satellite Imagery Not everything that can be counted counts, and not everything that counts can be counted NVIDIA GPU Technology Conference 02 Nov 2017 KEVIN GREEN MACHINE

More information

Medical images, segmentation and analysis

Medical images, segmentation and analysis Medical images, segmentation and analysis ImageLab group http://imagelab.ing.unimo.it Università degli Studi di Modena e Reggio Emilia Medical Images Macroscopic Dermoscopic ELM enhance the features of

More information

Deconvolution Networks

Deconvolution Networks Deconvolution Networks Johan Brynolfsson Mathematical Statistics Centre for Mathematical Sciences Lund University December 6th 2016 1 / 27 Deconvolution Neural Networks 2 / 27 Image Deconvolution True

More information

Yield Estimation using faster R-CNN

Yield Estimation using faster R-CNN Yield Estimation using faster R-CNN 1 Vidhya Sagar, 2 Sailesh J.Jain and 2 Arjun P. 1 Assistant Professor, 2 UG Scholar, Department of Computer Engineering and Science SRM Institute of Science and Technology,Chennai,

More information

Multimodal topic model for texts and images utilizing their embeddings

Multimodal topic model for texts and images utilizing their embeddings Multimodal topic model for texts and images utilizing their embeddings Nikolay Smelik, smelik@rain.ifmo.ru Andrey Filchenkov, afilchenkov@corp.ifmo.ru Computer Technologies Lab IDP-16. Barcelona, Spain,

More information

Is Bigger CNN Better? Samer Hijazi on behalf of IPG CTO Group Embedded Neural Networks Summit (enns2016) San Jose Feb. 9th

Is Bigger CNN Better? Samer Hijazi on behalf of IPG CTO Group Embedded Neural Networks Summit (enns2016) San Jose Feb. 9th Is Bigger CNN Better? Samer Hijazi on behalf of IPG CTO Group Embedded Neural Networks Summit (enns2016) San Jose Feb. 9th Today s Story Why does CNN matter to the embedded world? How to enable CNN in

More information

Deep Learning for Object detection & localization

Deep Learning for Object detection & localization Deep Learning for Object detection & localization RCNN, Fast RCNN, Faster RCNN, YOLO, GAP, CAM, MSROI Aaditya Prakash Sep 25, 2018 Image classification Image classification Whole of image is classified

More information

Working with Unlabeled Data Clustering Analysis. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Working with Unlabeled Data Clustering Analysis. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Working with Unlabeled Data Clustering Analysis Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.tw Unsupervised learning Finding centers of similarity using

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 18: Deep learning and Vision: Convolutional neural networks Teacher: Gianni A. Di Caro DEEP, SHALLOW, CONNECTED, SPARSE? Fully connected multi-layer feed-forward perceptrons: More powerful

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

CS231N Project Final Report - Fast Mixed Style Transfer

CS231N Project Final Report - Fast Mixed Style Transfer CS231N Project Final Report - Fast Mixed Style Transfer Xueyuan Mei Stanford University Computer Science xmei9@stanford.edu Fabian Chan Stanford University Computer Science fabianc@stanford.edu Tianchang

More information

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 7. Image Processing COMP9444 17s2 Image Processing 1 Outline Image Datasets and Tasks Convolution in Detail AlexNet Weight Initialization Batch Normalization

More information

Sensor-based Semantic-level Human Activity Recognition using Temporal Classification

Sensor-based Semantic-level Human Activity Recognition using Temporal Classification Sensor-based Semantic-level Human Activity Recognition using Temporal Classification Weixuan Gao gaow@stanford.edu Chuanwei Ruan chuanwei@stanford.edu Rui Xu ray1993@stanford.edu I. INTRODUCTION Human

More information

Deep Learning on Graphs

Deep Learning on Graphs Deep Learning on Graphs with Graph Convolutional Networks Hidden layer Hidden layer Input Output ReLU ReLU, 22 March 2017 joint work with Max Welling (University of Amsterdam) BDL Workshop @ NIPS 2016

More information

INF 5860 Machine learning for image classification. Lecture 11: Visualization Anne Solberg April 4, 2018

INF 5860 Machine learning for image classification. Lecture 11: Visualization Anne Solberg April 4, 2018 INF 5860 Machine learning for image classification Lecture 11: Visualization Anne Solberg April 4, 2018 Reading material The lecture is based on papers: Deep Dream: https://research.googleblog.com/2015/06/inceptionism-goingdeeper-into-neural.html

More information

TensorFlow and Keras-based Convolutional Neural Network in CAT Image Recognition Ang LI 1,*, Yi-xiang LI 2 and Xue-hui LI 3

TensorFlow and Keras-based Convolutional Neural Network in CAT Image Recognition Ang LI 1,*, Yi-xiang LI 2 and Xue-hui LI 3 2017 2nd International Conference on Coputational Modeling, Siulation and Applied Matheatics (CMSAM 2017) ISBN: 978-1-60595-499-8 TensorFlow and Keras-based Convolutional Neural Network in CAT Iage Recognition

More information

Places Challenge 2017

Places Challenge 2017 Places Challenge 2017 Scene Parsing Task CASIA_IVA_JD Jun Fu, Jing Liu, Longteng Guo, Haijie Tian, Fei Liu, Hanqing Lu Yong Li, Yongjun Bao, Weipeng Yan National Laboratory of Pattern Recognition, Institute

More information

CS230: Lecture 3 Various Deep Learning Topics

CS230: Lecture 3 Various Deep Learning Topics CS230: Lecture 3 Various Deep Learning Topics Kian Katanforoosh, Andrew Ng Today s outline We will learn how to: - Analyse a problem from a deep learning approach - Choose an architecture - Choose a loss

More information

Research on Pruning Convolutional Neural Network, Autoencoder and Capsule Network

Research on Pruning Convolutional Neural Network, Autoencoder and Capsule Network Research on Pruning Convolutional Neural Network, Autoencoder and Capsule Network Tianyu Wang Australia National University, Colledge of Engineering and Computer Science u@anu.edu.au Abstract. Some tasks,

More information

Gradient of the lower bound

Gradient of the lower bound Weakly Supervised with Latent PhD advisor: Dr. Ambedkar Dukkipati Department of Computer Science and Automation gaurav.pandey@csa.iisc.ernet.in Objective Given a training set that comprises image and image-level

More information

Exploiting noisy web data for largescale visual recognition

Exploiting noisy web data for largescale visual recognition Exploiting noisy web data for largescale visual recognition Lamberto Ballan University of Padova, Italy CVPRW WebVision - Jul 26, 2017 Datasets drive computer vision progress ImageNet Slide credit: O.

More information