6 BLAS (Basic Linear Algebra Subroutines)

Size: px
Start display at page:

Download "6 BLAS (Basic Linear Algebra Subroutines)"

Transcription

1 161 BLAS 6.1 Motivation 6 BLAS (Basic Linear Algebra Subroutines) 6.1 Motivation How to optimise programs that use a lot of linear algebra operations? Efficiency depends on but also on: processor speed number of arithmetic operations the speed of memory references Hierarchical memory structure:

2 162 BLAS 6.1 Motivation fast, small, expensive Registers cache RAM HardDisk slow, large, cheap Tape, CS, DVD, Network storage Where Useful are arithmetic operations onlyperformed the topon of thepicture? hierarchy before operations: what data needs is datatomovement be moved up; direction? after operations the data is moved down the hierarchy information movement faster on top What As a rule: is faster, speed speed of arithmetic of arithmetic operations operations faster orthan data data movement?

3 163 BLAS 6.1 Motivation Consider an arbitrary algorithm. Denote: f flops (# arithmetic operations: +, -, /) m # memory references Introduce q = f /m. Why this number is important? t f time spent on 1 flop t m time for memory access, Then calculation time is: f t f + m t m = f t f (1 + 1 q (t m t f )) In general, t m t f and therefore, total time is reflecting processor speed only if q is large or small?

4 164 BLAS 6.1 Motivation Example. Gauss elimination method for each i key operations: A(i + 1 : n,i) = A(i + 1 : n,i)/a(i,i), (12) A(i + 1 : n,i + 1 : n) = A(i + 1 : n,i + 1 : n) A(i + 1 : n,i) A(i,i + 1 : n). (13) Operation (12) represents following general operation: y = ax + y, x,y R n, a R (14) Operation (14) called saxpy (sum of a times x plus y) (13) represents: A = A vw T, A R n n, v,w R n (15) (15) matrix A rank-1 update, (Matrix vw T has rank 1, because but Why? each row of it is a multiple of vector w)

5 165 BLAS 6.1 Motivation Operation (14) analysis: Operation (15) analysis: m = 3n + 1 memory references: 2n + 1 reads * vectors x, y * scalar a n writes * new y m = n 2 + 2n memory references: n 2 + 2n reads n 2 writes Computations f = 2n 2 flops = q = 1+O(1/n) 1 with large n Computations take f = 2n flops = q = 2/3 + O(1/n) 2/3 for large n (14) 1st order operation (O(n) flops); (15) 2nd order operation (O(n 2 ) flops). Note that coefficient q is O(1) in both cases

6 166 BLAS 6.1 Motivation Faster results in case of 3rd order operations (O(n 3 ) operations with O(n 2 ) memory references). For example, matrix multiplication: C = AB +C, A, B, C R n n. (16) Here m = 4n 2 and f = n 2 (2n 1) + n 2 = 2n 3 (check it!) = q = n/2 if n. This operation can give processor work near peak performance, with good algorithm scheduling!

7 167 BLAS 6.2 BLAS implementations 6.2 BLAS implementations BLAS standard library for simple 1st, 2nd and 3rd order operations BLAS freeware, available for example from netlib ( netlib.org/blas/) Processor vendors often supply their own implementation BLAS ATLAS implementation ATLAS ( sourceforge.net/) self-optimising code Example of using BLAS (fortran90): LU factorisation using BLAS3 operations ( SC/konspekt/Naited/lu1blas3.f90.html) main program for testing different BLAS levels ( ~eero/sc/konspekt/naited/testblas3.f90.html)

8 168 Optimisation 6.2 BLAS implementations 7 Optimisation methods Minimising (or maximising) a (possibly multivariate) function F, F: A R, where A - subset of the Eucledian space R n Objective function F called differently in different cases: loss function cost function (minimization) indirect utility function (minimization) utility function (maximization) an energy function energy functional

9 169 Optimisation 6.2 BLAS implementations Classification number of independent controls (dimensionality) one variable several variables (two to ten) dozens hundreds tens of thousands an important special class discrete optimiziation large number of controls of boolean or integer values requires combinatorial methods calculus of variations infinitely many controls

10 170 Optimisation 6.2 BLAS implementations cost of evaluation of the function (realistic goals and methods are different) from milliseconds of computer time too costly measurements in natural experiments sharpness of the maximum The presence of constraints and their character Stochastic optimization - noise in measurements or uncertainty of some factors Structural optimization Multi-objective optimization (e.g. Light and strong) multi-modal optimization (many good solutions)

11 171 Optimisation 6.2 BLAS implementations How much knowledge there is about F? not much a lot of knowledge Type of x Discrete Combinatorial search Algorithmic Brute-force Stepwise MCMC Population-based... Continous Numerical methods Gradient Descent, (Quasi-)Newton, population-based Analytic... Here short insight only into the unconstrained optimization of problems with a few independent controls

12 172 Optimisation 7.1 Gradient descent methods 7.1 Gradient descent methods First order optimization algorithm finding local minimum special case of steepest descent method if F(x) - differentiable at x multivariate function = vector F(x) directs towards smaller values (at least locally) = for small enough α: F(x α F(x)) F(x) Method: make a sequence x 0, x 1,x 2,... such that x n+1 = x n α n F(x n )

13 173 Optimisation 7.1 Gradient descent methods Algorithm 1. Compute the new direction x n = F(x n ) 2. Choose the stepsize α n according to line search or backtracking 3. Update x n+1 = x n + α n x n

14 174 Optimisation 7.1 Gradient descent methods Exact line search Minimise F along the ray x + α x α 0 : α = argmin s 0 F(x + s x) used when the cost of the minimization problem low compared to the cost of computing the search direction itself In some special cases the minimizer can be found analytically and in others it can be computed efficiently

15 175 Optimisation 7.1 Gradient descent methods Backtracking line search The minimiser α chosen approximately to minimise F along the ray {x + α x α 0} or even reduce F enough given a descent direction x for F at x domf, β (0,0.5), γ (0,1). α := 1 while F(x + α x) > F(x) + βα F(x) T x, α := γα

Optimization. Industrial AI Lab.

Optimization. Industrial AI Lab. Optimization Industrial AI Lab. Optimization An important tool in 1) Engineering problem solving and 2) Decision science People optimize Nature optimizes 2 Optimization People optimize (source: http://nautil.us/blog/to-save-drowning-people-ask-yourself-what-would-light-do)

More information

Optimization. 1. Optimization. by Prof. Seungchul Lee Industrial AI Lab POSTECH. Table of Contents

Optimization. 1. Optimization. by Prof. Seungchul Lee Industrial AI Lab  POSTECH. Table of Contents Optimization by Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSTECH Table of Contents I. 1. Optimization II. 2. Solving Optimization Problems III. 3. How do we Find x f(x) = 0 IV.

More information

Introduction to optimization methods and line search

Introduction to optimization methods and line search Introduction to optimization methods and line search Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi How to find optimal solutions? Trial and error widely used in practice, not efficient and

More information

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms By:- Nitin Kamra Indian Institute of Technology, Delhi Advisor:- Prof. Ulrich Reude 1. Introduction to Linear

More information

25. NLP algorithms. ˆ Overview. ˆ Local methods. ˆ Constrained optimization. ˆ Global methods. ˆ Black-box methods.

25. NLP algorithms. ˆ Overview. ˆ Local methods. ˆ Constrained optimization. ˆ Global methods. ˆ Black-box methods. CS/ECE/ISyE 524 Introduction to Optimization Spring 2017 18 25. NLP algorithms ˆ Overview ˆ Local methods ˆ Constrained optimization ˆ Global methods ˆ Black-box methods ˆ Course wrap-up Laurent Lessard

More information

Lecture 9. Introduction to Numerical Techniques

Lecture 9. Introduction to Numerical Techniques Lecture 9. Introduction to Numerical Techniques Ivan Papusha CDS270 2: Mathematical Methods in Control and System Engineering May 27, 2015 1 / 25 Logistics hw8 (last one) due today. do an easy problem

More information

A Brief Look at Optimization

A Brief Look at Optimization A Brief Look at Optimization CSC 412/2506 Tutorial David Madras January 18, 2018 Slides adapted from last year s version Overview Introduction Classes of optimization problems Linear programming Steepest

More information

COPT: A C++ Open Optimization Library

COPT: A C++ Open Optimization Library COPT: A C++ Open Optimization Library {Zhouwang Yang, Ruimin Wang}@MathU School of Mathematical Science University of Science and Technology of China Zhouwang Yang Ruimin Wang University of Science and

More information

Introduction to Optimization Problems and Methods

Introduction to Optimization Problems and Methods Introduction to Optimization Problems and Methods wjch@umich.edu December 10, 2009 Outline 1 Linear Optimization Problem Simplex Method 2 3 Cutting Plane Method 4 Discrete Dynamic Programming Problem Simplex

More information

Machine Learning Basics. Sargur N. Srihari

Machine Learning Basics. Sargur N. Srihari Machine Learning Basics Sargur N. srihari@cedar.buffalo.edu 1 Overview Deep learning is a specific type of ML Necessary to have a solid understanding of the basic principles of ML 2 Topics Stochastic Gradient

More information

Review of previous examinations TMA4280 Introduction to Supercomputing

Review of previous examinations TMA4280 Introduction to Supercomputing Review of previous examinations TMA4280 Introduction to Supercomputing NTNU, IMF April 24. 2017 1 Examination The examination is usually comprised of: one problem related to linear algebra operations with

More information

Optimizing Cache Performance in Matrix Multiplication. UCSB CS240A, 2017 Modified from Demmel/Yelick s slides

Optimizing Cache Performance in Matrix Multiplication. UCSB CS240A, 2017 Modified from Demmel/Yelick s slides Optimizing Cache Performance in Matrix Multiplication UCSB CS240A, 2017 Modified from Demmel/Yelick s slides 1 Case Study with Matrix Multiplication An important kernel in many problems Optimization ideas

More information

Lecture 12: convergence. Derivative (one variable)

Lecture 12: convergence. Derivative (one variable) Lecture 12: convergence More about multivariable calculus Descent methods Backtracking line search More about convexity (first and second order) Newton step Example 1: linear programming (one var., one

More information

Machine Learning Basics: Stochastic Gradient Descent. Sargur N. Srihari

Machine Learning Basics: Stochastic Gradient Descent. Sargur N. Srihari Machine Learning Basics: Stochastic Gradient Descent Sargur N. srihari@cedar.buffalo.edu 1 Topics 1. Learning Algorithms 2. Capacity, Overfitting and Underfitting 3. Hyperparameters and Validation Sets

More information

Perceptron: This is convolution!

Perceptron: This is convolution! Perceptron: This is convolution! v v v Shared weights v Filter = local perceptron. Also called kernel. By pooling responses at different locations, we gain robustness to the exact spatial location of image

More information

16. LECTURE 16. I understand how to find the rate of change in any direction. I understand in what direction the maximum rate of change happens.

16. LECTURE 16. I understand how to find the rate of change in any direction. I understand in what direction the maximum rate of change happens. 6. LETURE 6 Objectives I understand how to find the rate of change in any direction. I understand in what direction the maximum rate of change happens. So far, we ve learned the definition of the gradient

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

Using Subspace Constraints to Improve Feature Tracking Presented by Bryan Poling. Based on work by Bryan Poling, Gilad Lerman, and Arthur Szlam

Using Subspace Constraints to Improve Feature Tracking Presented by Bryan Poling. Based on work by Bryan Poling, Gilad Lerman, and Arthur Szlam Presented by Based on work by, Gilad Lerman, and Arthur Szlam What is Tracking? Broad Definition Tracking, or Object tracking, is a general term for following some thing through multiple frames of a video

More information

Dense matrix algebra and libraries (and dealing with Fortran)

Dense matrix algebra and libraries (and dealing with Fortran) Dense matrix algebra and libraries (and dealing with Fortran) CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealing with Fortran)

More information

A Few Numerical Libraries for HPC

A Few Numerical Libraries for HPC A Few Numerical Libraries for HPC CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) A Few Numerical Libraries for HPC Spring 2016 1 / 37 Outline 1 HPC == numerical linear

More information

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund Optimization Plugin for RapidMiner Technical Report Venkatesh Umaashankar Sangkyun Lee 04/2012 technische universität dortmund Part of the work on this technical report has been supported by Deutsche Forschungsgemeinschaft

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture XV (04.02.08) Contents: Function Minimization (see E. Lohrmann & V. Blobel) Optimization Problem Set of n independent variables Sometimes in addition some constraints

More information

Introduction to Computer Science and Programming for Astronomers

Introduction to Computer Science and Programming for Astronomers Introduction to Computer Science and Programming for Astronomers Lecture 9. István Szapudi Institute for Astronomy University of Hawaii March 21, 2018 Outline Reminder 1 Reminder 2 3 Reminder We have demonstrated

More information

On Massively Parallel Algorithms to Track One Path of a Polynomial Homotopy

On Massively Parallel Algorithms to Track One Path of a Polynomial Homotopy On Massively Parallel Algorithms to Track One Path of a Polynomial Homotopy Jan Verschelde joint with Genady Yoffe and Xiangcheng Yu University of Illinois at Chicago Department of Mathematics, Statistics,

More information

CS Software Engineering for Scientific Computing Lecture 10:Dense Linear Algebra

CS Software Engineering for Scientific Computing Lecture 10:Dense Linear Algebra CS 294-73 Software Engineering for Scientific Computing Lecture 10:Dense Linear Algebra Slides from James Demmel and Kathy Yelick 1 Outline What is Dense Linear Algebra? Where does the time go in an algorithm?

More information

5 Machine Learning Abstractions and Numerical Optimization

5 Machine Learning Abstractions and Numerical Optimization Machine Learning Abstractions and Numerical Optimization 25 5 Machine Learning Abstractions and Numerical Optimization ML ABSTRACTIONS [some meta comments on machine learning] [When you write a large computer

More information

Topological Machining Fixture Layout Synthesis Using Genetic Algorithms

Topological Machining Fixture Layout Synthesis Using Genetic Algorithms Topological Machining Fixture Layout Synthesis Using Genetic Algorithms Necmettin Kaya Uludag University, Mechanical Eng. Department, Bursa, Turkey Ferruh Öztürk Uludag University, Mechanical Eng. Department,

More information

Introduction to Design Optimization: Search Methods

Introduction to Design Optimization: Search Methods Introduction to Design Optimization: Search Methods 1-D Optimization The Search We don t know the curve. Given α, we can calculate f(α). By inspecting some points, we try to find the approximated shape

More information

Solution Methods Numerical Algorithms

Solution Methods Numerical Algorithms Solution Methods Numerical Algorithms Evelien van der Hurk DTU Managment Engineering Class Exercises From Last Time 2 DTU Management Engineering 42111: Static and Dynamic Optimization (6) 09/10/2017 Class

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

CS281 Section 3: Practical Optimization

CS281 Section 3: Practical Optimization CS281 Section 3: Practical Optimization David Duvenaud and Dougal Maclaurin Most parameter estimation problems in machine learning cannot be solved in closed form, so we often have to resort to numerical

More information

CHAPTER 6 Parametric Spline Curves

CHAPTER 6 Parametric Spline Curves CHAPTER 6 Parametric Spline Curves When we introduced splines in Chapter 1 we focused on spline curves, or more precisely, vector valued spline functions. In Chapters 2 and 4 we then established the basic

More information

Nonlinear optimization in Eigen

Nonlinear optimization in Eigen InModelia http://www.inmodelia.com Eigen Meeting February 20th, 2010 1 Purposes - InModelia needs 2 3 4 It all started from InModelia needs with respect to numerical processing. Our software is written

More information

Multivariate Numerical Optimization

Multivariate Numerical Optimization Jianxin Wei March 1, 2013 Outline 1 Graphics for Function of Two Variables 2 Nelder-Mead Simplex Method 3 Steepest Descent Method 4 Newton s Method 5 Quasi-Newton s Method 6 Built-in R Function 7 Linear

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

BLAS. Christoph Ortner Stef Salvini

BLAS. Christoph Ortner Stef Salvini BLAS Christoph Ortner Stef Salvini The BLASics Basic Linear Algebra Subroutines Building blocks for more complex computations Very widely used Level means number of operations Level 1: vector-vector operations

More information

Implementation Of Harris Corner Matching Based On FPGA

Implementation Of Harris Corner Matching Based On FPGA 6th International Conference on Energy and Environmental Protection (ICEEP 2017) Implementation Of Harris Corner Matching Based On FPGA Xu Chengdaa, Bai Yunshanb Transportion Service Department, Bengbu

More information

Introduction to Design Optimization: Search Methods

Introduction to Design Optimization: Search Methods Introduction to Design Optimization: Search Methods 1-D Optimization The Search We don t know the curve. Given α, we can calculate f(α). By inspecting some points, we try to find the approximated shape

More information

CS545 Contents IX. Inverse Kinematics. Reading Assignment for Next Class. Analytical Methods Iterative (Differential) Methods

CS545 Contents IX. Inverse Kinematics. Reading Assignment for Next Class. Analytical Methods Iterative (Differential) Methods CS545 Contents IX Inverse Kinematics Analytical Methods Iterative (Differential) Methods Geometric and Analytical Jacobian Jacobian Transpose Method Pseudo-Inverse Pseudo-Inverse with Optimization Extended

More information

Sampling Using GPU Accelerated Sparse Hierarchical Models

Sampling Using GPU Accelerated Sparse Hierarchical Models Sampling Using GPU Accelerated Sparse Hierarchical Models Miroslav Stoyanov Oak Ridge National Laboratory supported by Exascale Computing Project (ECP) exascaleproject.org April 9, 28 Miroslav Stoyanov

More information

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008 A Brief Overview of Optimization Problems Steven G. Johnson MIT course 18.335, Fall 2008 Why optimization? In some sense, all engineering design is optimization: choosing design parameters to improve some

More information

6. Linear Discriminant Functions

6. Linear Discriminant Functions 6. Linear Discriminant Functions Linear Discriminant Functions Assumption: we know the proper forms for the discriminant functions, and use the samples to estimate the values of parameters of the classifier

More information

Theoretical Concepts of Machine Learning

Theoretical Concepts of Machine Learning Theoretical Concepts of Machine Learning Part 2 Institute of Bioinformatics Johannes Kepler University, Linz, Austria Outline 1 Introduction 2 Generalization Error 3 Maximum Likelihood 4 Noise Models 5

More information

Registration by continuous optimisation. Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR)

Registration by continuous optimisation. Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR) Registration by continuous optimisation Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR) Registration = optimisation C t x t y 1 Registration = optimisation C t x t y

More information

1 Motivation for Improving Matrix Multiplication

1 Motivation for Improving Matrix Multiplication CS170 Spring 2007 Lecture 7 Feb 6 1 Motivation for Improving Matrix Multiplication Now we will just consider the best way to implement the usual algorithm for matrix multiplication, the one that take 2n

More information

A Systematic Overview of Data Mining Algorithms

A Systematic Overview of Data Mining Algorithms A Systematic Overview of Data Mining Algorithms 1 Data Mining Algorithm A well-defined procedure that takes data as input and produces output as models or patterns well-defined: precisely encoded as a

More information

Newton and Quasi-Newton Methods

Newton and Quasi-Newton Methods Lab 17 Newton and Quasi-Newton Methods Lab Objective: Newton s method is generally useful because of its fast convergence properties. However, Newton s method requires the explicit calculation of the second

More information

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Hausdorff Institute for Mathematics (HIM) Trimester: Mathematics of Signal Processing

More information

COMP Parallel Computing. SMM (1) Memory Hierarchies and Shared Memory

COMP Parallel Computing. SMM (1) Memory Hierarchies and Shared Memory COMP 633 - Parallel Computing Lecture 6 September 6, 2018 SMM (1) Memory Hierarchies and Shared Memory 1 Topics Memory systems organization caches and the memory hierarchy influence of the memory hierarchy

More information

Lecture 2 Optimization with equality constraints

Lecture 2 Optimization with equality constraints Lecture 2 Optimization with equality constraints Constrained optimization The idea of constrained optimisation is that the choice of one variable often affects the amount of another variable that can be

More information

Programming in C. Lecture 6: The Memory Hierarchy and Cache Optimization. Dr Neel Krishnaswami. Michaelmas Term

Programming in C. Lecture 6: The Memory Hierarchy and Cache Optimization. Dr Neel Krishnaswami. Michaelmas Term Programming in C Lecture 6: The Memory Hierarchy and Cache Optimization Dr Neel Krishnaswami Michaelmas Term 2017-2018 1 / 16 Three Simple C Functions void increment_every(int *array) for (int i = 0; i

More information

Animation Lecture 10 Slide Fall 2003

Animation Lecture 10 Slide Fall 2003 Animation Lecture 10 Slide 1 6.837 Fall 2003 Conventional Animation Draw each frame of the animation great control tedious Reduce burden with cel animation layer keyframe inbetween cel panoramas (Disney

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Probably the simplest kind of problem. Occurs in many contexts, often as part of larger problem. Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica,

More information

LAPACK. Linear Algebra PACKage. Janice Giudice David Knezevic 1

LAPACK. Linear Algebra PACKage. Janice Giudice David Knezevic 1 LAPACK Linear Algebra PACKage 1 Janice Giudice David Knezevic 1 Motivating Question Recalling from last week... Level 1 BLAS: vectors ops Level 2 BLAS: matrix-vectors ops 2 2 O( n ) flops on O( n ) data

More information

Cost Functions in Machine Learning

Cost Functions in Machine Learning Cost Functions in Machine Learning Kevin Swingler Motivation Given some data that reflects measurements from the environment We want to build a model that reflects certain statistics about that data Something

More information

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case Ellipsoid Algorithm 15-853:Algorithms in the Real World Linear and Integer Programming II Ellipsoid algorithm Interior point methods First polynomial-time algorithm for linear programming (Khachian 79)

More information

SYSTEMS OF NONLINEAR EQUATIONS

SYSTEMS OF NONLINEAR EQUATIONS SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two

More information

10th August Part One: Introduction to Parallel Computing

10th August Part One: Introduction to Parallel Computing Part One: Introduction to Parallel Computing 10th August 2007 Part 1 - Contents Reasons for parallel computing Goals and limitations Criteria for High Performance Computing Overview of parallel computer

More information

Lecture 19 Subgradient Methods. November 5, 2008

Lecture 19 Subgradient Methods. November 5, 2008 Subgradient Methods November 5, 2008 Outline Lecture 19 Subgradients and Level Sets Subgradient Method Convergence and Convergence Rate Convex Optimization 1 Subgradients and Level Sets A vector s is a

More information

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz Gradient Descent Wed Sept 20th, 2017 James McInenrey Adapted from slides by Francisco J. R. Ruiz Housekeeping A few clarifications of and adjustments to the course schedule: No more breaks at the midpoint

More information

BLAS: Basic Linear Algebra Subroutines I

BLAS: Basic Linear Algebra Subroutines I BLAS: Basic Linear Algebra Subroutines I Most numerical programs do similar operations 90% time is at 10% of the code If these 10% of the code is optimized, programs will be fast Frequently used subroutines

More information

Learning via Optimization

Learning via Optimization Lecture 7 1 Outline 1. Optimization Convexity 2. Linear regression in depth Locally weighted linear regression 3. Brief dips Logistic Regression [Stochastic] gradient ascent/descent Support Vector Machines

More information

Constrained and Unconstrained Optimization

Constrained and Unconstrained Optimization Constrained and Unconstrained Optimization Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Oct 10th, 2017 C. Hurtado (UIUC - Economics) Numerical

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Basis Functions Tom Kelsey School of Computer Science University of St Andrews http://www.cs.st-andrews.ac.uk/~tom/ tom@cs.st-andrews.ac.uk Tom Kelsey ID5059-02-BF 2015-02-04

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

Particle Swarm Optimization applied to Pattern Recognition

Particle Swarm Optimization applied to Pattern Recognition Particle Swarm Optimization applied to Pattern Recognition by Abel Mengistu Advisor: Dr. Raheel Ahmad CS Senior Research 2011 Manchester College May, 2011-1 - Table of Contents Introduction... - 3 - Objectives...

More information

Scalable Data Analysis

Scalable Data Analysis Scalable Data Analysis David M. Blei April 26, 2012 1 Why? Olden days: Small data sets Careful experimental design Challenge: Squeeze as much as we can out of the data Modern data analysis: Very large

More information

BLAS: Basic Linear Algebra Subroutines I

BLAS: Basic Linear Algebra Subroutines I BLAS: Basic Linear Algebra Subroutines I Most numerical programs do similar operations 90% time is at 10% of the code If these 10% of the code is optimized, programs will be fast Frequently used subroutines

More information

Arithmetic in Quaternion Algebras

Arithmetic in Quaternion Algebras Arithmetic in Quaternion Algebras Graduate Algebra Symposium Jordan Wiebe University of Oklahoma November 5, 2016 Jordan Wiebe (University of Oklahoma) Arithmetic in Quaternion Algebras November 5, 2016

More information

Algebraic Iterative Methods for Computed Tomography

Algebraic Iterative Methods for Computed Tomography Algebraic Iterative Methods for Computed Tomography Per Christian Hansen DTU Compute Department of Applied Mathematics and Computer Science Technical University of Denmark Per Christian Hansen Algebraic

More information

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB MAT 75 Laboratory Matrix Computations and Programming in MATLAB In this laboratory session we will learn how to. Create and manipulate matrices and vectors.. Write simple programs in MATLAB NOTE: For your

More information

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia Lagrange multipliers From Wikipedia, the free encyclopedia In mathematical optimization problems, Lagrange multipliers, named after Joseph Louis Lagrange, is a method for finding the local extrema of a

More information

REGRESSION ANALYSIS : LINEAR BY MAUAJAMA FIRDAUS & TULIKA SAHA

REGRESSION ANALYSIS : LINEAR BY MAUAJAMA FIRDAUS & TULIKA SAHA REGRESSION ANALYSIS : LINEAR BY MAUAJAMA FIRDAUS & TULIKA SAHA MACHINE LEARNING It is the science of getting computer to learn without being explicitly programmed. Machine learning is an area of artificial

More information

Parallel Numerics. 1 Data Dependency Graphs & DAGs. Exercise 3: Vector/Vector Operations & P2P Communication II

Parallel Numerics. 1 Data Dependency Graphs & DAGs. Exercise 3: Vector/Vector Operations & P2P Communication II Technische Universität München WiSe 2014/15 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Sebastian Rettenberger, M.Sc. Parallel Numerics Exercise 3: Vector/Vector Operations

More information

Advanced Topics UNIT 2 PERFORMANCE EVALUATIONS

Advanced Topics UNIT 2 PERFORMANCE EVALUATIONS Advanced Topics UNIT 2 PERFORMANCE EVALUATIONS Structure Page Nos. 2.0 Introduction 4 2. Objectives 5 2.2 Metrics for Performance Evaluation 5 2.2. Running Time 2.2.2 Speed Up 2.2.3 Efficiency 2.3 Factors

More information

Optimization and least squares. Prof. Noah Snavely CS1114

Optimization and least squares. Prof. Noah Snavely CS1114 Optimization and least squares Prof. Noah Snavely CS1114 http://cs1114.cs.cornell.edu Administrivia A5 Part 1 due tomorrow by 5pm (please sign up for a demo slot) Part 2 will be due in two weeks (4/17)

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION. Nedim TUTKUN

REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION. Nedim TUTKUN REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION Nedim TUTKUN nedimtutkun@gmail.com Outlines Unconstrained Optimization Ackley s Function GA Approach for Ackley s Function Nonlinear Programming Penalty

More information

Matrix Inverse 2 ( 2) 1 = 2 1 2

Matrix Inverse 2 ( 2) 1 = 2 1 2 Name: Matrix Inverse For Scalars, we have what is called a multiplicative identity. This means that if we have a scalar number, call it r, then r multiplied by the multiplicative identity equals r. Without

More information

3. Cluster analysis Overview

3. Cluster analysis Overview Université Laval Multivariate analysis - February 2006 1 3.1. Overview 3. Cluster analysis Clustering requires the recognition of discontinuous subsets in an environment that is sometimes discrete (as

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

The Level Set Method applied to Structural Topology Optimization

The Level Set Method applied to Structural Topology Optimization The Level Set Method applied to Structural Topology Optimization Dr Peter Dunning 22-Jan-2013 Structural Optimization Sizing Optimization Shape Optimization Increasing: No. design variables Opportunity

More information

Metric Learning for Large-Scale Image Classification:

Metric Learning for Large-Scale Image Classification: Metric Learning for Large-Scale Image Classification: Generalizing to New Classes at Near-Zero Cost Florent Perronnin 1 work published at ECCV 2012 with: Thomas Mensink 1,2 Jakob Verbeek 2 Gabriela Csurka

More information

A Study on the Optimization Methods for Optomechanical Alignment

A Study on the Optimization Methods for Optomechanical Alignment A Study on the Optimization Methods for Optomechanical Alignment Ming-Ta Yu a, Tsung-Yin Lin b *, Yi-You Li a, and Pei-Feng Shu a a Dept. of Mech. Eng., National Chiao Tung University, Hsinchu 300, Taiwan,

More information

AMath 483/583 Lecture 22. Notes: Another Send/Receive example. Notes: Notes: Another Send/Receive example. Outline:

AMath 483/583 Lecture 22. Notes: Another Send/Receive example. Notes: Notes: Another Send/Receive example. Outline: AMath 483/583 Lecture 22 Outline: MPI Master Worker paradigm Linear algebra LAPACK and the BLAS References: $UWHPSC/codes/mpi class notes: MPI section class notes: Linear algebra Another Send/Receive example

More information

M. Sc. (Artificial Intelligence and Machine Learning)

M. Sc. (Artificial Intelligence and Machine Learning) Course Name: Advanced Python Course Code: MSCAI 122 This course will introduce students to advanced python implementations and the latest Machine Learning and Deep learning libraries, Scikit-Learn and

More information

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics 1. Introduction EE 546, Univ of Washington, Spring 2016 performance of numerical methods complexity bounds structural convex optimization course goals and topics 1 1 Some course info Welcome to EE 546!

More information

A New and Simple Method of Solving Fully Fuzzy Linear System

A New and Simple Method of Solving Fully Fuzzy Linear System Annals of Pure and Applied Mathematics Vol. 8, No. 2, 2014, 193-199 ISSN: 2279-087X (P), 2279-0888(online) Published on 17 December 2014 www.researchmathsci.org Annals of A New and Simple Method of Solving

More information

CS 440 Theory of Algorithms /

CS 440 Theory of Algorithms / CS 440 Theory of Algorithms / CS 468 Algorithms in Bioinformaticsi Brute Force. Design and Analysis of Algorithms - Chapter 3 3-0 Brute Force A straightforward approach usually based on problem statement

More information

Uncovering the Lagrangian of a system from discrete observations

Uncovering the Lagrangian of a system from discrete observations Uncovering the Lagrangian of a system from discrete observations Yakov Berchenko-Kogan Massachusetts Institute of Technology 7 January, 2012 Yakov Berchenko-Kogan (MIT) Uncovering the Lagrangian 7 January,

More information

CS294-1 Assignment 2 Report

CS294-1 Assignment 2 Report CS294-1 Assignment 2 Report Keling Chen and Huasha Zhao February 24, 2012 1 Introduction The goal of this homework is to predict a users numeric rating for a book from the text of the user s review. The

More information

3. Replace any row by the sum of that row and a constant multiple of any other row.

3. Replace any row by the sum of that row and a constant multiple of any other row. Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying

More information

EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON PARALLEL ARCHITECTURE USING MPI

EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON PARALLEL ARCHITECTURE USING MPI EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON PARALLEL ARCHITECTURE USING MPI 1 Akshay N. Panajwar, 2 Prof.M.A.Shah Department of Computer Science and Engineering, Walchand College of Engineering,

More information

Space Filling Curves and Hierarchical Basis. Klaus Speer

Space Filling Curves and Hierarchical Basis. Klaus Speer Space Filling Curves and Hierarchical Basis Klaus Speer Abstract Real world phenomena can be best described using differential equations. After linearisation we have to deal with huge linear systems of

More information

Edge detection. Convert a 2D image into a set of curves. Extracts salient features of the scene More compact than pixels

Edge detection. Convert a 2D image into a set of curves. Extracts salient features of the scene More compact than pixels Edge Detection Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels Origin of Edges surface normal discontinuity depth discontinuity surface

More information

Column and row space of a matrix

Column and row space of a matrix Column and row space of a matrix Recall that we can consider matrices as concatenation of rows or columns. c c 2 c 3 A = r r 2 r 3 a a 2 a 3 a 2 a 22 a 23 a 3 a 32 a 33 The space spanned by columns of

More information

Recent Developments in Model-based Derivative-free Optimization

Recent Developments in Model-based Derivative-free Optimization Recent Developments in Model-based Derivative-free Optimization Seppo Pulkkinen April 23, 2010 Introduction Problem definition The problem we are considering is a nonlinear optimization problem with constraints:

More information

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3 6 Iterative Solvers Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of parameters Solving such systems with Gaussian elimination or matrix factorizations could require

More information