Camera Motion Identification in the Rough Indexing Paradigm

Size: px
Start display at page:

Download "Camera Motion Identification in the Rough Indexing Paradigm"

Transcription

1 Camera Motion Identification in the Rough Indexing aradigm etra KRÄMER and Jenny BENOIS-INEAU LaBRI University Bordeaux I, France Camera Motion Identification in the Rough Indexing aradigm p./

2 Introduction Task: Given the shot boundary reference Identify the shots in which a certain camera motion (pan, tilt, zoom) is present Rough Indexing aradigm: Work on a lower spatial and temporal resolution i.e. -Frames Aim: Reuse motion low-level descriptors from the compressed stream Main challenge in TRECVID 00: Jitter camera motion due to hand-carried cameras Camera Motion Identification in the Rough Indexing aradigm p./

3 Overview -Frames Global Motion Estimation Significance Value Computation Motion Segmentation Thresholding Classification Motion feature j related to frames, m related to segments of homogeneous motion Camera Motion Identification in the Rough Indexing aradigm p./

4 Overview -Frames Global Motion Estimation Significance Value Computation Motion Segmentation Thresholding Classification Motion feature j related to frames, m related to segments of homogeneous motion Camera Motion Identification in the Rough Indexing aradigm p./

5 Global Motion Estimation Robust global motion estimator for -Frames [DB0]: Estimation of the affine D motion model: ( ) ( ) ( ) ( ) dx i a a a x i = + dy i a a a 6 y i Based on the weighted least squares method: ˆθ = (H T W H) H T W Z ˆθ Z H W = (a, a, a, a, a, a 6 ) T MEG motion compensation vectors macroblock centers weights defined by the derivative of the Tukey function Camera Motion Identification in the Rough Indexing aradigm p./

6 Global Motion Estimation The derivative of the Tukey function: ψ(r, λ r ) = { The weights are [OB9]: r(r λ r) if r < λ r 0 otherwise λ r r i = z i ẑ i z i threshold residuals w i = ψ(r i) r i i-th MEG motion vector Sfrag replacements -8 ẑ i estimation of z i ψ Camera Motion Identification in the Rough Indexing aradigm p./

7 Global Motion Estimation 0 Motion Compensation Vectors (9087) 0 Estimated Vectors (9087) a) c) b) a) -Frame motion vectors b) Estimated vectors c) Macroblocks: Outliers Dominant estimation support D (w i > 0) Camera Motion Identification in the Rough Indexing aradigm p.6/

8 Global Motion Estimation roblem: The global motion parameters are noisy due to jitter motions. The global motion parameters have different meanings. Solution: Significance test of the motion parameters: Thresholding of likelihood values Camera Motion Identification in the Rough Indexing aradigm p.7/

9 Significance Value Computation Based on [BGG99]: Change to another basis of elementary motion-subfields: φ = (pan, tilt, zoom, rot, hyp, hyp) with zoom = (a + a 6 ) rot = (a a ) hyp = (a a 6 ) hyp = (a + a ) Consider two hypotheses H 0 and H H 0 : the considered component of φ is significant with ˆφ 0 as the corresponding motion model H : the considered component of φ is not significant (= 0) with ˆφ as the corresponding motion model Camera Motion Identification in the Rough Indexing aradigm p.8/

10 Significance Value Computation Likelihood function associated to each hypothesis: Assumption: f( ˆφ l ) = ( ( π det(σ i D l ) exp ) ) (rt i Σ l r i ) = exp ( D ), l = 0, (πσ x,l σ y,l ) D Σ σ x, σ y D Σ l = ( σ x,l 0 0 σ y,l covariance matrix ) variances for x and y dominant estimation support Camera Motion Identification in the Rough Indexing aradigm p.9/

11 Significance Value Computation The significance value s is: s = ( f( ln ) ) f( ˆφ = D (ln(σ x,0 σ y,0 ) ln(σ x, σ y, )) 0 ) = D ( ln(σ0) ln(σ) ) assuming that σ x = σ y Aim: Use s to test the significance Idea: If a motion feature (pan, zoom, tilt) is present in a shot, its corresponding motion parameter is significant during a sufficient number of frames. Camera Motion Identification in the Rough Indexing aradigm p.0/

12 Significance Value Computation roblem: Solution: The significance values can be noisy due to jitter motions. The motion models ˆθ can be inaccurate. Smooth the significance value along the time and take decision on the temporal mean value. > Segment shots into subshots of homogeneous motion Introduce confidence measures in order to reject frames with an inaccurate motion model. Camera Motion Identification in the Rough Indexing aradigm p./

13 Significance Value Computation Two reasons for inaccurate motion models: Failure of the MEG encoder > Confidence measure c D D Failure of the global motion estimation algorithm > Confidence measure c σ σ 0 Reject of the frame if: c D < λ D c σ > λ σ λ D λ σ threshold threshold Camera Motion Identification in the Rough Indexing aradigm p./

14 Motion Segmentation Hinkley test to detect changes on the temporal mean value s(t): Downward jump: Upward jump: U k = k t=0 ( s t s + δ ) min (k 0) M k = max 0 i k U i; detection if M k U k > λ H V k = k t=0 ( s t s δ ) min (k 0) N k = min V i; detection if V k N k > λ H 0 i k s δ min λ H temporal mean value minimal jump magnitude predefined threshold Camera Motion Identification in the Rough Indexing aradigm p./

15 Motion Segmentation rinciple of the Hinkely test: s and s Down M k U k Up V k N k Camera Motion Identification in the Rough Indexing aradigm p./

16 Thresholding Selection of the hypothesis: s(t) = T t 0 t=t t=t 0 s(t) And relative thresholding to determine the dominant motion: ζ(t) = { s(t) if s(t) < α min{ s pan, s tilt, s zoom, s rot, s hyp, s hyp } 0 otherwise T t 0 λ s α H 0 < > H λ s segment of homogeneous motion threshold constant Camera Motion Identification in the Rough Indexing aradigm p./

17 Classification The following classification scheme is applied to the thresholded mean significance values ζ = ( ζ pan, ζ tilt, ζ zoom, ζ rot, ζ hyp, ζ hyp ): ζ motion feature (0, 0, 0, 0, 0, 0) static camera/ no significant motion ( ζ pan, 0, 0, 0, 0, 0) pan (0, ζ tilt, 0, 0, 0, 0) tilt ( ζ pan, ζ tilt, ζ zoom, 0, 0, 0) zoom others complex camera motion Camera Motion Identification in the Rough Indexing aradigm p.6/

18 Classification ostprocessing: Join neighbored segments with the same motion feature Reject segments with a duration shorter than t min frames t min t Sfrag replacements If a motion feature is still present: The shot is identified to contain the motion feature. Camera Motion Identification in the Rough Indexing aradigm p.7/

19 Results Results for the shot shot06_6 : pan static tilt zoom eplacements Sfrag replacements a) λ s frame number b) λ s 0 reject a a a a a a6 reject reject pan static tilt zoom frame number pan tilt zoom rot hyp hyp reject eplacements c) reject pan static tilt zoom frame number pan tilt zoom rot hyp hyp λ s reject a) Global motion parameters ˆθ b) Significance values s c) Online mean values s Camera Motion Identification in the Rough Indexing aradigm p.8/

20 Results recision and recall for all submissions: recall U yu D R RS Labs RI HU VISION 0LF Marburg A_CAM RI > LaBRI recision 0.9 Recall precision Camera Motion Identification in the Rough Indexing aradigm p.9/

21 Conclusion and erspectives Conclusion: roposition of a method based on global motion estimation and significance test. The proposed method can handle moving objects and jitter motions. No decoding of the compressed stream. erformance - times faster than real time. Since no ground truth available, difficulties to determine the best parameter set. Future work: Focus mainly on the correction of motion models if the encoder block-matching algorithm fails. Camera Motion Identification in the Rough Indexing aradigm p.0/

22 References [BGG99]. Bouthemy, M. Gelgon, and F. Ganansia. A unified approach to shot change detection and camera motion characterization. IEEE Trans. on Circuits and Systems for Video Technology, 9(7):00 0, October 999. [DB0] [OB9] M. Durik and J. Benois-ineau. Robust motion characterisation for video indexing based on MEG optical flow. In International Workshop on Content-Based Multimedia Indexing, CBMI 0, pages 7 6, 00. J.M. Odobez and. Bouthemy. Robust multiresolution estimation of parametric motion models. Journal of Visual Communication and Image Representation, 6():8 6, 99. Camera Motion Identification in the Rough Indexing aradigm p./

Unsupervised Camera Motion Estimation and Moving Object Detection in Videos

Unsupervised Camera Motion Estimation and Moving Object Detection in Videos Proceedings of the Irish Machine Vision and Image Processing conference, pp. 102-109, 2006 Unsupervised Camera Motion Estimation and Moving Object Detection in Videos Rozenn Dahyot School of Computer Science

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

A Geometrical Key-frame Selection Method exploiting Dominant Motion Estimation in Video

A Geometrical Key-frame Selection Method exploiting Dominant Motion Estimation in Video A Geometrical Key-frame Selection Method exploiting Dominant Motion Estimation in Video Brigitte Fauvet, Patrick Bouthemy, Patrick Gros 2 and Fabien Spindler IRISA/INRIA 2 IRISA/CNRS Campus Universitaire

More information

A Bottom Up Algebraic Approach to Motion Segmentation

A Bottom Up Algebraic Approach to Motion Segmentation A Bottom Up Algebraic Approach to Motion Segmentation Dheeraj Singaraju and RenéVidal Center for Imaging Science, Johns Hopkins University, 301 Clark Hall, 3400 N. Charles St., Baltimore, MD, 21218, USA

More information

Representing Moving Images with Layers. J. Y. Wang and E. H. Adelson MIT Media Lab

Representing Moving Images with Layers. J. Y. Wang and E. H. Adelson MIT Media Lab Representing Moving Images with Layers J. Y. Wang and E. H. Adelson MIT Media Lab Goal Represent moving images with sets of overlapping layers Layers are ordered in depth and occlude each other Velocity

More information

1.2. ζ t Result : Shot. Eye truth : Shot Frame number

1.2. ζ t Result : Shot. Eye truth : Shot Frame number Spatio-Temporal Segmentation and General Motion Characterization for Video Indexing and Retrieval 10th DELOS Workshop on Audio-Visual Digital Libraries, Santorini, Greece, June 1999 Ronan Fablet 1 and

More information

Multiple Model Estimation : The EM Algorithm & Applications

Multiple Model Estimation : The EM Algorithm & Applications Multiple Model Estimation : The EM Algorithm & Applications Princeton University COS 429 Lecture Dec. 4, 2008 Harpreet S. Sawhney hsawhney@sarnoff.com Plan IBR / Rendering applications of motion / pose

More information

Computer Vision I. Dense Stereo Correspondences. Anita Sellent 1/15/16

Computer Vision I. Dense Stereo Correspondences. Anita Sellent 1/15/16 Computer Vision I Dense Stereo Correspondences Anita Sellent Stereo Two Cameras Overlapping field of view Known transformation between cameras From disparity compute depth [ Bradski, Kaehler: Learning

More information

Multimedia Systems Video II (Video Coding) Mahdi Amiri April 2012 Sharif University of Technology

Multimedia Systems Video II (Video Coding) Mahdi Amiri April 2012 Sharif University of Technology Course Presentation Multimedia Systems Video II (Video Coding) Mahdi Amiri April 2012 Sharif University of Technology Video Coding Correlation in Video Sequence Spatial correlation Similar pixels seem

More information

ROBUST MOTION SEGMENTATION FOR HIGH DEFINITION VIDEO SEQUENCES USING A FAST MULTI-RESOLUTION MOTION ESTIMATION BASED ON SPATIO-TEMPORAL TUBES

ROBUST MOTION SEGMENTATION FOR HIGH DEFINITION VIDEO SEQUENCES USING A FAST MULTI-RESOLUTION MOTION ESTIMATION BASED ON SPATIO-TEMPORAL TUBES ROBUST MOTION SEGMENTATION FOR HIGH DEFINITION VIDEO SEQUENCES USING A FAST MULTI-RESOLUTION MOTION ESTIMATION BASED ON SPATIO-TEMPORAL TUBES Olivier Brouard, Fabrice Delannay, Vincent Ricordel, Dominique

More information

Dense Image-based Motion Estimation Algorithms & Optical Flow

Dense Image-based Motion Estimation Algorithms & Optical Flow Dense mage-based Motion Estimation Algorithms & Optical Flow Video A video is a sequence of frames captured at different times The video data is a function of v time (t) v space (x,y) ntroduction to motion

More information

Motion in 2D image sequences

Motion in 2D image sequences Motion in 2D image sequences Definitely used in human vision Object detection and tracking Navigation and obstacle avoidance Analysis of actions or activities Segmentation and understanding of video sequences

More information

Video shot segmentation using late fusion technique

Video shot segmentation using late fusion technique Video shot segmentation using late fusion technique by C. Krishna Mohan, N. Dhananjaya, B.Yegnanarayana in Proc. Seventh International Conference on Machine Learning and Applications, 2008, San Diego,

More information

MULTIVIEW REPRESENTATION OF 3D OBJECTS OF A SCENE USING VIDEO SEQUENCES

MULTIVIEW REPRESENTATION OF 3D OBJECTS OF A SCENE USING VIDEO SEQUENCES MULTIVIEW REPRESENTATION OF 3D OBJECTS OF A SCENE USING VIDEO SEQUENCES Mehran Yazdi and André Zaccarin CVSL, Dept. of Electrical and Computer Engineering, Laval University Ste-Foy, Québec GK 7P4, Canada

More information

Multiple Model Estimation : The EM Algorithm & Applications

Multiple Model Estimation : The EM Algorithm & Applications Multiple Model Estimation : The EM Algorithm & Applications Princeton University COS 429 Lecture Nov. 13, 2007 Harpreet S. Sawhney hsawhney@sarnoff.com Recapitulation Problem of motion estimation Parametric

More information

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization in Low Level Vision Low level vision problems concerned with estimating some quantity at each pixel Visual motion (u(x,y),v(x,y))

More information

Moving Object Segmentation Method Based on Motion Information Classification by X-means and Spatial Region Segmentation

Moving Object Segmentation Method Based on Motion Information Classification by X-means and Spatial Region Segmentation IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013 1 Moving Object Segmentation Method Based on Motion Information Classification by X-means and Spatial

More information

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Xavier Le Faucheur a, Brani Vidakovic b and Allen Tannenbaum a a School of Electrical and Computer Engineering, b Department of Biomedical

More information

A Subspace Approach to Layer Extraction, Patch-Based SFM, and Video Compression

A Subspace Approach to Layer Extraction, Patch-Based SFM, and Video Compression A Subspace Approach to Layer Extraction, Patch-Based SFM, and Video Compression Qifa Ke and Takeo Kanade December 2001 CMU-CS-01-168 School of Computer Science Carnegie Mellon University Pittsburgh, PA

More information

Outline. Data Association Scenarios. Data Association Scenarios. Data Association Scenarios

Outline. Data Association Scenarios. Data Association Scenarios. Data Association Scenarios Outline Data Association Scenarios Track Filtering and Gating Global Nearest Neighbor (GNN) Review: Linear Assignment Problem Murthy s k-best Assignments Algorithm Probabilistic Data Association (PDAF)

More information

Spatial Outlier Detection

Spatial Outlier Detection Spatial Outlier Detection Chang-Tien Lu Department of Computer Science Northern Virginia Center Virginia Tech Joint work with Dechang Chen, Yufeng Kou, Jiang Zhao 1 Spatial Outlier A spatial data point

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

Motion Tracking and Event Understanding in Video Sequences

Motion Tracking and Event Understanding in Video Sequences Motion Tracking and Event Understanding in Video Sequences Isaac Cohen Elaine Kang, Jinman Kang Institute for Robotics and Intelligent Systems University of Southern California Los Angeles, CA Objectives!

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Segmentation and Tracking of Partial Planar Templates

Segmentation and Tracking of Partial Planar Templates Segmentation and Tracking of Partial Planar Templates Abdelsalam Masoud William Hoff Colorado School of Mines Colorado School of Mines Golden, CO 800 Golden, CO 800 amasoud@mines.edu whoff@mines.edu Abstract

More information

Production of Video Images by Computer Controlled Cameras and Its Application to TV Conference System

Production of Video Images by Computer Controlled Cameras and Its Application to TV Conference System Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol.2, II-131 II-137, Dec. 2001. Production of Video Images by Computer Controlled Cameras and Its Application to TV Conference System

More information

Activities of Daily Living Indexing by Hierarchical HMM for Dementia Diagnostics

Activities of Daily Living Indexing by Hierarchical HMM for Dementia Diagnostics Activities of Daily Living Indexing by Hierarchical HMM for Dementia Diagnostics Svebor Karaman, Jenny Benois-Pineau LaBRI, Rémi Mégret IMS, Yann Gaëstel, Jean-Francois Dartigues - INSERM U.897, University

More information

Colour Segmentation-based Computation of Dense Optical Flow with Application to Video Object Segmentation

Colour Segmentation-based Computation of Dense Optical Flow with Application to Video Object Segmentation ÖGAI Journal 24/1 11 Colour Segmentation-based Computation of Dense Optical Flow with Application to Video Object Segmentation Michael Bleyer, Margrit Gelautz, Christoph Rhemann Vienna University of Technology

More information

Image Redundancy and Non-Parametric Estimation for Image Representation

Image Redundancy and Non-Parametric Estimation for Image Representation Image Redundancy and Non-Parametric Estimation for Image Representation Charles Kervrann, Patrick Pérez, Jérôme Boulanger INRIA Rennes / INRA MIA Jouy-en-Josas / Institut Curie Paris VISTA Team http://www.irisa.fr/vista/

More information

A Robust Wipe Detection Algorithm

A Robust Wipe Detection Algorithm A Robust Wipe Detection Algorithm C. W. Ngo, T. C. Pong & R. T. Chin Department of Computer Science The Hong Kong University of Science & Technology Clear Water Bay, Kowloon, Hong Kong Email: fcwngo, tcpong,

More information

Computer Vision I - Filtering and Feature detection

Computer Vision I - Filtering and Feature detection Computer Vision I - Filtering and Feature detection Carsten Rother 30/10/2015 Computer Vision I: Basics of Image Processing Roadmap: Basics of Digital Image Processing Computer Vision I: Basics of Image

More information

Region-based Segmentation

Region-based Segmentation Region-based Segmentation Image Segmentation Group similar components (such as, pixels in an image, image frames in a video) to obtain a compact representation. Applications: Finding tumors, veins, etc.

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

Digital Image Stabilization and Its Integration with Video Encoder

Digital Image Stabilization and Its Integration with Video Encoder Digital Image Stabilization and Its Integration with Video Encoder Yu-Chun Peng, Hung-An Chang, Homer H. Chen Graduate Institute of Communication Engineering National Taiwan University Taipei, Taiwan {b889189,

More information

Short Survey on Static Hand Gesture Recognition

Short Survey on Static Hand Gesture Recognition Short Survey on Static Hand Gesture Recognition Huu-Hung Huynh University of Science and Technology The University of Danang, Vietnam Duc-Hoang Vo University of Science and Technology The University of

More information

Multiple-Choice Questionnaire Group C

Multiple-Choice Questionnaire Group C Family name: Vision and Machine-Learning Given name: 1/28/2011 Multiple-Choice naire Group C No documents authorized. There can be several right answers to a question. Marking-scheme: 2 points if all right

More information

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT SIFT: Scale Invariant Feature Transform; transform image

More information

Optical Flow Estimation

Optical Flow Estimation Optical Flow Estimation Goal: Introduction to image motion and 2D optical flow estimation. Motivation: Motion is a rich source of information about the world: segmentation surface structure from parallax

More information

Occluded Facial Expression Tracking

Occluded Facial Expression Tracking Occluded Facial Expression Tracking Hugo Mercier 1, Julien Peyras 2, and Patrice Dalle 1 1 Institut de Recherche en Informatique de Toulouse 118, route de Narbonne, F-31062 Toulouse Cedex 9 2 Dipartimento

More information

Optical Flow-Based Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides.

Optical Flow-Based Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. Optical Flow-Based Motion Estimation Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. 1 Why estimate motion? We live in a 4-D world Wide applications Object

More information

Motion Estimation (II) Ce Liu Microsoft Research New England

Motion Estimation (II) Ce Liu Microsoft Research New England Motion Estimation (II) Ce Liu celiu@microsoft.com Microsoft Research New England Last time Motion perception Motion representation Parametric motion: Lucas-Kanade T I x du dv = I x I T x I y I x T I y

More information

Perceptual Grouping from Motion Cues Using Tensor Voting

Perceptual Grouping from Motion Cues Using Tensor Voting Perceptual Grouping from Motion Cues Using Tensor Voting 1. Research Team Project Leader: Graduate Students: Prof. Gérard Medioni, Computer Science Mircea Nicolescu, Changki Min 2. Statement of Project

More information

CAMERA MOTION CLASSIFICATION BASED ON TRANSFERABLE BELIEF MODEL

CAMERA MOTION CLASSIFICATION BASED ON TRANSFERABLE BELIEF MODEL 4th European Signal Processing Conference (EUSIPCO 26), Florence, Italy, September 4-8, 26, copyright by EURASIP CAMERA MOTION CLASSIFICATION BASED ON TRANSFERABLE BELIEF MODEL Mickael Guironnet, Denis

More information

Motion-based obstacle detection and tracking for car driving assistance

Motion-based obstacle detection and tracking for car driving assistance Motion-based obstacle detection and tracking for car driving assistance G. Lefaix, E. Marchand, Patrick Bouthemy To cite this version: G. Lefaix, E. Marchand, Patrick Bouthemy. Motion-based obstacle detection

More information

AIIA shot boundary detection at TRECVID 2006

AIIA shot boundary detection at TRECVID 2006 AIIA shot boundary detection at TRECVID 6 Z. Černeková, N. Nikolaidis and I. Pitas Artificial Intelligence and Information Analysis Laboratory Department of Informatics Aristotle University of Thessaloniki

More information

DATA and signal modeling for images and video sequences. Region-Based Representations of Image and Video: Segmentation Tools for Multimedia Services

DATA and signal modeling for images and video sequences. Region-Based Representations of Image and Video: Segmentation Tools for Multimedia Services IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 8, DECEMBER 1999 1147 Region-Based Representations of Image and Video: Segmentation Tools for Multimedia Services P. Salembier,

More information

Motion and Tracking. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE)

Motion and Tracking. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE) Motion and Tracking Andrea Torsello DAIS Università Ca Foscari via Torino 155, 30172 Mestre (VE) Motion Segmentation Segment the video into multiple coherently moving objects Motion and Perceptual Organization

More information

Motion Segmentation by Fuzzy Clustering with Automatic Determination of the ber of Motions

Motion Segmentation by Fuzzy Clustering with Automatic Determination of the ber of Motions Motion Segmentation by Fuzzy Clustering with Automatic Determination of the ber of Motions Benoit Duc, Philippe Schroeter and Josef Bigiin Signal Processing Laboratory, Swiss Federal Institute of Technology,

More information

Computer Vision I - Basics of Image Processing Part 1

Computer Vision I - Basics of Image Processing Part 1 Computer Vision I - Basics of Image Processing Part 1 Carsten Rother 28/10/2014 Computer Vision I: Basics of Image Processing Link to lectures Computer Vision I: Basics of Image Processing 28/10/2014 2

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision Michael J. Black Nov 2009 Perspective projection and affine motion Goals Today Perspective projection 3D motion Wed Projects Friday Regularization and robust statistics

More information

Review for the Final

Review for the Final Review for the Final CS 635 Review (Topics Covered) Image Compression Lossless Coding Compression Huffman Interpixel RLE Lossy Quantization Discrete Cosine Transform JPEG CS 635 Review (Topics Covered)

More information

Global motion model based on B-spline wavelets: application to motion estimation and video indexing

Global motion model based on B-spline wavelets: application to motion estimation and video indexing Global motion model based on B-spline wavelets: application to motion estimation and video indexing E. Bruno 1, D. Pellerin 1,2 Laboratoire des Images et des Signaux (LIS) 1 INPG, 46 Av. Félix Viallet,

More information

Feature Based Registration - Image Alignment

Feature Based Registration - Image Alignment Feature Based Registration - Image Alignment Image Registration Image registration is the process of estimating an optimal transformation between two or more images. Many slides from Alexei Efros http://graphics.cs.cmu.edu/courses/15-463/2007_fall/463.html

More information

Preprocessing II: Between Subjects John Ashburner

Preprocessing II: Between Subjects John Ashburner Preprocessing II: Between Subjects John Ashburner Pre-processing Overview Statistics or whatever fmri time-series Anatomical MRI Template Smoothed Estimate Spatial Norm Motion Correct Smooth Coregister

More information

FAST OBJECT TRACKING IN COMPRESSED VIDEOS FOR REAL TIME SURVEILLANCE VIDEO ANALYSIS. K.Mehmood, M.Mrak, J.Calic and A.Kondoz

FAST OBJECT TRACKING IN COMPRESSED VIDEOS FOR REAL TIME SURVEILLANCE VIDEO ANALYSIS. K.Mehmood, M.Mrak, J.Calic and A.Kondoz FAST OBJECT TRACKING IN COMPRESSED VIDEOS FOR REAL TIME SURVEILLANCE VIDEO ANALYSIS K.Mehmood, M.Mrak, J.Calic and A.Kondoz The University of Surrey, Guildford, GU2 7XH, UK ABSTRACT Video analysis for

More information

Key Frame Extraction and Indexing for Multimedia Databases

Key Frame Extraction and Indexing for Multimedia Databases Key Frame Extraction and Indexing for Multimedia Databases Mohamed AhmedˆÃ Ahmed Karmouchˆ Suhayya Abu-Hakimaˆˆ ÃÃÃÃÃÃÈÃSchool of Information Technology & ˆˆÃ AmikaNow! Corporation Engineering (SITE),

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

Optimal designs for comparing curves

Optimal designs for comparing curves Optimal designs for comparing curves Holger Dette, Ruhr-Universität Bochum Maria Konstantinou, Ruhr-Universität Bochum Kirsten Schorning, Ruhr-Universität Bochum FP7 HEALTH 2013-602552 Outline 1 Motivation

More information

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit Augmented Reality VU Computer Vision 3D Registration (2) Prof. Vincent Lepetit Feature Point-Based 3D Tracking Feature Points for 3D Tracking Much less ambiguous than edges; Point-to-point reprojection

More information

Hybrid Video Compression Using Selective Keyframe Identification and Patch-Based Super-Resolution

Hybrid Video Compression Using Selective Keyframe Identification and Patch-Based Super-Resolution 2011 IEEE International Symposium on Multimedia Hybrid Video Compression Using Selective Keyframe Identification and Patch-Based Super-Resolution Jeffrey Glaister, Calvin Chan, Michael Frankovich, Adrian

More information

Sensor-assisted Camera Motion Analysis and Motion Estimation Improvement for H.264/AVC Video Encoding

Sensor-assisted Camera Motion Analysis and Motion Estimation Improvement for H.264/AVC Video Encoding Sensor-assisted Camera Motion Analysis and Motion Estimation Improvement for H.264/AVC Video Encoding Guanfeng Wang, Haiyang Ma, Beomjoo Seo, Roger Zimmermann School of Computing, National University of

More information

Omni-Directional Visual Servoing for Human-Robot Interaction

Omni-Directional Visual Servoing for Human-Robot Interaction Omni-Directional Visual Servoing for Human-Robot Interaction Peng Chang and Martial Hebert [Peng, hebert]@ri.cmu.edu Robotics Institute, Carnegie Mellon University, Pittsburgh PA 15213 Abstract In this

More information

Robust Shape Retrieval Using Maximum Likelihood Theory

Robust Shape Retrieval Using Maximum Likelihood Theory Robust Shape Retrieval Using Maximum Likelihood Theory Naif Alajlan 1, Paul Fieguth 2, and Mohamed Kamel 1 1 PAMI Lab, E & CE Dept., UW, Waterloo, ON, N2L 3G1, Canada. naif, mkamel@pami.uwaterloo.ca 2

More information

NeTra-V: Towards an Object-based Video Representation

NeTra-V: Towards an Object-based Video Representation Proc. of SPIE, Storage and Retrieval for Image and Video Databases VI, vol. 3312, pp 202-213, 1998 NeTra-V: Towards an Object-based Video Representation Yining Deng, Debargha Mukherjee and B. S. Manjunath

More information

Fast Decision of Block size, Prediction Mode and Intra Block for H.264 Intra Prediction EE Gaurav Hansda

Fast Decision of Block size, Prediction Mode and Intra Block for H.264 Intra Prediction EE Gaurav Hansda Fast Decision of Block size, Prediction Mode and Intra Block for H.264 Intra Prediction EE 5359 Gaurav Hansda 1000721849 gaurav.hansda@mavs.uta.edu Outline Introduction to H.264 Current algorithms for

More information

Spatio-Temporal LBP based Moving Object Segmentation in Compressed Domain

Spatio-Temporal LBP based Moving Object Segmentation in Compressed Domain 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance Spatio-Temporal LBP based Moving Object Segmentation in Compressed Domain Jianwei Yang 1, Shizheng Wang 2, Zhen

More information

AUTOMATIC OBJECT EXTRACTION IN SINGLE-CONCEPT VIDEOS. Kuo-Chin Lien and Yu-Chiang Frank Wang

AUTOMATIC OBJECT EXTRACTION IN SINGLE-CONCEPT VIDEOS. Kuo-Chin Lien and Yu-Chiang Frank Wang AUTOMATIC OBJECT EXTRACTION IN SINGLE-CONCEPT VIDEOS Kuo-Chin Lien and Yu-Chiang Frank Wang Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan {iker, ycwang}@citi.sinica.edu.tw

More information

Car tracking in tunnels

Car tracking in tunnels Czech Pattern Recognition Workshop 2000, Tomáš Svoboda (Ed.) Peršlák, Czech Republic, February 2 4, 2000 Czech Pattern Recognition Society Car tracking in tunnels Roman Pflugfelder and Horst Bischof Pattern

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Review of Motion Modelling and Estimation Introduction to Motion Modelling & Estimation Forward Motion Backward Motion Block Motion Estimation Motion

More information

Statistical Analysis of List Experiments

Statistical Analysis of List Experiments Statistical Analysis of List Experiments Kosuke Imai Princeton University Joint work with Graeme Blair October 29, 2010 Blair and Imai (Princeton) List Experiments NJIT (Mathematics) 1 / 26 Motivation

More information

Edge tracking for motion segmentation and depth ordering

Edge tracking for motion segmentation and depth ordering Edge tracking for motion segmentation and depth ordering P. Smith, T. Drummond and R. Cipolla Department of Engineering University of Cambridge Cambridge CB2 1PZ,UK {pas1001 twd20 cipolla}@eng.cam.ac.uk

More information

VIDEO OBJECT SEGMENTATION BY EXTENDED RECURSIVE-SHORTEST-SPANNING-TREE METHOD. Ertem Tuncel and Levent Onural

VIDEO OBJECT SEGMENTATION BY EXTENDED RECURSIVE-SHORTEST-SPANNING-TREE METHOD. Ertem Tuncel and Levent Onural VIDEO OBJECT SEGMENTATION BY EXTENDED RECURSIVE-SHORTEST-SPANNING-TREE METHOD Ertem Tuncel and Levent Onural Electrical and Electronics Engineering Department, Bilkent University, TR-06533, Ankara, Turkey

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

Monocular Human Motion Capture with a Mixture of Regressors. Ankur Agarwal and Bill Triggs GRAVIR-INRIA-CNRS, Grenoble, France

Monocular Human Motion Capture with a Mixture of Regressors. Ankur Agarwal and Bill Triggs GRAVIR-INRIA-CNRS, Grenoble, France Monocular Human Motion Capture with a Mixture of Regressors Ankur Agarwal and Bill Triggs GRAVIR-INRIA-CNRS, Grenoble, France IEEE Workshop on Vision for Human-Computer Interaction, 21 June 2005 Visual

More information

Distinguishing the Noise and image structures for detecting the correction term and filtering the noise by using fuzzy rules

Distinguishing the Noise and image structures for detecting the correction term and filtering the noise by using fuzzy rules Distinguishing the Noise and image structures for detecting the correction term and filtering the noise by using fuzzy rules Sridevi.Ravada Asst.professor Department of Computer Science and Engineering

More information

Localization Error Measurement in Features Extraction Algorithms

Localization Error Measurement in Features Extraction Algorithms Localization Error Measurement in Features Extraction Algorithms December 1, 010 Abstract Image features detection and matching is a fundamental step in many computer vision applications. A lot of methods

More information

Hierarchical Hidden Markov Model for Rushes Structuring and Indexing

Hierarchical Hidden Markov Model for Rushes Structuring and Indexing Hierarchical Hidden Markov Model for Rushes Structuring and Indexing Chong-Wah Ngo, Zailiang Pan and Xiaoyong Wei Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong {cwngo,zerin,xiaoyong}@cs.cityu.edu.hk

More information

Fast Mode Decision for H.264/AVC Using Mode Prediction

Fast Mode Decision for H.264/AVC Using Mode Prediction Fast Mode Decision for H.264/AVC Using Mode Prediction Song-Hak Ri and Joern Ostermann Institut fuer Informationsverarbeitung, Appelstr 9A, D-30167 Hannover, Germany ri@tnt.uni-hannover.de ostermann@tnt.uni-hannover.de

More information

Topological Mapping. Discrete Bayes Filter

Topological Mapping. Discrete Bayes Filter Topological Mapping Discrete Bayes Filter Vision Based Localization Given a image(s) acquired by moving camera determine the robot s location and pose? Towards localization without odometry What can be

More information

EFFICIENT PU MODE DECISION AND MOTION ESTIMATION FOR H.264/AVC TO HEVC TRANSCODER

EFFICIENT PU MODE DECISION AND MOTION ESTIMATION FOR H.264/AVC TO HEVC TRANSCODER EFFICIENT PU MODE DECISION AND MOTION ESTIMATION FOR H.264/AVC TO HEVC TRANSCODER Zong-Yi Chen, Jiunn-Tsair Fang 2, Tsai-Ling Liao, and Pao-Chi Chang Department of Communication Engineering, National Central

More information

Augmenting Reality, Naturally:

Augmenting Reality, Naturally: Augmenting Reality, Naturally: Scene Modelling, Recognition and Tracking with Invariant Image Features by Iryna Gordon in collaboration with David G. Lowe Laboratory for Computational Intelligence Department

More information

F dr = f dx + g dy + h dz. Using that dz = q x dx + q y dy we get. (g + hq y ) x (f + hq x ) y da.

F dr = f dx + g dy + h dz. Using that dz = q x dx + q y dy we get. (g + hq y ) x (f + hq x ) y da. Math 55 - Vector alculus II Notes 14.7 tokes Theorem tokes Theorem is the three-dimensional version of the circulation form of Green s Theorem. Let s quickly recall that theorem: Green s Theorem: Let be

More information

Visual Bearing-Only Simultaneous Localization and Mapping with Improved Feature Matching

Visual Bearing-Only Simultaneous Localization and Mapping with Improved Feature Matching Visual Bearing-Only Simultaneous Localization and Mapping with Improved Feature Matching Hauke Strasdat, Cyrill Stachniss, Maren Bennewitz, and Wolfram Burgard Computer Science Institute, University of

More information

Reduced Frame Quantization in Video Coding

Reduced Frame Quantization in Video Coding Reduced Frame Quantization in Video Coding Tuukka Toivonen and Janne Heikkilä Machine Vision Group Infotech Oulu and Department of Electrical and Information Engineering P. O. Box 500, FIN-900 University

More information

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1 Robot Mapping SLAM Front-Ends Cyrill Stachniss Partial image courtesy: Edwin Olson 1 Graph-Based SLAM Constraints connect the nodes through odometry and observations Robot pose Constraint 2 Graph-Based

More information

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes.

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes. Outliers Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Concepts What is an outlier? The set of data points that are considerably different than the remainder of the

More information

A Robust Facial Feature Point Tracker using Graphical Models

A Robust Facial Feature Point Tracker using Graphical Models A Robust Facial Feature Point Tracker using Graphical Models Serhan Coşar, Müjdat Çetin, Aytül Erçil Sabancı University Faculty of Engineering and Natural Sciences Orhanlı- Tuzla, 34956 İstanbul, TURKEY

More information

Definition, Detection, and Evaluation of Meeting Events in Airport Surveillance Videos

Definition, Detection, and Evaluation of Meeting Events in Airport Surveillance Videos Definition, Detection, and Evaluation of Meeting Events in Airport Surveillance Videos Sung Chun Lee, Chang Huang, and Ram Nevatia University of Southern California, Los Angeles, CA 90089, USA sungchun@usc.edu,

More information

Real-Time Extraction of Video Objects: Algorithms and applications

Real-Time Extraction of Video Objects: Algorithms and applications Real-Time Extraction of Video Objects: Algorithms and applications Aishy Amer Montréal - Québec - Canada L A T E X slides CRIM-APR04 1 Real-Time Extraction of Video Objects: Algorithms and applications

More information

Summarization of Egocentric Moving Videos for Generating Walking Route Guidance

Summarization of Egocentric Moving Videos for Generating Walking Route Guidance Summarization of Egocentric Moving Videos for Generating Walking Route Guidance Masaya Okamoto and Keiji Yanai Department of Informatics, The University of Electro-Communications 1-5-1 Chofugaoka, Chofu-shi,

More information

Multimedia Database Systems. Retrieval by Content

Multimedia Database Systems. Retrieval by Content Multimedia Database Systems Retrieval by Content MIR Motivation Large volumes of data world-wide are not only based on text: Satellite images (oil spill), deep space images (NASA) Medical images (X-rays,

More information

Depth Estimation for View Synthesis in Multiview Video Coding

Depth Estimation for View Synthesis in Multiview Video Coding MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Depth Estimation for View Synthesis in Multiview Video Coding Serdar Ince, Emin Martinian, Sehoon Yea, Anthony Vetro TR2007-025 June 2007 Abstract

More information

A robust method for camera motion estimation in movies based on optical flow. Nhat-Tan Nguyen* and Denis Laurendeau

A robust method for camera motion estimation in movies based on optical flow. Nhat-Tan Nguyen* and Denis Laurendeau 228 Int. J. Intelligent Systems Technologies and Applications, Vol. 9, Nos. 3/4, 2010 A robust method for camera motion estimation in movies based on optical flow Nhat-Tan Nguyen* and Denis Laurendeau

More information

Scale Invariant Feature Transform

Scale Invariant Feature Transform Why do we care about matching features? Scale Invariant Feature Transform Camera calibration Stereo Tracking/SFM Image moiaicing Object/activity Recognition Objection representation and recognition Automatic

More information

Semantic Movie Scene Segmentation Using Bag-of-Words Representation THESIS

Semantic Movie Scene Segmentation Using Bag-of-Words Representation THESIS Semantic Movie Scene Segmentation Using Bag-of-Words Representation THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State

More information

Local Features Tutorial: Nov. 8, 04

Local Features Tutorial: Nov. 8, 04 Local Features Tutorial: Nov. 8, 04 Local Features Tutorial References: Matlab SIFT tutorial (from course webpage) Lowe, David G. Distinctive Image Features from Scale Invariant Features, International

More information

Overview. Video. Overview 4/7/2008. Optical flow. Why estimate motion? Motion estimation: Optical flow. Motion Magnification Colorization.

Overview. Video. Overview 4/7/2008. Optical flow. Why estimate motion? Motion estimation: Optical flow. Motion Magnification Colorization. Overview Video Optical flow Motion Magnification Colorization Lecture 9 Optical flow Motion Magnification Colorization Overview Optical flow Combination of slides from Rick Szeliski, Steve Seitz, Alyosha

More information

Optic Flow and Basics Towards Horn-Schunck 1

Optic Flow and Basics Towards Horn-Schunck 1 Optic Flow and Basics Towards Horn-Schunck 1 Lecture 7 See Section 4.1 and Beginning of 4.2 in Reinhard Klette: Concise Computer Vision Springer-Verlag, London, 2014 1 See last slide for copyright information.

More information

Quality Guided Image Denoising for Low-Cost Fundus Imaging

Quality Guided Image Denoising for Low-Cost Fundus Imaging Quality Guided Image Denoising for Low-Cost Fundus Imaging Thomas Köhler1,2, Joachim Hornegger1,2, Markus Mayer1,2, Georg Michelson2,3 20.03.2012 1 Pattern Recognition Lab, Ophthalmic Imaging Group 2 Erlangen

More information

Fitting. Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! EECS Fall 2014! Foundations of Computer Vision!

Fitting. Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! EECS Fall 2014! Foundations of Computer Vision! Fitting EECS 598-08 Fall 2014! Foundations of Computer Vision!! Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! Readings: FP 10; SZ 4.3, 5.1! Date: 10/8/14!! Materials on these

More information