CS839: Probabilistic Graphical Models. Lecture 22: The Attention Mechanism. Theo Rekatsinas

Size: px
Start display at page:

Download "CS839: Probabilistic Graphical Models. Lecture 22: The Attention Mechanism. Theo Rekatsinas"

Transcription

1 CS839: Probabilistic Graphical Models Lecture 22: The Attention Mechanism Theo Rekatsinas 1

2 Why Attention? Consider machine translation: We need to pay attention to the word we are currently translating. Is the entire sequence needed as context? The cat is black -> Le chat est noir 2

3 Why Attention? Consider machine translation: We need to pay attention to the word we are currently translating. Is the entire sequence needed as context? The cat is black -> Le chat est noir RNNs are the de-facto standard for machine translation Problem: translation relies on reading a complete sentence and compresses all information into a fixed-length vector a sentence with hundreds of words represented by several words will surely lead to information loss, inadequate translation, etc. Long-range dependencies are tricky. 3

4 Basic encoder - decoder 4

5 Soft Attention for Translation 5

6 Soft Attention for Translation Soft Attention for Translation Distribution over input words I love coffee -> Me gusta el café Bahdanau et al, Neural Machine Translation by Jointly Learning to Align and Translate, ICLR 2015

7 Soft Attention for Translation Soft Attention for Translation Distribution over input words I love coffee -> Me gusta el café Bahdanau et al, Neural Machine Translation by Jointly Learning to Align and Translate, ICLR 2015

8 Soft Attention for Translation Soft Attention for Translation Distribution over input words I love coffee -> Me gusta el café Bahdanau et al, Neural Machine Translation by Jointly Learning to Align and Translate, ICLR 2015

9 Soft Attention for Translation Soft Attention for Translation Distribution over input words I love coffee -> Me gusta el café Bahdanau et al, Neural Machine Translation by Jointly Learning to Align and Translate, ICLR 2015

10 Soft Attention Decoder RNN Attention Model Bidirectional encoder RNN From Y. Bengio CVPR 2015 Tutorial

11 Soft Attention Context vector (input to decoder): Mixture weights: Alignment score (how well do input words near j match output words at position i):

12 Soft Attention Luong, Pham and Manning s Translation System (2015): Translation Error Rate vs Human Luong and Manning IWSLT 2015

13 Hard Attention

14 Monotonic Attention

15 Global Attention Blue = encoder Red = decoder Attend to a context vector. Decoder captures global information not only the information from one hidden state. Context vector takes all cell s outputs as input and computes a probability distribution for each token the decoder wants to generate

16 Local Attention Compute a best aligned position first Then compute a context vector centered at that position

17 RNN for Captioning Distribution over vocab RNN only looks at whole image, once d1 d2 CNN h0 h1 h2 Image: H x W x 3 Features: D Hidden state: H y1 First word y2 Second word What if the RNN looks at different parts of the image at each timestep?

18 CNN Image: H x W x 3 Features: L x D Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015

19 CNN h0 Image: H x W x 3 Features: L x D Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015

20 Distribution over L locations a1 CNN h0 Image: H x W x 3 Features: L x D Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015

21 Distribution over L locations a1 CNN h0 Image: H x W x 3 Features: L x D Weighted combination of features Weighted features: D z1

22 Distribution over L locations a1 CNN h0 h1 Image: H x W x 3 Features: L x D Weighted combination of features Weighted features: D z1 y1 First word

23 Distribution over L locations Distribution over vocab a1 a2 d1 CNN h0 h1 Image: H x W x 3 Features: L x D Weighted combination of features Weighted features: D z1 y1 First word

24 Distribution over L locations Distribution over vocab a1 a2 d1 CNN h0 h1 Image: H x W x 3 Features: L x D Weighted combination of features Weighted features: D z1 y1 First word z2

25 Distribution over L locations Distribution over vocab a1 a2 d1 CNN h0 h1 h2 Image: H x W x 3 Features: L x D Weighted combination of features Weighted features: D z1 y1 First word z2 y2

26 Distribution over L locations Distribution over vocab a1 a2 d1 a3 d2 CNN h0 h1 h2 Image: H x W x 3 Features: L x D Weighted combination of features Weighted features: D z1 y1 First word z2 y2

27 Soft vs Hard Attention Soft vs Hard Attention CNN a c b d Image: H x W x 3 Grid of features (Each D-dimensional) From RNN: p a p c p b p d Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015 Distribution over grid locations p a + p b + p c + p c = 1

28 Soft vs Hard Attention Soft vs Hard Attention CNN a c b d Image: H x W x 3 Grid of features (Each D-dimensional) Context vector z (D-dimensional) From RNN: p a p c p b p d Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015 Distribution over grid locations p a + p b + p c + p c = 1

29 Soft vs Hard Attention Soft vs Hard Attention Image: H x W x 3 CNN a c b d Grid of features (Each D-dimensional) Context vector z (D-dimensional) Soft attention: Summarize ALL locations z = p a a+ p b b + p c c + p d d Derivative dz/dp is nice! Train with gradient descent From RNN: p a p c p b p d Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015 Distribution over grid locations p a + p b + p c + p c = 1

30 Soft vs Hard Attention Soft vs Hard Attention Image: H x W x 3 From RNN: CNN Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015 a c b d Grid of features (Each D-dimensional) p a p c p b p d Distribution over grid locations p a + p b + p c + p c = 1 Context vector z (D-dimensional) Soft attention: Summarize ALL locations z = p a a+ p b b + p c c + p d d Derivative dz/dp is nice! Train with gradient descent Hard attention: Sample ONE location according to p, z = that vector With argmax, dz/dp is zero almost everywhere Can t use gradient descent; need reinforcement learning

31 Multi-headed Attention

32 Attention is all you need

33 Attention tricks

34 Soft vs Hard Attention Attention Takeaways Performance: Attention models can improve accuracy and reduce computation at the same time. Complexity: There are many design choices. Those choices have a big effect on performance. Ensembling has unusually large benefits. Simplify where possible!

35 Soft vs Hard Attention Attention Takeaways Explainability: Attention models encode explanations. Both locus and trajectory help understand what s going on. Hard vs. Soft: Soft models are easier to train, hard models require reinforcement learning. They can be combined, as in Luong et al.

16-785: Integrated Intelligence in Robotics: Vision, Language, and Planning. Spring 2018 Lecture 14. Image to Text

16-785: Integrated Intelligence in Robotics: Vision, Language, and Planning. Spring 2018 Lecture 14. Image to Text 16-785: Integrated Intelligence in Robotics: Vision, Language, and Planning Spring 2018 Lecture 14. Image to Text Input Output Classification tasks 4/1/18 CMU 16-785: Integrated Intelligence in Robotics

More information

Recurrent Neural Nets II

Recurrent Neural Nets II Recurrent Neural Nets II Steven Spielberg Pon Kumar, Tingke (Kevin) Shen Machine Learning Reading Group, Fall 2016 9 November, 2016 Outline 1 Introduction 2 Problem Formulations with RNNs 3 LSTM for Optimization

More information

Show, Discriminate, and Tell: A Discriminatory Image Captioning Model with Deep Neural Networks

Show, Discriminate, and Tell: A Discriminatory Image Captioning Model with Deep Neural Networks Show, Discriminate, and Tell: A Discriminatory Image Captioning Model with Deep Neural Networks Zelun Luo Department of Computer Science Stanford University zelunluo@stanford.edu Te-Lin Wu Department of

More information

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention Show, Attend and Tell: Neural Image Caption Generation with Visual Attention Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio Presented

More information

LSTM for Language Translation and Image Captioning. Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia

LSTM for Language Translation and Image Captioning. Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia 1 LSTM for Language Translation and Image Captioning Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia 2 Part I LSTM for Language Translation Motivation Background (RNNs, LSTMs) Model

More information

Structured Attention Networks

Structured Attention Networks Structured Attention Networks Yoon Kim Carl Denton Luong Hoang Alexander M. Rush HarvardNLP 1 Deep Neural Networks for Text Processing and Generation 2 Attention Networks 3 Structured Attention Networks

More information

Pointer Network. Oriol Vinyals. 박천음 강원대학교 Intelligent Software Lab.

Pointer Network. Oriol Vinyals. 박천음 강원대학교 Intelligent Software Lab. Pointer Network Oriol Vinyals 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Pointer Network 1 Pointer Network 2 Intelligent Software Lab. 2 Sequence-to-Sequence Model Train 학습학습학습학습학습 Test

More information

ABC-CNN: Attention Based CNN for Visual Question Answering

ABC-CNN: Attention Based CNN for Visual Question Answering ABC-CNN: Attention Based CNN for Visual Question Answering CIS 601 PRESENTED BY: MAYUR RUMALWALA GUIDED BY: DR. SUNNIE CHUNG AGENDA Ø Introduction Ø Understanding CNN Ø Framework of ABC-CNN Ø Datasets

More information

Image-to-Text Transduction with Spatial Self-Attention

Image-to-Text Transduction with Spatial Self-Attention Image-to-Text Transduction with Spatial Self-Attention Sebastian Springenberg, Egor Lakomkin, Cornelius Weber and Stefan Wermter University of Hamburg - Dept. of Informatics, Knowledge Technology Vogt-Ko

More information

Recurrent Neural Networks. Nand Kishore, Audrey Huang, Rohan Batra

Recurrent Neural Networks. Nand Kishore, Audrey Huang, Rohan Batra Recurrent Neural Networks Nand Kishore, Audrey Huang, Rohan Batra Roadmap Issues Motivation 1 Application 1: Sequence Level Training 2 Basic Structure 3 4 Variations 5 Application 3: Image Classification

More information

DCU-UvA Multimodal MT System Report

DCU-UvA Multimodal MT System Report DCU-UvA Multimodal MT System Report Iacer Calixto ADAPT Centre School of Computing Dublin City University Dublin, Ireland iacer.calixto@adaptcentre.ie Desmond Elliott ILLC University of Amsterdam Science

More information

Table of Contents. What Really is a Hidden Unit? Visualizing Feed-Forward NNs. Visualizing Convolutional NNs. Visualizing Recurrent NNs

Table of Contents. What Really is a Hidden Unit? Visualizing Feed-Forward NNs. Visualizing Convolutional NNs. Visualizing Recurrent NNs Table of Contents What Really is a Hidden Unit? Visualizing Feed-Forward NNs Visualizing Convolutional NNs Visualizing Recurrent NNs Visualizing Attention Visualizing High Dimensional Data What do visualizations

More information

Slide credit from Hung-Yi Lee & Richard Socher

Slide credit from Hung-Yi Lee & Richard Socher Slide credit from Hung-Yi Lee & Richard Socher 1 Review Word Vector 2 Word2Vec Variants Skip-gram: predicting surrounding words given the target word (Mikolov+, 2013) CBOW (continuous bag-of-words): predicting

More information

Layerwise Interweaving Convolutional LSTM

Layerwise Interweaving Convolutional LSTM Layerwise Interweaving Convolutional LSTM Tiehang Duan and Sargur N. Srihari Department of Computer Science and Engineering The State University of New York at Buffalo Buffalo, NY 14260, United States

More information

Structured Attention Networks

Structured Attention Networks Structured Attention Networks Yoon Kim Carl Denton Luong Hoang Alexander M. Rush HarvardNLP ICLR, 2017 Presenter: Chao Jiang ICLR, 2017 Presenter: Chao Jiang 1 / Outline 1 Deep Neutral Networks for Text

More information

Image Captioning with Object Detection and Localization

Image Captioning with Object Detection and Localization Image Captioning with Object Detection and Localization Zhongliang Yang, Yu-Jin Zhang, Sadaqat ur Rehman, Yongfeng Huang, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

More information

Machine Learning Practice and Theory

Machine Learning Practice and Theory Machine Learning Practice and Theory Day 9 - Feature Extraction Govind Gopakumar IIT Kanpur 1 Prelude 2 Announcements Programming Tutorial on Ensemble methods, PCA up Lecture slides for usage of Neural

More information

27: Hybrid Graphical Models and Neural Networks

27: Hybrid Graphical Models and Neural Networks 10-708: Probabilistic Graphical Models 10-708 Spring 2016 27: Hybrid Graphical Models and Neural Networks Lecturer: Matt Gormley Scribes: Jakob Bauer Otilia Stretcu Rohan Varma 1 Motivation We first look

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong Feb 04, 2016 Today Administrivia Attention Modeling in Image Captioning, by Karan Neural networks & Backpropagation

More information

FastText. Jon Koss, Abhishek Jindal

FastText. Jon Koss, Abhishek Jindal FastText Jon Koss, Abhishek Jindal FastText FastText is on par with state-of-the-art deep learning classifiers in terms of accuracy But it is way faster: FastText can train on more than one billion words

More information

RNNs as Directed Graphical Models

RNNs as Directed Graphical Models RNNs as Directed Graphical Models Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 10. Topics in Sequence Modeling Overview

More information

Image Captioning and Generation From Text

Image Captioning and Generation From Text Image Captioning and Generation From Text Presented by: Tony Zhang, Jonathan Kenny, and Jeremy Bernstein Mentor: Stephan Zheng CS159 Advanced Topics in Machine Learning: Structured Prediction California

More information

Multi-Glance Attention Models For Image Classification

Multi-Glance Attention Models For Image Classification Multi-Glance Attention Models For Image Classification Chinmay Duvedi Stanford University Stanford, CA cduvedi@stanford.edu Pararth Shah Stanford University Stanford, CA pararth@stanford.edu Abstract We

More information

Modeling Sequences Conditioned on Context with RNNs

Modeling Sequences Conditioned on Context with RNNs Modeling Sequences Conditioned on Context with RNNs Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 10. Topics in Sequence

More information

Residual Networks And Attention Models. cs273b Recitation 11/11/2016. Anna Shcherbina

Residual Networks And Attention Models. cs273b Recitation 11/11/2016. Anna Shcherbina Residual Networks And Attention Models cs273b Recitation 11/11/2016 Anna Shcherbina Introduction to ResNets Introduced in 2015 by Microsoft Research Deep Residual Learning for Image Recognition (He, Zhang,

More information

VISION & LANGUAGE From Captions to Visual Concepts and Back

VISION & LANGUAGE From Captions to Visual Concepts and Back VISION & LANGUAGE From Captions to Visual Concepts and Back Brady Fowler & Kerry Jones Tuesday, February 28th 2017 CS 6501-004 VICENTE Agenda Problem Domain Object Detection Language Generation Sentence

More information

CSC 578 Neural Networks and Deep Learning

CSC 578 Neural Networks and Deep Learning CSC 578 Neural Networks and Deep Learning Fall 2018/19 7. Recurrent Neural Networks (Some figures adapted from NNDL book) 1 Recurrent Neural Networks 1. Recurrent Neural Networks (RNNs) 2. RNN Training

More information

Show, Discriminate, and Tell: A Discriminatory Image Captioning Model with Deep Neural Networks

Show, Discriminate, and Tell: A Discriminatory Image Captioning Model with Deep Neural Networks Show, Discriminate, and Tell: A Discriminatory Image Captioning Model with Deep Neural Networks Boya Peng Department of Computer Science Stanford University boya@stanford.edu Zelun Luo Department of Computer

More information

Kyoto-NMT: a Neural Machine Translation implementation in Chainer

Kyoto-NMT: a Neural Machine Translation implementation in Chainer Kyoto-NMT: a Neural Machine Translation implementation in Chainer Fabien Cromières Japan Science and Technology Agency Kawaguchi-shi, Saitama 332-0012 fabien@pa.jst.jp Abstract We present Kyoto-NMT, an

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

CS 224n: Assignment #5

CS 224n: Assignment #5 CS 224n: Assignment #5 This is the last assignment before you begin working on your projects. It is designed to prepare you for implementing things by yourself. This assignment is coding-heavy and written-question-light.

More information

Novel Image Captioning

Novel Image Captioning 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Sequence Modeling: Recurrent and Recursive Nets. By Pyry Takala 14 Oct 2015

Sequence Modeling: Recurrent and Recursive Nets. By Pyry Takala 14 Oct 2015 Sequence Modeling: Recurrent and Recursive Nets By Pyry Takala 14 Oct 2015 Agenda Why Recurrent neural networks? Anatomy and basic training of an RNN (10.2, 10.2.1) Properties of RNNs (10.2.2, 8.2.6) Using

More information

Introduction to Multimodal Machine Translation

Introduction to Multimodal Machine Translation Introduction to Multimodal Machine Translation Loïc Barrault, University of Le Mans Thanks to Ozan Caglayan for sharing some slides Motivations Semantics still poorly used in MT systems Embeddings seem

More information

How to Develop Encoder-Decoder LSTMs

How to Develop Encoder-Decoder LSTMs Chapter 9 How to Develop Encoder-Decoder LSTMs 9.0.1 Lesson Goal The goal of this lesson is to learn how to develop encoder-decoder LSTM models. completing this lesson, you will know: After ˆ The Encoder-Decoder

More information

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 18: Deep learning and Vision: Convolutional neural networks Teacher: Gianni A. Di Caro DEEP, SHALLOW, CONNECTED, SPARSE? Fully connected multi-layer feed-forward perceptrons: More powerful

More information

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa Instructors: Parth Shah, Riju Pahwa Lecture 2 Notes Outline 1. Neural Networks The Big Idea Architecture SGD and Backpropagation 2. Convolutional Neural Networks Intuition Architecture 3. Recurrent Neural

More information

Device Placement Optimization with Reinforcement Learning

Device Placement Optimization with Reinforcement Learning Device Placement Optimization with Reinforcement Learning Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Mohammad Norouzi, Naveen Kumar, Rasmus Larsen, Yuefeng Zhou, Quoc Le, Samy Bengio, and

More information

Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision

Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision Anonymized for review Abstract Extending the success of deep neural networks to high level tasks like natural language

More information

Image-Sentence Multimodal Embedding with Instructive Objectives

Image-Sentence Multimodal Embedding with Instructive Objectives Image-Sentence Multimodal Embedding with Instructive Objectives Jianhao Wang Shunyu Yao IIIS, Tsinghua University {jh-wang15, yao-sy15}@mails.tsinghua.edu.cn Abstract To encode images and sentences into

More information

Grounded Compositional Semantics for Finding and Describing Images with Sentences

Grounded Compositional Semantics for Finding and Describing Images with Sentences Grounded Compositional Semantics for Finding and Describing Images with Sentences R. Socher, A. Karpathy, V. Le,D. Manning, A Y. Ng - 2013 Ali Gharaee 1 Alireza Keshavarzi 2 1 Department of Computational

More information

More on Neural Networks. Read Chapter 5 in the text by Bishop, except omit Sections 5.3.3, 5.3.4, 5.4, 5.5.4, 5.5.5, 5.5.6, 5.5.7, and 5.

More on Neural Networks. Read Chapter 5 in the text by Bishop, except omit Sections 5.3.3, 5.3.4, 5.4, 5.5.4, 5.5.5, 5.5.6, 5.5.7, and 5. More on Neural Networks Read Chapter 5 in the text by Bishop, except omit Sections 5.3.3, 5.3.4, 5.4, 5.5.4, 5.5.5, 5.5.6, 5.5.7, and 5.6 Recall the MLP Training Example From Last Lecture log likelihood

More information

Internet of things that video

Internet of things that video Video recognition from a sentence Cees Snoek Intelligent Sensory Information Systems Lab University of Amsterdam The Netherlands Internet of things that video 45 billion cameras by 2022 [LDV Capital] 2

More information

Multimodal Learning. Victoria Dean. MIT 6.S191 Intro to Deep Learning IAP 2017

Multimodal Learning. Victoria Dean. MIT 6.S191 Intro to Deep Learning IAP 2017 Multimodal Learning Victoria Dean Talk outline What is multimodal learning and what are the challenges? Flickr example: joint learning of images and tags Image captioning: generating sentences from images

More information

Natural Language Processing with Deep Learning CS224N/Ling284

Natural Language Processing with Deep Learning CS224N/Ling284 Natural Language Processing with Deep Learning CS224N/Ling284 Lecture 8: Recurrent Neural Networks Christopher Manning and Richard Socher Organization Extra project office hour today after lecture Overview

More information

UTS submission to Google YouTube-8M Challenge 2017

UTS submission to Google YouTube-8M Challenge 2017 UTS submission to Google YouTube-8M Challenge 2017 Linchao Zhu Yanbin Liu Yi Yang University of Technology Sydney {zhulinchao7, csyanbin, yee.i.yang}@gmail.com Abstract In this paper, we present our solution

More information

Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction

Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction by Noh, Hyeonwoo, Paul Hongsuck Seo, and Bohyung Han.[1] Presented : Badri Patro 1 1 Computer Vision Reading

More information

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University LSTM and its variants for visual recognition Xiaodan Liang xdliang328@gmail.com Sun Yat-sen University Outline Context Modelling with CNN LSTM and its Variants LSTM Architecture Variants Application in

More information

On the Efficiency of Recurrent Neural Network Optimization Algorithms

On the Efficiency of Recurrent Neural Network Optimization Algorithms On the Efficiency of Recurrent Neural Network Optimization Algorithms Ben Krause, Liang Lu, Iain Murray, Steve Renals University of Edinburgh Department of Informatics s17005@sms.ed.ac.uk, llu@staffmail.ed.ac.uk,

More information

Clustering. Image segmentation, document clustering, protein class discovery, compression

Clustering. Image segmentation, document clustering, protein class discovery, compression Clustering CS 444 Some material on these is slides borrowed from Andrew Moore's machine learning tutorials located at: Clustering The problem of grouping unlabeled data on the basis of similarity. A key

More information

Deep Learning for Entity Matching: A Design Space Exploration. Sidharth Mudgal Sunil Kumar

Deep Learning for Entity Matching: A Design Space Exploration. Sidharth Mudgal Sunil Kumar Deep Learning for Entity Matching: A Design Space Exploration by Sidharth Mudgal Sunil Kumar A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Computer

More information

Semantic image search using queries

Semantic image search using queries Semantic image search using queries Shabaz Basheer Patel, Anand Sampat Department of Electrical Engineering Stanford University CA 94305 shabaz@stanford.edu,asampat@stanford.edu Abstract Previous work,

More information

Transition-Based Dependency Parsing with Stack Long Short-Term Memory

Transition-Based Dependency Parsing with Stack Long Short-Term Memory Transition-Based Dependency Parsing with Stack Long Short-Term Memory Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, Noah A. Smith Association for Computational Linguistics (ACL), 2015 Presented

More information

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling Authors: Junyoung Chung, Caglar Gulcehre, KyungHyun Cho and Yoshua Bengio Presenter: Yu-Wei Lin Background: Recurrent Neural

More information

Structured Prediction Basics

Structured Prediction Basics CS11-747 Neural Networks for NLP Structured Prediction Basics Graham Neubig Site https://phontron.com/class/nn4nlp2017/ A Prediction Problem I hate this movie I love this movie very good good neutral bad

More information

Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features

Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features Xu SUN ( 孙栩 ) Peking University xusun@pku.edu.cn Motivation Neural networks -> Good Performance CNN, RNN, LSTM

More information

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Kernels + K-Means Matt Gormley Lecture 29 April 25, 2018 1 Reminders Homework 8:

More information

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan Lecture 17: Neural Networks and Deep Learning Instructor: Saravanan Thirumuruganathan Outline Perceptron Neural Networks Deep Learning Convolutional Neural Networks Recurrent Neural Networks Auto Encoders

More information

arxiv: v1 [cs.cv] 17 Nov 2016

arxiv: v1 [cs.cv] 17 Nov 2016 Instance-aware Image and Sentence Matching with Selective Multimodal LSTM arxiv:1611.05588v1 [cs.cv] 17 Nov 2016 An old man with his bag and dog is sitting on the bench beside the road and grass Yan Huang

More information

Empirical Evaluation of RNN Architectures on Sentence Classification Task

Empirical Evaluation of RNN Architectures on Sentence Classification Task Empirical Evaluation of RNN Architectures on Sentence Classification Task Lei Shen, Junlin Zhang Chanjet Information Technology lorashen@126.com, zhangjlh@chanjet.com Abstract. Recurrent Neural Networks

More information

Discriminative classifiers for image recognition

Discriminative classifiers for image recognition Discriminative classifiers for image recognition May 26 th, 2015 Yong Jae Lee UC Davis Outline Last time: window-based generic object detection basic pipeline face detection with boosting as case study

More information

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound. Lecture 12: Deep Reinforcement Learning

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound. Lecture 12: Deep Reinforcement Learning Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound Lecture 12: Deep Reinforcement Learning Types of Learning Supervised training Learning from the teacher Training data includes

More information

Deep Learning. Deep Learning. Practical Application Automatically Adding Sounds To Silent Movies

Deep Learning. Deep Learning. Practical Application Automatically Adding Sounds To Silent Movies http://blog.csdn.net/zouxy09/article/details/8775360 Automatic Colorization of Black and White Images Automatically Adding Sounds To Silent Movies Traditionally this was done by hand with human effort

More information

JOINT INTENT DETECTION AND SLOT FILLING USING CONVOLUTIONAL NEURAL NETWORKS. Puyang Xu, Ruhi Sarikaya. Microsoft Corporation

JOINT INTENT DETECTION AND SLOT FILLING USING CONVOLUTIONAL NEURAL NETWORKS. Puyang Xu, Ruhi Sarikaya. Microsoft Corporation JOINT INTENT DETECTION AND SLOT FILLING USING CONVOLUTIONAL NEURAL NETWORKS Puyang Xu, Ruhi Sarikaya Microsoft Corporation ABSTRACT We describe a joint model for intent detection and slot filling based

More information

Convolutional Sequence to Sequence Learning. Denis Yarats with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook AI Research

Convolutional Sequence to Sequence Learning. Denis Yarats with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook AI Research Convolutional Sequence to Sequence Learning Denis Yarats with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook AI Research Sequence generation Need to model a conditional distribution

More information

Neural Networks for Machine Learning. Lecture 15a From Principal Components Analysis to Autoencoders

Neural Networks for Machine Learning. Lecture 15a From Principal Components Analysis to Autoencoders Neural Networks for Machine Learning Lecture 15a From Principal Components Analysis to Autoencoders Geoffrey Hinton Nitish Srivastava, Kevin Swersky Tijmen Tieleman Abdel-rahman Mohamed Principal Components

More information

Bidirectional Recurrent Convolutional Networks for Video Super-Resolution

Bidirectional Recurrent Convolutional Networks for Video Super-Resolution Bidirectional Recurrent Convolutional Networks for Video Super-Resolution Qi Zhang & Yan Huang Center for Research on Intelligent Perception and Computing (CRIPAC) National Laboratory of Pattern Recognition

More information

Lecture 21 : A Hybrid: Deep Learning and Graphical Models

Lecture 21 : A Hybrid: Deep Learning and Graphical Models 10-708: Probabilistic Graphical Models, Spring 2018 Lecture 21 : A Hybrid: Deep Learning and Graphical Models Lecturer: Kayhan Batmanghelich Scribes: Paul Liang, Anirudha Rayasam 1 Introduction and Motivation

More information

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla DEEP LEARNING REVIEW Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature 2015 -Presented by Divya Chitimalla What is deep learning Deep learning allows computational models that are composed of multiple

More information

Encoding RNNs, 48 End of sentence (EOS) token, 207 Exploding gradient, 131 Exponential function, 42 Exponential Linear Unit (ELU), 44

Encoding RNNs, 48 End of sentence (EOS) token, 207 Exploding gradient, 131 Exponential function, 42 Exponential Linear Unit (ELU), 44 A Activation potential, 40 Annotated corpus add padding, 162 check versions, 158 create checkpoints, 164, 166 create input, 160 create train and validation datasets, 163 dropout, 163 DRUG-AE.rel file,

More information

Lecture 7: Neural network acoustic models in speech recognition

Lecture 7: Neural network acoustic models in speech recognition CS 224S / LINGUIST 285 Spoken Language Processing Andrew Maas Stanford University Spring 2017 Lecture 7: Neural network acoustic models in speech recognition Outline Hybrid acoustic modeling overview Basic

More information

Context Encoding LSTM CS224N Course Project

Context Encoding LSTM CS224N Course Project Context Encoding LSTM CS224N Course Project Abhinav Rastogi arastogi@stanford.edu Supervised by - Samuel R. Bowman December 7, 2015 Abstract This project uses ideas from greedy transition based parsing

More information

Neural Network Joint Language Model: An Investigation and An Extension With Global Source Context

Neural Network Joint Language Model: An Investigation and An Extension With Global Source Context Neural Network Joint Language Model: An Investigation and An Extension With Global Source Context Ruizhongtai (Charles) Qi Department of Electrical Engineering, Stanford University rqi@stanford.edu Abstract

More information

Instance-aware Image and Sentence Matching with Selective Multimodal LSTM

Instance-aware Image and Sentence Matching with Selective Multimodal LSTM Instance-aware Image and Sentence Matching with Selective Multimodal LSTM Yan Huang 1,3 Wei Wang 1,3 Liang Wang 1,2,3 1 Center for Research on Intelligent Perception and Computing (CRIPAC), National Laboratory

More information

Slides credited from Dr. David Silver & Hung-Yi Lee

Slides credited from Dr. David Silver & Hung-Yi Lee Slides credited from Dr. David Silver & Hung-Yi Lee Review Reinforcement Learning 2 Reinforcement Learning RL is a general purpose framework for decision making RL is for an agent with the capacity to

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning for Object Categorization 14.01.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period

More information

Image to Latex. Romain Sauvestre Stanford University MS&E. Guillaume Genthial Stanford University ICME. Abstract. 1. Introduction

Image to Latex. Romain Sauvestre Stanford University MS&E. Guillaume Genthial Stanford University ICME. Abstract. 1. Introduction Image to Latex Guillaume Genthial Stanford University ICME genthial@stanford.edu Romain Sauvestre Stanford University MS&E romains@stanford.edu Abstract Converting images of mathematical formulas to L

More information

Deep-Q: Traffic-driven QoS Inference using Deep Generative Network

Deep-Q: Traffic-driven QoS Inference using Deep Generative Network Deep-Q: Traffic-driven QoS Inference using Deep Generative Network Shihan Xiao, Dongdong He, Zhibo Gong Network Technology Lab, Huawei Technologies Co., Ltd., Beijing, China 1 Background What is a QoS

More information

Generative Adversarial Text to Image Synthesis

Generative Adversarial Text to Image Synthesis Generative Adversarial Text to Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee Presented by: Jingyao Zhan Contents Introduction Related Work Method

More information

Neural Nets & Deep Learning

Neural Nets & Deep Learning Neural Nets & Deep Learning The Inspiration Inputs Outputs Our brains are pretty amazing, what if we could do something similar with computers? Image Source: http://ib.bioninja.com.au/_media/neuron _med.jpeg

More information

Recurrent Fusion Network for Image Captioning

Recurrent Fusion Network for Image Captioning Recurrent Fusion Network for Image Captioning Wenhao Jiang 1, Lin Ma 1, Yu-Gang Jiang 2, Wei Liu 1, Tong Zhang 1 1 Tencen AI Lab, 2 Fudan University {cswhjiang, forest.linma}@gmail.com, ygj@fudan.edu.cn,

More information

Neural Networks for unsupervised learning From Principal Components Analysis to Autoencoders to semantic hashing

Neural Networks for unsupervised learning From Principal Components Analysis to Autoencoders to semantic hashing Neural Networks for unsupervised learning From Principal Components Analysis to Autoencoders to semantic hashing feature 3 PC 3 Beate Sick Many slides are taken form Hinton s great lecture on NN: https://www.coursera.org/course/neuralnets

More information

Relational inductive biases, deep learning, and graph networks

Relational inductive biases, deep learning, and graph networks Relational inductive biases, deep learning, and graph networks Peter Battaglia et al. 2018 1 What The authors explore how we can combine relational inductive biases and DL. They introduce graph network

More information

Deep Learning on Graphs

Deep Learning on Graphs Deep Learning on Graphs with Graph Convolutional Networks Hidden layer Hidden layer Input Output ReLU ReLU, 6 April 2017 joint work with Max Welling (University of Amsterdam) The success story of deep

More information

Generating Images from Captions with Attention. Elman Mansimov Emilio Parisotto Jimmy Lei Ba Ruslan Salakhutdinov

Generating Images from Captions with Attention. Elman Mansimov Emilio Parisotto Jimmy Lei Ba Ruslan Salakhutdinov Generating Images from Captions with Attention Elman Mansimov Emilio Parisotto Jimmy Lei Ba Ruslan Salakhutdinov Reasoning, Attention, Memory workshop, NIPS 2015 Motivation To simplify the image modelling

More information

Progressive Neural Architecture Search

Progressive Neural Architecture Search Progressive Neural Architecture Search Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy 09/10/2018 @ECCV 1 Outline Introduction

More information

Video Generation Using 3D Convolutional Neural Network

Video Generation Using 3D Convolutional Neural Network Video Generation Using 3D Convolutional Neural Network Shohei Yamamoto Grad. School of Information Science and Technology The University of Tokyo yamamoto@mi.t.u-tokyo.ac.jp Tatsuya Harada Grad. School

More information

NTT SMT System for IWSLT Katsuhito Sudoh, Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki Isozaki NTT Communication Science Labs.

NTT SMT System for IWSLT Katsuhito Sudoh, Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki Isozaki NTT Communication Science Labs. NTT SMT System for IWSLT 2008 Katsuhito Sudoh, Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki Isozaki NTT Communication Science Labs., Japan Overview 2-stage translation system k-best translation

More information

Advanced Multimodal Machine Learning

Advanced Multimodal Machine Learning Advanced Multimodal Machine Learning Lecture 1.2: Challenges and applications Louis-Philippe Morency Tadas Baltrušaitis 1 Objectives Identify the 5 technical challenges in multimodal machine learning Identify

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

DATA STRUCTURES USING C

DATA STRUCTURES USING C DATA STRUCTURES USING C Lecture-7 Data Structures Lecture Objectives After studying this chapter, the student should be able to: Define a data structure. Define an array as a data structure and how it

More information

PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D.

PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D. PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D. Rhodes 5/10/17 What is Machine Learning? Machine learning

More information

Deep Neural Networks for Recognizing Online Handwritten Mathematical Symbols

Deep Neural Networks for Recognizing Online Handwritten Mathematical Symbols Deep Neural Networks for Recognizing Online Handwritten Mathematical Symbols Hai Dai Nguyen 1, Anh Duc Le 2 and Masaki Nakagawa 3 Tokyo University of Agriculture and Technology 2-24-16 Nakacho, Koganei-shi,

More information

11. Neural Network Regularization

11. Neural Network Regularization 11. Neural Network Regularization CS 519 Deep Learning, Winter 2016 Fuxin Li With materials from Andrej Karpathy, Zsolt Kira Preventing overfitting Approach 1: Get more data! Always best if possible! If

More information

Machine learning for vision. It s the features, stupid! cathedral. high-rise. Winter Roland Memisevic. Lecture 2, January 26, 2016

Machine learning for vision. It s the features, stupid! cathedral. high-rise. Winter Roland Memisevic. Lecture 2, January 26, 2016 Winter 2016 Lecture 2, Januar 26, 2016 f2? cathedral high-rise f1 A common computer vision pipeline before 2012 1. 2. 3. 4. Find interest points. Crop patches around them. Represent each patch with a sparse

More information

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu Natural Language Processing CS 6320 Lecture 6 Neural Language Models Instructor: Sanda Harabagiu In this lecture We shall cover: Deep Neural Models for Natural Language Processing Introduce Feed Forward

More information

Recurrent Neural Networks

Recurrent Neural Networks Recurrent Neural Networks Javier Béjar Deep Learning 2018/2019 Fall Master in Artificial Intelligence (FIB-UPC) Introduction Sequential data Many problems are described by sequences Time series Video/audio

More information

Project Final Report

Project Final Report Project Final Report Ye Tian Stanford University yetian@stanford.edu Tianlun Li Stanford University tianlunl@stanford.edu Abstract We plan to do image-to-sentence generation. This application bridges vision

More information

Tuning. Philipp Koehn presented by Gaurav Kumar. 28 September 2017

Tuning. Philipp Koehn presented by Gaurav Kumar. 28 September 2017 Tuning Philipp Koehn presented by Gaurav Kumar 28 September 2017 The Story so Far: Generative Models 1 The definition of translation probability follows a mathematical derivation argmax e p(e f) = argmax

More information