Modern Methods of Data Analysis - WS 07/08

Size: px
Start display at page:

Download "Modern Methods of Data Analysis - WS 07/08"

Transcription

1 Modern Methods of Data Analysis Lecture XV ( ) Contents: Function Minimization (see E. Lohrmann & V. Blobel)

2 Optimization Problem Set of n independent variables Sometimes in addition some constraints A single measure of goodness => objective function In physics data analysis: Objective function: (negative log of a) Likelihood function in MLH method sum of squares in a (nonlinear) Least Square problem Constraints: equality constraints, expressing relations between parameters inequality constraints are limit of certain parameters defining a restricted range of parameters (e.g. m>0)

3 Aim of Optimization Find the global minimum of the objective function within the allowed range of parameter values in a short time even for a large number of parameters and a complicated objective function even if there are local minima Most methods will converge to the next minimum, which may be the global minimum or a local minimum, going immediately downhill as far as possible. Search for the global minimum requires a special effort.

4 One-dimensional Minimization Search for minimum of function f(x) of (scalar) argument x Important application in multidimensional minimization: robust minimization along a line line search Aim: robust, efficient and as fast as possible, because each function evaluation may require a large CPU time Standard method: iterations, starting from expression : with convergence to fixed point, with with

5 Newton Iteration Method Method for the determination of zeros of a function ( ), based on derivatives: Same method for min/max determination ( derived from Taylor expansion ): It follows:

6 Convergence Behaviour (I) An iterative method is called local convergent of at least order p, if for all start values is valid for all k (c<1 in the linear case p=1). Condition for order p: and the iterative method is convergent of order p.

7 Convergence Behaviour (II) The linear case (p=1): required. Sequence converging monotonely to for a positive value of, and alternating around for a negative value. linear convergence can be very slow. The constant c is often very close to 1, and many 100 iterations may be necessary with small progress per iteration - not recommended. quadratic convergence usually only few iterations required, very fast in final phase - recommended, at least for the end game.

8 Convergence for Newton Method... for the determination of a minimum (or maximum): in general Newtons method: - quadratically convergent (locally) - first and second derivative required - may be divergent for a bad start value

9 Search Without Derivatives Required: robust convergent method for minimum determination without the need to calculate derivatives (which may be complicated or impossible) Aim: determine very short x-interval, which contains the minimum of the function f(x) Strategy of search method with two steps find initial interval, which includes unimodal minimum for some reduce size of interval (sufficiently)

10 Golden Section Strategy Define new point by New interval, depending on function value Reduction of length of interval by factor by one iteration for cost of computation of one function value (linear convergence). For 10 iterations reduction by factor, not dependent on function behaviour.

11 Parabola Method More efficient for normal behaviour of functions: fit parabola to last three points and use minimum of parabola as next point Note: many functions to be minimized are parabolic in good approximation => min. of parabola close to function minimum Bild 8.6 (Blobel/Lohrmann) But: method can get stuck with unbalanced section of interval (parabolic interpolation become instable) => Combined method: use mixture of parabola and golden section method to avoid unbalanced section of the interval.

12 Search Methods in n Dimensions Search method in n dimensions do not require any derivatives, only function values. Examples: Line search in one variable: sequentially in all dimensions (usually rather inefficient) Simplex method by Nelder and Mead: simple, but making use of earlier function evaluations in an efficient way ( learning ) Monte Carlo search: random search in n dimensions, using result as starting values for more efficient methods; meaningful if several local minima may exist In general search methods are acceptable initially (far from the optimum), but are inefficient and slow in the end game.

13 Simplex Method A simplex is formed by n+1 points in n-d space (n=2 triangle) sorted such that values are in the order In addition: mean of best n points = center of gravity Method: sequence of cycles with new point in each cycle, replacing worst point, with new (updated) simplex in each cycle. At the start of each cycle new test point of worst point at the center or gravity:, obtained by reflexion

14 The Simplex Method A few steps of the simplex method. Starting from the simplex with the center of gravity c. The points and are test points.

15 A Cycle in Simplex Method Depending on value : : Test point is middle point and is added, the previous worst point is removed : Test point is best point, search direction seems to effective. A new point (with β > 1) is determined and the function value is evaluated. For extra step is successful, is replaced by otherwise by : The simplex is too big, it has to be reduced. For the test point replaces the worst point. A new test point is defined by with 0<γ<1. If this point with is an improvement, then is replaces by this point. Otherwise a new simplex is defined by replacing all points but by for j=2,...,n+1 with 0<δ<1, which requires n function evaluations. Typical values are α=1, β=2, γ=0.5 and δ=0.5.

16 Monte Carlo Search in n Dimensions Search in a box: Lower and upper boundaries defined a test point: and with (uniformly distributed). Check for the point with the smallest function value among several test points. Search in a sphere: Define step size vector with:, and search with (from standard normal distribution). If new point has smaller function value, use this as next starting point. Meaningful in higher dimensions, especially if existence of many local minima expected, as method to get good starting value.

17 n Dimensional Minimization with Derivatives minimize Taylor expansion: function derivative Function value and derivatives are evaluated at function gradient Hesse matrix

18 Covariance Matrix Note: if objective function is: a sum of squares of deviations, defined by the Method or Least Square or a negative log. Likelihood function, defined according to the Maximum Likelihood function then the inverse Hessian matrix H at the minimum is a good estimate of the covariance matrix of the parameters : The second derivative needs most of the time to be computed anyhow at least at the last iteration step.

19 The Newton Step Step determined from For a quadratic function the Newton step is, in length and direction, a step to the minimum of the function. Sometimes large angle ( ) between Newton direction and (the direction of steepest descent). Calculation of distance to minimum (called EDM in MINUIT) if Hessian positive-definite. For a quadratic function the distance to the minimum is d/2.

20 General Iteration Scheme Test for convergence: If the conditions for convergence are satisfied, the algorithms terminates with as the solution. The difference and d are used in the test Compute a search vector: A vector is computed as the new search vector. The newton search vector is determine from Line Search: A one-dimensional minimization is done for the function and is determined. (this step is essential to get a stable method!) Update: The point is defined by and k is increased by 1,

21 Method of Steepest Descent The search vector is equal to the negative gradient Step seems to be natural choice; Only gradient required (no Hesse matrix) good; No step size defined (in contrast to the Newton step) bad; rate of convergence only linear: and are largest and smallest eigenvalue and κ condition number of Hesse matrix H. For a large value of κ, c close to one and slow convergence very bad. Optimal step size, if Hessian known:

22 Derivative Calculation The (optimal) Newton method requires first derivatives of F(x) : computation second derivatives of F(x) : computation Analytical derivatives may be impossible or difficult to obtain. Numerical derivatives require good step size δ for differential quotient E.g numerical derivative of f(x) in one dimension: Can the Newton (or quasi Newton) method be used without explicit calculation of the complete Hessian?

23 Minimization of Objective Function with gradient Hessian Newton step Least squares contributions: Ignoring second derivatives improves the Newton step!

24 Newton steps... in fit of Exponential Colour contours of objective function steps correspond to ΔΧ²~ derivatives ignored : 2. derivatives included Ignoring second derivatives improves the Newton step!

25 Variable Metrik Method (I) Calculation of Hessian (with n(n+1)/2 different elements) from sequence of first derivatives (gradients) by update of estimate from change of gradient. Step is calculated from After a line search with minimum at with gradient Update matrix (with new value is : ) is not completely defined by those equations. Note: an accurate line search is essential for the success.

26 Variable Metrik Method (II) Most effective update formula (Broydo/Fletcher/Goldfarb/Shanno (BFGS)) Initial matrix may be the unit matrix Properties: the method generates n independent search directions for a quadratic function and the estimated Hessian converges to the true Hessian. Potential problems: no real convergence for good starting point; estimate destroyed for small, inaccurate steps (round-off errors)

27 Minimization with MINUIT Several options can be selected: Option MIGRAD: minimizes the objective function, calculates : first derivatives numerically and uses the BFGS update formula for the Hessian fast Option HESSE: calculates the Hesse matrix numerically recommended after minimization Option MINIMIZE: minimization by MIGRAD and HESSE calculation with checks

Today. Golden section, discussion of error Newton s method. Newton s method, steepest descent, conjugate gradient

Today. Golden section, discussion of error Newton s method. Newton s method, steepest descent, conjugate gradient Optimization Last time Root finding: definition, motivation Algorithms: Bisection, false position, secant, Newton-Raphson Convergence & tradeoffs Example applications of Newton s method Root finding in

More information

Multivariate Numerical Optimization

Multivariate Numerical Optimization Jianxin Wei March 1, 2013 Outline 1 Graphics for Function of Two Variables 2 Nelder-Mead Simplex Method 3 Steepest Descent Method 4 Newton s Method 5 Quasi-Newton s Method 6 Built-in R Function 7 Linear

More information

Introduction to optimization methods and line search

Introduction to optimization methods and line search Introduction to optimization methods and line search Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi How to find optimal solutions? Trial and error widely used in practice, not efficient and

More information

Constrained and Unconstrained Optimization

Constrained and Unconstrained Optimization Constrained and Unconstrained Optimization Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Oct 10th, 2017 C. Hurtado (UIUC - Economics) Numerical

More information

Lecture 6 - Multivariate numerical optimization

Lecture 6 - Multivariate numerical optimization Lecture 6 - Multivariate numerical optimization Björn Andersson (w/ Jianxin Wei) Department of Statistics, Uppsala University February 13, 2014 1 / 36 Table of Contents 1 Plotting functions of two variables

More information

Theoretical Concepts of Machine Learning

Theoretical Concepts of Machine Learning Theoretical Concepts of Machine Learning Part 2 Institute of Bioinformatics Johannes Kepler University, Linz, Austria Outline 1 Introduction 2 Generalization Error 3 Maximum Likelihood 4 Noise Models 5

More information

Introduction to Optimization Problems and Methods

Introduction to Optimization Problems and Methods Introduction to Optimization Problems and Methods wjch@umich.edu December 10, 2009 Outline 1 Linear Optimization Problem Simplex Method 2 3 Cutting Plane Method 4 Discrete Dynamic Programming Problem Simplex

More information

Energy Minimization -Non-Derivative Methods -First Derivative Methods. Background Image Courtesy: 3dciencia.com visual life sciences

Energy Minimization -Non-Derivative Methods -First Derivative Methods. Background Image Courtesy: 3dciencia.com visual life sciences Energy Minimization -Non-Derivative Methods -First Derivative Methods Background Image Courtesy: 3dciencia.com visual life sciences Introduction Contents Criteria to start minimization Energy Minimization

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Quantitative Macroeconomics Raül Santaeulàlia-Llopis MOVE-UAB and Barcelona GSE Fall 2018 Raül Santaeulàlia-Llopis (MOVE-UAB,BGSE) QM: Numerical Optimization Fall 2018 1 / 46 1 Introduction

More information

CS281 Section 3: Practical Optimization

CS281 Section 3: Practical Optimization CS281 Section 3: Practical Optimization David Duvenaud and Dougal Maclaurin Most parameter estimation problems in machine learning cannot be solved in closed form, so we often have to resort to numerical

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Conjugate Direction Methods Barnabás Póczos & Ryan Tibshirani Conjugate Direction Methods 2 Books to Read David G. Luenberger, Yinyu Ye: Linear and Nonlinear Programming Nesterov:

More information

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn Today s class Roots of equation Finish up incremental search Open methods 1 False Position Method Although the interval [a,b] where the root becomes iteratively closer with the false position method, unlike

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

Computational Methods. Constrained Optimization

Computational Methods. Constrained Optimization Computational Methods Constrained Optimization Manfred Huber 2010 1 Constrained Optimization Unconstrained Optimization finds a minimum of a function under the assumption that the parameters can take on

More information

Solving for dynamic user equilibrium

Solving for dynamic user equilibrium Solving for dynamic user equilibrium CE 392D Overall DTA problem 1. Calculate route travel times 2. Find shortest paths 3. Adjust route choices toward equilibrium We can envision each of these steps as

More information

Optimization. (Lectures on Numerical Analysis for Economists III) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 20, 2018

Optimization. (Lectures on Numerical Analysis for Economists III) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 20, 2018 Optimization (Lectures on Numerical Analysis for Economists III) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 20, 2018 1 University of Pennsylvania 2 Boston College Optimization Optimization

More information

Image Registration Lecture 4: First Examples

Image Registration Lecture 4: First Examples Image Registration Lecture 4: First Examples Prof. Charlene Tsai Outline Example Intensity-based registration SSD error function Image mapping Function minimization: Gradient descent Derivative calculation

More information

Classical Gradient Methods

Classical Gradient Methods Classical Gradient Methods Note simultaneous course at AMSI (math) summer school: Nonlin. Optimization Methods (see http://wwwmaths.anu.edu.au/events/amsiss05/) Recommended textbook (Springer Verlag, 1999):

More information

Hartley - Zisserman reading club. Part I: Hartley and Zisserman Appendix 6: Part II: Zhengyou Zhang: Presented by Daniel Fontijne

Hartley - Zisserman reading club. Part I: Hartley and Zisserman Appendix 6: Part II: Zhengyou Zhang: Presented by Daniel Fontijne Hartley - Zisserman reading club Part I: Hartley and Zisserman Appendix 6: Iterative estimation methods Part II: Zhengyou Zhang: A Flexible New Technique for Camera Calibration Presented by Daniel Fontijne

More information

MATH3016: OPTIMIZATION

MATH3016: OPTIMIZATION MATH3016: OPTIMIZATION Lecturer: Dr Huifu Xu School of Mathematics University of Southampton Highfield SO17 1BJ Southampton Email: h.xu@soton.ac.uk 1 Introduction What is optimization? Optimization is

More information

A Study on the Optimization Methods for Optomechanical Alignment

A Study on the Optimization Methods for Optomechanical Alignment A Study on the Optimization Methods for Optomechanical Alignment Ming-Ta Yu a, Tsung-Yin Lin b *, Yi-You Li a, and Pei-Feng Shu a a Dept. of Mech. Eng., National Chiao Tung University, Hsinchu 300, Taiwan,

More information

A Brief Look at Optimization

A Brief Look at Optimization A Brief Look at Optimization CSC 412/2506 Tutorial David Madras January 18, 2018 Slides adapted from last year s version Overview Introduction Classes of optimization problems Linear programming Steepest

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

Experimental Data and Training

Experimental Data and Training Modeling and Control of Dynamic Systems Experimental Data and Training Mihkel Pajusalu Alo Peets Tartu, 2008 1 Overview Experimental data Designing input signal Preparing data for modeling Training Criterion

More information

10703 Deep Reinforcement Learning and Control

10703 Deep Reinforcement Learning and Control 10703 Deep Reinforcement Learning and Control Russ Salakhutdinov Machine Learning Department rsalakhu@cs.cmu.edu Policy Gradient I Used Materials Disclaimer: Much of the material and slides for this lecture

More information

Optimization. Industrial AI Lab.

Optimization. Industrial AI Lab. Optimization Industrial AI Lab. Optimization An important tool in 1) Engineering problem solving and 2) Decision science People optimize Nature optimizes 2 Optimization People optimize (source: http://nautil.us/blog/to-save-drowning-people-ask-yourself-what-would-light-do)

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018 CS 395T Lecture 12: Feature Matching and Bundle Adjustment Qixing Huang October 10 st 2018 Lecture Overview Dense Feature Correspondences Bundle Adjustment in Structure-from-Motion Image Matching Algorithm

More information

Multi Layer Perceptron trained by Quasi Newton learning rule

Multi Layer Perceptron trained by Quasi Newton learning rule Multi Layer Perceptron trained by Quasi Newton learning rule Feed-forward neural networks provide a general framework for representing nonlinear functional mappings between a set of input variables and

More information

5 Machine Learning Abstractions and Numerical Optimization

5 Machine Learning Abstractions and Numerical Optimization Machine Learning Abstractions and Numerical Optimization 25 5 Machine Learning Abstractions and Numerical Optimization ML ABSTRACTIONS [some meta comments on machine learning] [When you write a large computer

More information

APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING

APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING Second Edition P. Venkataraman Rochester Institute of Technology WILEY JOHN WILEY & SONS, INC. CONTENTS PREFACE xiii 1 Introduction 1 1.1. Optimization Fundamentals

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

CPSC 340: Machine Learning and Data Mining. Robust Regression Fall 2015

CPSC 340: Machine Learning and Data Mining. Robust Regression Fall 2015 CPSC 340: Machine Learning and Data Mining Robust Regression Fall 2015 Admin Can you see Assignment 1 grades on UBC connect? Auditors, don t worry about it. You should already be working on Assignment

More information

REGRESSION ANALYSIS : LINEAR BY MAUAJAMA FIRDAUS & TULIKA SAHA

REGRESSION ANALYSIS : LINEAR BY MAUAJAMA FIRDAUS & TULIKA SAHA REGRESSION ANALYSIS : LINEAR BY MAUAJAMA FIRDAUS & TULIKA SAHA MACHINE LEARNING It is the science of getting computer to learn without being explicitly programmed. Machine learning is an area of artificial

More information

OPTIMIZATION FOR AUTOMATIC HISTORY MATCHING

OPTIMIZATION FOR AUTOMATIC HISTORY MATCHING INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 2, Supp, Pages 131 137 c 2005 Institute for Scientific Computing and Information OPTIMIZATION FOR AUTOMATIC HISTORY MATCHING Abstract. SHUGUANG

More information

Machine Learning for Signal Processing Lecture 4: Optimization

Machine Learning for Signal Processing Lecture 4: Optimization Machine Learning for Signal Processing Lecture 4: Optimization 13 Sep 2015 Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU) 11-755/18-797 1 Index 1. The problem of optimization 2. Direct optimization

More information

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 2: Linear Regression Gradient Descent Non-linear basis functions LINEAR REGRESSION MOTIVATION Why Linear Regression? Simplest

More information

Today. Gradient descent for minimization of functions of real variables. Multi-dimensional scaling. Self-organizing maps

Today. Gradient descent for minimization of functions of real variables. Multi-dimensional scaling. Self-organizing maps Today Gradient descent for minimization of functions of real variables. Multi-dimensional scaling Self-organizing maps Gradient Descent Derivatives Consider function f(x) : R R. The derivative w.r.t. x

More information

An Evolutionary Algorithm for Minimizing Multimodal Functions

An Evolutionary Algorithm for Minimizing Multimodal Functions An Evolutionary Algorithm for Minimizing Multimodal Functions D.G. Sotiropoulos, V.P. Plagianakos and M.N. Vrahatis University of Patras, Department of Mamatics, Division of Computational Mamatics & Informatics,

More information

Training of Neural Networks. Q.J. Zhang, Carleton University

Training of Neural Networks. Q.J. Zhang, Carleton University Training of Neural Networks Notation: x: input of the original modeling problem or the neural network y: output of the original modeling problem or the neural network w: internal weights/parameters of

More information

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING DAVID G. LUENBERGER Stanford University TT ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California London Don Mills, Ontario CONTENTS

More information

Neural Networks: Optimization Part 1. Intro to Deep Learning, Fall 2018

Neural Networks: Optimization Part 1. Intro to Deep Learning, Fall 2018 Neural Networks: Optimization Part 1 Intro to Deep Learning, Fall 2018 1 Story so far Neural networks are universal approximators Can model any odd thing Provided they have the right architecture We must

More information

Introduction to unconstrained optimization - derivative-free methods

Introduction to unconstrained optimization - derivative-free methods Introduction to unconstrained optimization - derivative-free methods Jussi Hakanen Post-doctoral researcher Office: AgC426.3 jussi.hakanen@jyu.fi Learning outcomes To understand the basic principles of

More information

Optimization. there will solely. any other methods presented can be. saved, and the. possibility. the behavior of. next point is to.

Optimization. there will solely. any other methods presented can be. saved, and the. possibility. the behavior of. next point is to. From: http:/ //trond.hjorteland.com/thesis/node1.html Optimization As discussed briefly in Section 4.1, the problem we are facing when searching for stationaryy values of the action given in equation (4.1)

More information

Module 4 : Solving Linear Algebraic Equations Section 11 Appendix C: Steepest Descent / Gradient Search Method

Module 4 : Solving Linear Algebraic Equations Section 11 Appendix C: Steepest Descent / Gradient Search Method Module 4 : Solving Linear Algebraic Equations Section 11 Appendix C: Steepest Descent / Gradient Search Method 11 Appendix C: Steepest Descent / Gradient Search Method In the module on Problem Discretization

More information

Chapter Multidimensional Gradient Method

Chapter Multidimensional Gradient Method Chapter 09.04 Multidimensional Gradient Method After reading this chapter, you should be able to: 1. Understand how multi-dimensional gradient methods are different from direct search methods. Understand

More information

Algorithms for convex optimization

Algorithms for convex optimization Algorithms for convex optimization Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University kocvara@utia.cas.cz http://www.utia.cas.cz/kocvara

More information

1.1 calculator viewing window find roots in your calculator 1.2 functions find domain and range (from a graph) may need to review interval notation

1.1 calculator viewing window find roots in your calculator 1.2 functions find domain and range (from a graph) may need to review interval notation 1.1 calculator viewing window find roots in your calculator 1.2 functions find domain and range (from a graph) may need to review interval notation functions vertical line test function notation evaluate

More information

Introduction to Design Optimization: Search Methods

Introduction to Design Optimization: Search Methods Introduction to Design Optimization: Search Methods 1-D Optimization The Search We don t know the curve. Given α, we can calculate f(α). By inspecting some points, we try to find the approximated shape

More information

COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions

COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16 Lecture 2: Linear Regression Gradient Descent Non-linear basis functions LINEAR REGRESSION MOTIVATION Why Linear Regression? Regression

More information

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case Ellipsoid Algorithm 15-853:Algorithms in the Real World Linear and Integer Programming II Ellipsoid algorithm Interior point methods First polynomial-time algorithm for linear programming (Khachian 79)

More information

Optimal Control Techniques for Dynamic Walking

Optimal Control Techniques for Dynamic Walking Optimal Control Techniques for Dynamic Walking Optimization in Robotics & Biomechanics IWR, University of Heidelberg Presentation partly based on slides by Sebastian Sager, Moritz Diehl and Peter Riede

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Wiswall, Applied Microeconometrics, Lecture Notes 1. In this section we focus on three very common computational tasks in applied

Wiswall, Applied Microeconometrics, Lecture Notes 1. In this section we focus on three very common computational tasks in applied Wiswall, Applied Microeconometrics, Lecture Notes 1 1 Numerical Methods In this section we focus on three very common computational tasks in applied microeconomics: i) calculating derivatives numerically

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Newton and Quasi-Newton Methods

Newton and Quasi-Newton Methods Lab 17 Newton and Quasi-Newton Methods Lab Objective: Newton s method is generally useful because of its fast convergence properties. However, Newton s method requires the explicit calculation of the second

More information

Algoritmi di Ottimizzazione: Parte A Aspetti generali e algoritmi classici

Algoritmi di Ottimizzazione: Parte A Aspetti generali e algoritmi classici Identificazione e Controllo Intelligente Algoritmi di Ottimizzazione: Parte A Aspetti generali e algoritmi classici David Naso A.A. 2006-2007 Identificazione e Controllo Intelligente 1 Search and optimization

More information

Introduction. Optimization

Introduction. Optimization Introduction to Optimization Amy Langville SAMSI Undergraduate Workshop N.C. State University SAMSI 6/1/05 GOAL: minimize f(x 1, x 2, x 3, x 4, x 5 ) = x 2 1.5x 2x 3 + x 4 /x 5 PRIZE: $1 million # of independent

More information

A User Manual for the Multivariate MLE Tool. Before running the main multivariate program saved in the SAS file Part2-Main.sas,

A User Manual for the Multivariate MLE Tool. Before running the main multivariate program saved in the SAS file Part2-Main.sas, A User Manual for the Multivariate MLE Tool Before running the main multivariate program saved in the SAS file Part-Main.sas, the user must first compile the macros defined in the SAS file Part-Macros.sas

More information

25. NLP algorithms. ˆ Overview. ˆ Local methods. ˆ Constrained optimization. ˆ Global methods. ˆ Black-box methods.

25. NLP algorithms. ˆ Overview. ˆ Local methods. ˆ Constrained optimization. ˆ Global methods. ˆ Black-box methods. CS/ECE/ISyE 524 Introduction to Optimization Spring 2017 18 25. NLP algorithms ˆ Overview ˆ Local methods ˆ Constrained optimization ˆ Global methods ˆ Black-box methods ˆ Course wrap-up Laurent Lessard

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

Delaunay-based Derivative-free Optimization via Global Surrogate. Pooriya Beyhaghi, Daniele Cavaglieri and Thomas Bewley

Delaunay-based Derivative-free Optimization via Global Surrogate. Pooriya Beyhaghi, Daniele Cavaglieri and Thomas Bewley Delaunay-based Derivative-free Optimization via Global Surrogate Pooriya Beyhaghi, Daniele Cavaglieri and Thomas Bewley May 23, 2014 Delaunay-based Derivative-free Optimization via Global Surrogate Pooriya

More information

Fast oriented bounding box optimization on the rotation group SO(3, R)

Fast oriented bounding box optimization on the rotation group SO(3, R) Fast oriented bounding box optimization on the rotation group SO(3, R) Chia-Tche Chang 1, Bastien Gorissen 2,3 and Samuel Melchior 1,2 chia-tche.chang@uclouvain.be bastien.gorissen@cenaero.be samuel.melchior@uclouvain.be

More information

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz Gradient Descent Wed Sept 20th, 2017 James McInenrey Adapted from slides by Francisco J. R. Ruiz Housekeeping A few clarifications of and adjustments to the course schedule: No more breaks at the midpoint

More information

Generic descent algorithm Generalization to multiple dimensions Problems of descent methods, possible improvements Fixes Local minima

Generic descent algorithm Generalization to multiple dimensions Problems of descent methods, possible improvements Fixes Local minima 1 Lecture 10: descent methods Generic descent algorithm Generalization to multiple dimensions Problems of descent methods, possible improvements Fixes Local minima Gradient descent (reminder) Minimum of

More information

Adaptive Regularization. in Neural Network Filters

Adaptive Regularization. in Neural Network Filters Adaptive Regularization in Neural Network Filters Course 0455 Advanced Digital Signal Processing May 3 rd, 00 Fares El-Azm Michael Vinther d97058 s97397 Introduction The bulk of theoretical results and

More information

Optimization in Scilab

Optimization in Scilab Scilab sheet Optimization in Scilab Scilab provides a high-level matrix language and allows to define complex mathematical models and to easily connect to existing libraries. That is why optimization is

More information

NUMERICAL METHODS PERFORMANCE OPTIMIZATION IN ELECTROLYTES PROPERTIES MODELING

NUMERICAL METHODS PERFORMANCE OPTIMIZATION IN ELECTROLYTES PROPERTIES MODELING NUMERICAL METHODS PERFORMANCE OPTIMIZATION IN ELECTROLYTES PROPERTIES MODELING Dmitry Potapov National Research Nuclear University MEPHI, Russia, Moscow, Kashirskoe Highway, The European Laboratory for

More information

Numerical Optimization: Introduction and gradient-based methods

Numerical Optimization: Introduction and gradient-based methods Numerical Optimization: Introduction and gradient-based methods Master 2 Recherche LRI Apprentissage Statistique et Optimisation Anne Auger Inria Saclay-Ile-de-France November 2011 http://tao.lri.fr/tiki-index.php?page=courses

More information

Assignment 2. Classification and Regression using Linear Networks, Multilayer Perceptron Networks, and Radial Basis Functions

Assignment 2. Classification and Regression using Linear Networks, Multilayer Perceptron Networks, and Radial Basis Functions ENEE 739Q: STATISTICAL AND NEURAL PATTERN RECOGNITION Spring 2002 Assignment 2 Classification and Regression using Linear Networks, Multilayer Perceptron Networks, and Radial Basis Functions Aravind Sundaresan

More information

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R.

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R. Lecture 24: Learning 3 Victor R. Lesser CMPSCI 683 Fall 2010 Today s Lecture Continuation of Neural Networks Artificial Neural Networks Compose of nodes/units connected by links Each link has a numeric

More information

PARALLELIZATION OF THE NELDER-MEAD SIMPLEX ALGORITHM

PARALLELIZATION OF THE NELDER-MEAD SIMPLEX ALGORITHM PARALLELIZATION OF THE NELDER-MEAD SIMPLEX ALGORITHM Scott Wu Montgomery Blair High School Silver Spring, Maryland Paul Kienzle Center for Neutron Research, National Institute of Standards and Technology

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

Contents. Hilary Term. Summary of Numerical Analysis for this term. Sources of error in numerical calculation. Solving Problems

Contents. Hilary Term. Summary of Numerical Analysis for this term. Sources of error in numerical calculation. Solving Problems Contents Hilary Term 1 Root Finding 4 11 Bracketing and Bisection 5 111 Finding the root numerically 5 112 Pseudo BRACKET code 7 113 Drawbacks 8 114 Tips for success with Bracketing & Bisection 9 115 Virtues

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Information Systems and Machine Learning Lab (ISMLL) Tomáš Horváth 10 rd November, 2010 Informed Search and Exploration Example (again) Informed strategy we use a problem-specific

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Tree-GP: A Scalable Bayesian Global Numerical Optimization algorithm

Tree-GP: A Scalable Bayesian Global Numerical Optimization algorithm Utrecht University Department of Information and Computing Sciences Tree-GP: A Scalable Bayesian Global Numerical Optimization algorithm February 2015 Author Gerben van Veenendaal ICA-3470792 Supervisor

More information

3.3 Function minimization

3.3 Function minimization 3.3. Function minimization 55 3.3 Function minimization Beneath the problem of root-finding, minimizing functions constitutes a major problem in computational economics. Let f () : X R a function that

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Information Systems and Machine Learning Lab (ISMLL) Tomáš Horváth 16 rd November, 2011 Informed Search and Exploration Example (again) Informed strategy we use a problem-specific

More information

Robot Mapping. TORO Gradient Descent for SLAM. Cyrill Stachniss

Robot Mapping. TORO Gradient Descent for SLAM. Cyrill Stachniss Robot Mapping TORO Gradient Descent for SLAM Cyrill Stachniss 1 Stochastic Gradient Descent Minimize the error individually for each constraint (decomposition of the problem into sub-problems) Solve one

More information

B553 Lecture 12: Global Optimization

B553 Lecture 12: Global Optimization B553 Lecture 12: Global Optimization Kris Hauser February 20, 2012 Most of the techniques we have examined in prior lectures only deal with local optimization, so that we can only guarantee convergence

More information

7 OPTIMIZATION 46. Contributing to savings versus achieving enjoyment from purchases made now;

7 OPTIMIZATION 46. Contributing to savings versus achieving enjoyment from purchases made now; 7 OPTIMIZATION 46 7 OPTIMIZATION The engineer is continually faced with non-trivial decisions, and discerning the best among alternatives is one of the most useful and general tasks that one can master.

More information

MULTI-DIMENSIONAL MONTE CARLO INTEGRATION

MULTI-DIMENSIONAL MONTE CARLO INTEGRATION CS580: Computer Graphics KAIST School of Computing Chapter 3 MULTI-DIMENSIONAL MONTE CARLO INTEGRATION 2 1 Monte Carlo Integration This describes a simple technique for the numerical evaluation of integrals

More information

Lecture 5: Optimization of accelerators in simulation and experiments. X. Huang USPAS, Jan 2015

Lecture 5: Optimization of accelerators in simulation and experiments. X. Huang USPAS, Jan 2015 Lecture 5: Optimization of accelerators in simulation and experiments X. Huang USPAS, Jan 2015 1 Optimization in simulation General considerations Optimization algorithms Applications of MOGA Applications

More information

Convexization in Markov Chain Monte Carlo

Convexization in Markov Chain Monte Carlo in Markov Chain Monte Carlo 1 IBM T. J. Watson Yorktown Heights, NY 2 Department of Aerospace Engineering Technion, Israel August 23, 2011 Problem Statement MCMC processes in general are governed by non

More information

An evolutionary annealing-simplex algorithm for global optimisation of water resource systems

An evolutionary annealing-simplex algorithm for global optimisation of water resource systems FIFTH INTERNATIONAL CONFERENCE ON HYDROINFORMATICS 1-5 July 2002, Cardiff, UK C05 - Evolutionary algorithms in hydroinformatics An evolutionary annealing-simplex algorithm for global optimisation of water

More information

Combine the PA Algorithm with a Proximal Classifier

Combine the PA Algorithm with a Proximal Classifier Combine the Passive and Aggressive Algorithm with a Proximal Classifier Yuh-Jye Lee Joint work with Y.-C. Tseng Dept. of Computer Science & Information Engineering TaiwanTech. Dept. of Statistics@NCKU

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 www.iap.uni-jena.de Time schedule 2 1 16.10. Introduction Introduction, Zemax interface, menues, file handling,

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture - 35 Quadratic Programming In this lecture, we continue our discussion on

More information

Introduction to Design Optimization: Search Methods

Introduction to Design Optimization: Search Methods Introduction to Design Optimization: Search Methods 1-D Optimization The Search We don t know the curve. Given α, we can calculate f(α). By inspecting some points, we try to find the approximated shape

More information

Cost Functions in Machine Learning

Cost Functions in Machine Learning Cost Functions in Machine Learning Kevin Swingler Motivation Given some data that reflects measurements from the environment We want to build a model that reflects certain statistics about that data Something

More information

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008 A Brief Overview of Optimization Problems Steven G. Johnson MIT course 18.335, Fall 2008 Why optimization? In some sense, all engineering design is optimization: choosing design parameters to improve some

More information

Fast marching methods

Fast marching methods 1 Fast marching methods Lecture 3 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Metric discretization 2 Approach I:

More information

Lecture 12: Feasible direction methods

Lecture 12: Feasible direction methods Lecture 12 Lecture 12: Feasible direction methods Kin Cheong Sou December 2, 2013 TMA947 Lecture 12 Lecture 12: Feasible direction methods 1 / 1 Feasible-direction methods, I Intro Consider the problem

More information

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008 A Brief Overview of Optimization Problems Steven G. Johnson MIT course 18.335, Fall 2008 Why optimization? In some sense, all engineering design is optimization: choosing design parameters to improve some

More information

10.4 Linear interpolation method Newton s method

10.4 Linear interpolation method Newton s method 10.4 Linear interpolation method The next best thing one can do is the linear interpolation method, also known as the double false position method. This method works similarly to the bisection method by

More information

Mini-Max Type Robust Optimal Design Combined with Function Regularization

Mini-Max Type Robust Optimal Design Combined with Function Regularization 6 th World Congresses of Structural and Multidisciplinary Optimization Rio de Janeiro, 30 May - 03 June 2005, Brazil Mini-Max Type Robust Optimal Design Combined with Function Regularization Noriyasu Hirokawa

More information