Pointer Network. Oriol Vinyals. 박천음 강원대학교 Intelligent Software Lab.

Size: px
Start display at page:

Download "Pointer Network. Oriol Vinyals. 박천음 강원대학교 Intelligent Software Lab."

Transcription

1 Pointer Network Oriol Vinyals 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab.

2 Pointer Network 1 Pointer Network 2 Intelligent Software Lab. 2

3 Sequence-to-Sequence Model Train 학습학습학습학습학습 Test Intelligent Software Lab. 3

4 Encoder-Decoder Architecture Sentence representation: encoder is based on its property of sequence summarization. RNN h i = φ θ (h i 1, s i ) global RNN`s internal state z i based on the summary vector h T of the source sentence. Intelligent Software Lab. 4

5 Soft Attention Mechanism Bi-RNN: forward and backward RNN 으로전체입력문장을심볼 (symbol) 로요약 (summarization) 할수있음 h h Figure 2. Bidirectional recurrent neural networks for encoding a source sentence. - cho Intelligent Software Lab. 5

6 Soft Attention Mechanism But RNN은최근심볼에편향적인특성을보임 not good 따라서 Concat h and h Annotation vector h (1) 입력문장을가변길이표현으로저장하는문맥의존단어표현집합 (set of context-dependent word representation) 으로볼수있음 (as opposed to Fixed-length, dimensional summary) 번역된단어 (y 1, y 2,, y t 1 ) 와함께현재단어 x j (or h j ) 를번역 y t Figure 3. attention Mechanism takes into consideration... - cho Intelligent Software Lab. 6

7 Soft Attention Mechanism Attention mechanism: small neural network (+ single hidden layer) Attention vector: e j R (single scalar output) e ij = f z i 1, h j z i 1 : previous decoder`s hidden state h j : one of the source context-dependent word representations Single hidden layer e ij Intelligent Software Lab. 7

8 Soft Attention Mechanism 모든단어에대한 score 를구할때 softmax Attention weight: a ij = exp e ij j exp e ij Context vector (encoding): c ij = j=1 T a ij h j = Ε a ij [h j ] c ij Intelligent Software Lab. 8

9 Pointer Network Repurposing the attention mechanism to create pointers to input elements c: input(x 1, y 1 ) Input 과 output 의길이가서로다른경우 PtrNet 해결가능 Representing variable length dictionaries by using a softmax probability distribution as a pointer Intelligent Software Lab. 9

10 Pointer Network PtrNet u i j = v T tanh W 1 e j + W 2 d i, j 1,, n p C i C 1, C i 1, Ρ = softmax u i, (of length n) Blending attention a i j = softmax u i n d i = a i j e j j=1 PtrNet: Data structure Ρ: point sets Ρ = {Ρ 1,, Ρ n } Ρ j = (x j, y j ): cartesian coordinate v, W 1, W 2 : learnable parameters (input) u j i : use it as pointers to the input elements: C i 1 Ρ Ci 1 d i e j Intelligent Software Lab. 10

11 Pointer Network 1 Pointer Network 2 Intelligent Software Lab. 11

12 Pointer Network PtrNet: Architecture and Hyperparameters No extensive architecture or hyperparameter search Main message of the paper stronger Single layer LSTM Hidden units: 256 or 512 Stochastic gradient descent A learning rate of 1.0 Batch size of 128 Random uniform weight initialization: ~ 0.08 L2 gradient clipping of 2.0 1M training example pairs Intelligent Software Lab. 12

13 Pointer Network Convex Hull: Data structure Ρ: point sets Ρ = {Ρ 1,, Ρ n } (Input) Ρ j : uniform distribution in [0, 1] x [0, 1] C P = {C 1,, C m P } (Output) C i : between 1 and n corresponding to positions in the sequence Ρ Special token: beginning( ) or end( ) Example Input Ρ = Ρ 1,, Ρ 10 Output C Ρ = {, 2, 4, 3, 5, 6, 7, 2, } Intelligent Software Lab. 13

14 Pointer Network Convex Hull: Empirical Results Intelligent Software Lab. 14

15 Pointer Network Delaunay Triangulation: Data Structure Ρ: Delaunay triangulation for a set Ρ of points in a plane (every triangle is empty there is no point from Ρ in its interior) C Ρ = {C 1,, C m P }: the corresponding sequences representing the triangulation of the point set Ρ C i : three integers for each triangle representation Lexicographic order: we order the triangles C i by their incenter coordinates ( 정렬해야더좋은성능 ) Choose the increasing triangle representation Example C i = 1,2,4 (2,4,1) Input Ρ = Ρ 1,, Ρ 5 Output C Ρ = {, 1,2,4, 1,4,5, 1,3,5, (1,2,3), } Intelligent Software Lab. 15

16 Pointer Network Delaunay Triangulation: Empirical Results Given set of points triangulates the convex hull of these points Intelligent Software Lab. 16

17 Pointer Network Travelling Salesman Problem (TSP): Data structure Input/output pairs (Ρ, C Ρ ) as in the Convex Hull problem Ρ: the Cartesian coordinates representing the cities Chosen randomly in the [0, 1] x [0, 1] square C Ρ = {C 1,, C n }: permutation of integers from 1 to n representing the optimal path Intelligent Software Lab. 17

18 Pointer Network Travelling Salesman Problem (TSP): Data structure Valid tour 에대하여 beam search Invalid tour 제외..? 같은도시를반복 or 도착점무시 Intelligent Software Lab. 18

19 references Sequence to sequence Learning with Neural Networks, Stuskever at al. n-neural-machine-translation-gpus-part-2/ n-neural-machine-translation-gpus-part-3/ Pointer Networks, Vinyals at al. Intelligent Software Lab. 19

20 QA 감사합니다. 박천음, 이창기 Intelligent Software Lab., 강원대학교 Intelligent Software Lab.

16-785: Integrated Intelligence in Robotics: Vision, Language, and Planning. Spring 2018 Lecture 14. Image to Text

16-785: Integrated Intelligence in Robotics: Vision, Language, and Planning. Spring 2018 Lecture 14. Image to Text 16-785: Integrated Intelligence in Robotics: Vision, Language, and Planning Spring 2018 Lecture 14. Image to Text Input Output Classification tasks 4/1/18 CMU 16-785: Integrated Intelligence in Robotics

More information

Recurrent Neural Nets II

Recurrent Neural Nets II Recurrent Neural Nets II Steven Spielberg Pon Kumar, Tingke (Kevin) Shen Machine Learning Reading Group, Fall 2016 9 November, 2016 Outline 1 Introduction 2 Problem Formulations with RNNs 3 LSTM for Optimization

More information

LSTM for Language Translation and Image Captioning. Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia

LSTM for Language Translation and Image Captioning. Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia 1 LSTM for Language Translation and Image Captioning Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia 2 Part I LSTM for Language Translation Motivation Background (RNNs, LSTMs) Model

More information

Image Captioning with Object Detection and Localization

Image Captioning with Object Detection and Localization Image Captioning with Object Detection and Localization Zhongliang Yang, Yu-Jin Zhang, Sadaqat ur Rehman, Yongfeng Huang, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

More information

Encoding RNNs, 48 End of sentence (EOS) token, 207 Exploding gradient, 131 Exponential function, 42 Exponential Linear Unit (ELU), 44

Encoding RNNs, 48 End of sentence (EOS) token, 207 Exploding gradient, 131 Exponential function, 42 Exponential Linear Unit (ELU), 44 A Activation potential, 40 Annotated corpus add padding, 162 check versions, 158 create checkpoints, 164, 166 create input, 160 create train and validation datasets, 163 dropout, 163 DRUG-AE.rel file,

More information

CS839: Probabilistic Graphical Models. Lecture 22: The Attention Mechanism. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 22: The Attention Mechanism. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 22: The Attention Mechanism Theo Rekatsinas 1 Why Attention? Consider machine translation: We need to pay attention to the word we are currently translating.

More information

Table of Contents. What Really is a Hidden Unit? Visualizing Feed-Forward NNs. Visualizing Convolutional NNs. Visualizing Recurrent NNs

Table of Contents. What Really is a Hidden Unit? Visualizing Feed-Forward NNs. Visualizing Convolutional NNs. Visualizing Recurrent NNs Table of Contents What Really is a Hidden Unit? Visualizing Feed-Forward NNs Visualizing Convolutional NNs Visualizing Recurrent NNs Visualizing Attention Visualizing High Dimensional Data What do visualizations

More information

Show, Discriminate, and Tell: A Discriminatory Image Captioning Model with Deep Neural Networks

Show, Discriminate, and Tell: A Discriminatory Image Captioning Model with Deep Neural Networks Show, Discriminate, and Tell: A Discriminatory Image Captioning Model with Deep Neural Networks Zelun Luo Department of Computer Science Stanford University zelunluo@stanford.edu Te-Lin Wu Department of

More information

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling Authors: Junyoung Chung, Caglar Gulcehre, KyungHyun Cho and Yoshua Bengio Presenter: Yu-Wei Lin Background: Recurrent Neural

More information

CSC 578 Neural Networks and Deep Learning

CSC 578 Neural Networks and Deep Learning CSC 578 Neural Networks and Deep Learning Fall 2018/19 7. Recurrent Neural Networks (Some figures adapted from NNDL book) 1 Recurrent Neural Networks 1. Recurrent Neural Networks (RNNs) 2. RNN Training

More information

Seq2SQL: Generating Structured Queries from Natural Language Using Reinforcement Learning

Seq2SQL: Generating Structured Queries from Natural Language Using Reinforcement Learning Seq2SQL: Generating Structured Queries from Natural Language Using Reinforcement Learning V. Zhong, C. Xiong, R. Socher Salesforce Research arxiv: 1709.00103 Reviewed by : Bill Zhang University of Virginia

More information

27: Hybrid Graphical Models and Neural Networks

27: Hybrid Graphical Models and Neural Networks 10-708: Probabilistic Graphical Models 10-708 Spring 2016 27: Hybrid Graphical Models and Neural Networks Lecturer: Matt Gormley Scribes: Jakob Bauer Otilia Stretcu Rohan Varma 1 Motivation We first look

More information

JOINT INTENT DETECTION AND SLOT FILLING USING CONVOLUTIONAL NEURAL NETWORKS. Puyang Xu, Ruhi Sarikaya. Microsoft Corporation

JOINT INTENT DETECTION AND SLOT FILLING USING CONVOLUTIONAL NEURAL NETWORKS. Puyang Xu, Ruhi Sarikaya. Microsoft Corporation JOINT INTENT DETECTION AND SLOT FILLING USING CONVOLUTIONAL NEURAL NETWORKS Puyang Xu, Ruhi Sarikaya Microsoft Corporation ABSTRACT We describe a joint model for intent detection and slot filling based

More information

Modeling Sequences Conditioned on Context with RNNs

Modeling Sequences Conditioned on Context with RNNs Modeling Sequences Conditioned on Context with RNNs Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 10. Topics in Sequence

More information

ABC-CNN: Attention Based CNN for Visual Question Answering

ABC-CNN: Attention Based CNN for Visual Question Answering ABC-CNN: Attention Based CNN for Visual Question Answering CIS 601 PRESENTED BY: MAYUR RUMALWALA GUIDED BY: DR. SUNNIE CHUNG AGENDA Ø Introduction Ø Understanding CNN Ø Framework of ABC-CNN Ø Datasets

More information

Residual Networks And Attention Models. cs273b Recitation 11/11/2016. Anna Shcherbina

Residual Networks And Attention Models. cs273b Recitation 11/11/2016. Anna Shcherbina Residual Networks And Attention Models cs273b Recitation 11/11/2016 Anna Shcherbina Introduction to ResNets Introduced in 2015 by Microsoft Research Deep Residual Learning for Image Recognition (He, Zhang,

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Empirical Evaluation of RNN Architectures on Sentence Classification Task

Empirical Evaluation of RNN Architectures on Sentence Classification Task Empirical Evaluation of RNN Architectures on Sentence Classification Task Lei Shen, Junlin Zhang Chanjet Information Technology lorashen@126.com, zhangjlh@chanjet.com Abstract. Recurrent Neural Networks

More information

Transition-Based Dependency Parsing with Stack Long Short-Term Memory

Transition-Based Dependency Parsing with Stack Long Short-Term Memory Transition-Based Dependency Parsing with Stack Long Short-Term Memory Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, Noah A. Smith Association for Computational Linguistics (ACL), 2015 Presented

More information

SEMANTIC COMPUTING. Lecture 9: Deep Learning: Recurrent Neural Networks (RNNs) TU Dresden, 21 December 2018

SEMANTIC COMPUTING. Lecture 9: Deep Learning: Recurrent Neural Networks (RNNs) TU Dresden, 21 December 2018 SEMANTIC COMPUTING Lecture 9: Deep Learning: Recurrent Neural Networks (RNNs) Dagmar Gromann International Center For Computational Logic TU Dresden, 21 December 2018 Overview Handling Overfitting Recurrent

More information

Sequence Modeling: Recurrent and Recursive Nets. By Pyry Takala 14 Oct 2015

Sequence Modeling: Recurrent and Recursive Nets. By Pyry Takala 14 Oct 2015 Sequence Modeling: Recurrent and Recursive Nets By Pyry Takala 14 Oct 2015 Agenda Why Recurrent neural networks? Anatomy and basic training of an RNN (10.2, 10.2.1) Properties of RNNs (10.2.2, 8.2.6) Using

More information

Voronoi Diagrams. A Voronoi diagram records everything one would ever want to know about proximity to a set of points

Voronoi Diagrams. A Voronoi diagram records everything one would ever want to know about proximity to a set of points Voronoi Diagrams Voronoi Diagrams A Voronoi diagram records everything one would ever want to know about proximity to a set of points Who is closest to whom? Who is furthest? We will start with a series

More information

Deep Learning. Architecture Design for. Sargur N. Srihari

Deep Learning. Architecture Design for. Sargur N. Srihari Architecture Design for Deep Learning Sargur N. srihari@cedar.buffalo.edu 1 Topics Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation

More information

CSCE 350: Chin-Tser Huang. University of South Carolina

CSCE 350: Chin-Tser Huang. University of South Carolina CSCE 350: Data Structures and Algorithms Chin-Tser Huang huangct@cse.sc.edu University of South Carolina Announcement Homework 2 will be returned on Thursday; solution will be available on class website

More information

Recurrent Neural Network (RNN) Industrial AI Lab.

Recurrent Neural Network (RNN) Industrial AI Lab. Recurrent Neural Network (RNN) Industrial AI Lab. For example (Deterministic) Time Series Data Closed- form Linear difference equation (LDE) and initial condition High order LDEs 2 (Stochastic) Time Series

More information

CS 6501: Deep Learning for Computer Graphics. Training Neural Networks II. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Training Neural Networks II. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Training Neural Networks II Connelly Barnes Overview Preprocessing Initialization Vanishing/exploding gradients problem Batch normalization Dropout Additional

More information

Can Active Memory Replace Attention?

Can Active Memory Replace Attention? Google Brain NIPS 2016 Presenter: Chao Jiang NIPS 2016 Presenter: Chao Jiang 1 / Outline 1 Introduction 2 Active Memory 3 Step by Step to Neural GPU 4 Another two steps: 1. the Markovian Neural GPU 5 Another

More information

Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features

Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features Xu SUN ( 孙栩 ) Peking University xusun@pku.edu.cn Motivation Neural networks -> Good Performance CNN, RNN, LSTM

More information

Convolutional Sequence to Sequence Learning. Denis Yarats with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook AI Research

Convolutional Sequence to Sequence Learning. Denis Yarats with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook AI Research Convolutional Sequence to Sequence Learning Denis Yarats with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook AI Research Sequence generation Need to model a conditional distribution

More information

Computational Geometry

Computational Geometry Computational Geometry 600.658 Convexity A set S is convex if for any two points p, q S the line segment pq S. S p S q Not convex Convex? Convexity A set S is convex if it is the intersection of (possibly

More information

S8822 OPTIMIZING NMT WITH TENSORRT Micah Villmow Senior TensorRT Software Engineer

S8822 OPTIMIZING NMT WITH TENSORRT Micah Villmow Senior TensorRT Software Engineer S8822 OPTIMIZING NMT WITH TENSORRT Micah Villmow Senior TensorRT Software Engineer 2 100 倍以上速く 本当に可能ですか? 2 DOUGLAS ADAMS BABEL FISH Neural Machine Translation Unit 3 4 OVER 100X FASTER, IS IT REALLY POSSIBLE?

More information

Generative Adversarial Text to Image Synthesis

Generative Adversarial Text to Image Synthesis Generative Adversarial Text to Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee Presented by: Jingyao Zhan Contents Introduction Related Work Method

More information

RNNs as Directed Graphical Models

RNNs as Directed Graphical Models RNNs as Directed Graphical Models Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 10. Topics in Sequence Modeling Overview

More information

Grounded Compositional Semantics for Finding and Describing Images with Sentences

Grounded Compositional Semantics for Finding and Describing Images with Sentences Grounded Compositional Semantics for Finding and Describing Images with Sentences R. Socher, A. Karpathy, V. Le,D. Manning, A Y. Ng - 2013 Ali Gharaee 1 Alireza Keshavarzi 2 1 Department of Computational

More information

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky Ilya Sutskever Geoffrey Hinton University of Toronto Canada Paper with same name to appear in NIPS 2012 Main idea Architecture

More information

A new approach for supervised power disaggregation by using a deep recurrent LSTM network

A new approach for supervised power disaggregation by using a deep recurrent LSTM network A new approach for supervised power disaggregation by using a deep recurrent LSTM network GlobalSIP 2015, 14th Dec. Lukas Mauch and Bin Yang Institute of Signal Processing and System Theory University

More information

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning,

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning, A Acquisition function, 298, 301 Adam optimizer, 175 178 Anaconda navigator conda command, 3 Create button, 5 download and install, 1 installing packages, 8 Jupyter Notebook, 11 13 left navigation pane,

More information

Deep Learning Applications

Deep Learning Applications October 20, 2017 Overview Supervised Learning Feedforward neural network Convolution neural network Recurrent neural network Recursive neural network (Recursive neural tensor network) Unsupervised Learning

More information

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used.

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used. 1 4.12 Generalization In back-propagation learning, as many training examples as possible are typically used. It is hoped that the network so designed generalizes well. A network generalizes well when

More information

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention Show, Attend and Tell: Neural Image Caption Generation with Visual Attention Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio Presented

More information

On the Efficiency of Recurrent Neural Network Optimization Algorithms

On the Efficiency of Recurrent Neural Network Optimization Algorithms On the Efficiency of Recurrent Neural Network Optimization Algorithms Ben Krause, Liang Lu, Iain Murray, Steve Renals University of Edinburgh Department of Informatics s17005@sms.ed.ac.uk, llu@staffmail.ed.ac.uk,

More information

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla DEEP LEARNING REVIEW Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature 2015 -Presented by Divya Chitimalla What is deep learning Deep learning allows computational models that are composed of multiple

More information

DCU-UvA Multimodal MT System Report

DCU-UvA Multimodal MT System Report DCU-UvA Multimodal MT System Report Iacer Calixto ADAPT Centre School of Computing Dublin City University Dublin, Ireland iacer.calixto@adaptcentre.ie Desmond Elliott ILLC University of Amsterdam Science

More information

Project Final Report

Project Final Report Project Final Report Ye Tian Stanford University yetian@stanford.edu Tianlun Li Stanford University tianlunl@stanford.edu Abstract We plan to do image-to-sentence generation. This application bridges vision

More information

Encoding Techniques in Genetic Algorithms

Encoding Techniques in Genetic Algorithms Encoding Techniques in Genetic Algorithms Debasis Samanta Indian Institute of Technology Kharagpur dsamanta@iitkgp.ac.in 01.03.2016 Debasis Samanta (IIT Kharagpur) Soft Computing Applications 01.03.2016

More information

CUED-RNNLM An Open-Source Toolkit for Efficient Training and Evaluation of Recurrent Neural Network Language Models

CUED-RNNLM An Open-Source Toolkit for Efficient Training and Evaluation of Recurrent Neural Network Language Models CUED-RNNLM An Open-Source Toolkit for Efficient Training and Evaluation of Recurrent Neural Network Language Models Xie Chen, Xunying Liu, Yanmin Qian, Mark Gales and Phil Woodland April 1, 2016 Overview

More information

Lifting Transform, Voronoi, Delaunay, Convex Hulls

Lifting Transform, Voronoi, Delaunay, Convex Hulls Lifting Transform, Voronoi, Delaunay, Convex Hulls Subhash Suri Department of Computer Science University of California Santa Barbara, CA 93106 1 Lifting Transform (A combination of Pless notes and my

More information

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu Natural Language Processing CS 6320 Lecture 6 Neural Language Models Instructor: Sanda Harabagiu In this lecture We shall cover: Deep Neural Models for Natural Language Processing Introduce Feed Forward

More information

Recurrent Convolutional Neural Networks for Scene Labeling

Recurrent Convolutional Neural Networks for Scene Labeling Recurrent Convolutional Neural Networks for Scene Labeling Pedro O. Pinheiro, Ronan Collobert Reviewed by Yizhe Zhang August 14, 2015 Scene labeling task Scene labeling: assign a class label to each pixel

More information

Deep Learning. Practical introduction with Keras JORDI TORRES 27/05/2018. Chapter 3 JORDI TORRES

Deep Learning. Practical introduction with Keras JORDI TORRES 27/05/2018. Chapter 3 JORDI TORRES Deep Learning Practical introduction with Keras Chapter 3 27/05/2018 Neuron A neural network is formed by neurons connected to each other; in turn, each connection of one neural network is associated

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong Feb 04, 2016 Today Administrivia Attention Modeling in Image Captioning, by Karan Neural networks & Backpropagation

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Structured Attention Networks

Structured Attention Networks Structured Attention Networks Yoon Kim Carl Denton Luong Hoang Alexander M. Rush HarvardNLP ICLR, 2017 Presenter: Chao Jiang ICLR, 2017 Presenter: Chao Jiang 1 / Outline 1 Deep Neutral Networks for Text

More information

FastText. Jon Koss, Abhishek Jindal

FastText. Jon Koss, Abhishek Jindal FastText Jon Koss, Abhishek Jindal FastText FastText is on par with state-of-the-art deep learning classifiers in terms of accuracy But it is way faster: FastText can train on more than one billion words

More information

Recurrent Neural Networks and Transfer Learning for Action Recognition

Recurrent Neural Networks and Transfer Learning for Action Recognition Recurrent Neural Networks and Transfer Learning for Action Recognition Andrew Giel Stanford University agiel@stanford.edu Ryan Diaz Stanford University ryandiaz@stanford.edu Abstract We have taken on the

More information

More NP-complete Problems. CS255 Chris Pollett May 3, 2006.

More NP-complete Problems. CS255 Chris Pollett May 3, 2006. More NP-complete Problems CS255 Chris Pollett May 3, 2006. Outline More NP-Complete Problems Hamiltonian Cycle Recall a hamiltonian cycle is a permutation of the vertices v i_1,, v i_n of a graph G so

More information

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa Instructors: Parth Shah, Riju Pahwa Lecture 2 Notes Outline 1. Neural Networks The Big Idea Architecture SGD and Backpropagation 2. Convolutional Neural Networks Intuition Architecture 3. Recurrent Neural

More information

Deep Learning for Entity Matching: A Design Space Exploration. Sidharth Mudgal Sunil Kumar

Deep Learning for Entity Matching: A Design Space Exploration. Sidharth Mudgal Sunil Kumar Deep Learning for Entity Matching: A Design Space Exploration by Sidharth Mudgal Sunil Kumar A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Computer

More information

Natural Language Processing with Deep Learning CS224N/Ling284

Natural Language Processing with Deep Learning CS224N/Ling284 Natural Language Processing with Deep Learning CS224N/Ling284 Lecture 8: Recurrent Neural Networks Christopher Manning and Richard Socher Organization Extra project office hour today after lecture Overview

More information

Bayesian model ensembling using meta-trained recurrent neural networks

Bayesian model ensembling using meta-trained recurrent neural networks Bayesian model ensembling using meta-trained recurrent neural networks Luca Ambrogioni l.ambrogioni@donders.ru.nl Umut Güçlü u.guclu@donders.ru.nl Yağmur Güçlütürk y.gucluturk@donders.ru.nl Julia Berezutskaya

More information

Lecture 3. Brute Force

Lecture 3. Brute Force Lecture 3 Brute Force 1 Lecture Contents 1. Selection Sort and Bubble Sort 2. Sequential Search and Brute-Force String Matching 3. Closest-Pair and Convex-Hull Problems by Brute Force 4. Exhaustive Search

More information

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5 Voronoi Diagrams and Delaunay Triangulations O Rourke, Chapter 5 Outline Preliminaries Properties and Applications Computing the Delaunay Triangulation Preliminaries Given a function f: R 2 R, the tangent

More information

Lecture 20: Neural Networks for NLP. Zubin Pahuja

Lecture 20: Neural Networks for NLP. Zubin Pahuja Lecture 20: Neural Networks for NLP Zubin Pahuja zpahuja2@illinois.edu courses.engr.illinois.edu/cs447 CS447: Natural Language Processing 1 Today s Lecture Feed-forward neural networks as classifiers simple

More information

Advanced Search Algorithms

Advanced Search Algorithms CS11-747 Neural Networks for NLP Advanced Search Algorithms Daniel Clothiaux https://phontron.com/class/nn4nlp2017/ Why search? So far, decoding has mostly been greedy Chose the most likely output from

More information

Kyoto-NMT: a Neural Machine Translation implementation in Chainer

Kyoto-NMT: a Neural Machine Translation implementation in Chainer Kyoto-NMT: a Neural Machine Translation implementation in Chainer Fabien Cromières Japan Science and Technology Agency Kawaguchi-shi, Saitama 332-0012 fabien@pa.jst.jp Abstract We present Kyoto-NMT, an

More information

Optimization. Industrial AI Lab.

Optimization. Industrial AI Lab. Optimization Industrial AI Lab. Optimization An important tool in 1) Engineering problem solving and 2) Decision science People optimize Nature optimizes 2 Optimization People optimize (source: http://nautil.us/blog/to-save-drowning-people-ask-yourself-what-would-light-do)

More information

Computational Geometry

Computational Geometry Lecture 12: Lecture 12: Motivation: Terrains by interpolation To build a model of the terrain surface, we can start with a number of sample points where we know the height. Lecture 12: Motivation: Terrains

More information

18.S34 (FALL 2007) PROBLEMS ON HIDDEN INDEPENDENCE AND UNIFORMITY

18.S34 (FALL 2007) PROBLEMS ON HIDDEN INDEPENDENCE AND UNIFORMITY 18.S34 (FALL 2007) PROBLEMS ON HIDDEN INDEPENDENCE AND UNIFORMITY All the problems below (with the possible exception of the last one), when looked at the right way, can be solved by elegant arguments

More information

Recurrent Neural Networks

Recurrent Neural Networks Recurrent Neural Networks Javier Béjar Deep Learning 2018/2019 Fall Master in Artificial Intelligence (FIB-UPC) Introduction Sequential data Many problems are described by sequences Time series Video/audio

More information

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group Deep Learning Vladimir Golkov Technical University of Munich Computer Vision Group 1D Input, 1D Output target input 2 2D Input, 1D Output: Data Distribution Complexity Imagine many dimensions (data occupies

More information

A Hybrid Neural Model for Type Classification of Entity Mentions

A Hybrid Neural Model for Type Classification of Entity Mentions A Hybrid Neural Model for Type Classification of Entity Mentions Motivation Types group entities to categories Entity types are important for various NLP tasks Our task: predict an entity mention s type

More information

Graph Neural Network. learning algorithm and applications. Shujia Zhang

Graph Neural Network. learning algorithm and applications. Shujia Zhang Graph Neural Network learning algorithm and applications Shujia Zhang What is Deep Learning? Enable computers to mimic human behaviour Artificial Intelligence Machine Learning Subset of ML algorithms using

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

A Quick Guide on Training a neural network using Keras.

A Quick Guide on Training a neural network using Keras. A Quick Guide on Training a neural network using Keras. TensorFlow and Keras Keras Open source High level, less flexible Easy to learn Perfect for quick implementations Starts by François Chollet from

More information

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center Machine Learning With Python Bin Chen Nov. 7, 2017 Research Computing Center Outline Introduction to Machine Learning (ML) Introduction to Neural Network (NN) Introduction to Deep Learning NN Introduction

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

Natural Language to Neural Programs

Natural Language to Neural Programs Natural Language to Neural Programs Daniel Simig Department of Engineering University of Cambridge This dissertation is submitted for the degree of Master of Philosophy in Machine Learning, Speech and

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

Simple and Efficient Learning with Automatic Operation Batching

Simple and Efficient Learning with Automatic Operation Batching Simple and Efficient Learning with Automatic Operation Batching Graham Neubig joint work w/ Yoav Goldberg and Chris Dyer in http://dynet.io/autobatch/ https://github.com/neubig/howtocode-2017 Neural Networks

More information

Sentiment Classification of Food Reviews

Sentiment Classification of Food Reviews Sentiment Classification of Food Reviews Hua Feng Department of Electrical Engineering Stanford University Stanford, CA 94305 fengh15@stanford.edu Ruixi Lin Department of Electrical Engineering Stanford

More information

Plan, Attend, Generate: Planning for Sequence-to-Sequence Models

Plan, Attend, Generate: Planning for Sequence-to-Sequence Models Plan, Attend, Generate: Planning for Sequence-to-Sequence Models Francis Dutil, Caglar Gulcehre, Adam Trischler, Yoshua Bengio Presented by Xinyuan Zhang April 26, 2018 April 26, 2018 1 / 11 Introduction

More information

Optimal Compression of a Polyline with Segments and Arcs

Optimal Compression of a Polyline with Segments and Arcs Optimal Compression of a Polyline with Segments and Arcs Alexander Gribov Esri 380 New York Street Redlands, CA 92373 Email: agribov@esri.com arxiv:1604.07476v5 [cs.cg] 10 Apr 2017 Abstract This paper

More information

M. Sc. (Artificial Intelligence and Machine Learning)

M. Sc. (Artificial Intelligence and Machine Learning) Course Name: Advanced Python Course Code: MSCAI 122 This course will introduce students to advanced python implementations and the latest Machine Learning and Deep learning libraries, Scikit-Learn and

More information

Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision

Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision Anonymized for review Abstract Extending the success of deep neural networks to high level tasks like natural language

More information

Image Captioning and Generation From Text

Image Captioning and Generation From Text Image Captioning and Generation From Text Presented by: Tony Zhang, Jonathan Kenny, and Jeremy Bernstein Mentor: Stephan Zheng CS159 Advanced Topics in Machine Learning: Structured Prediction California

More information

Spatial Data Structures

Spatial Data Structures CSCI 420 Computer Graphics Lecture 17 Spatial Data Structures Jernej Barbic University of Southern California Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees [Angel Ch. 8] 1 Ray Tracing Acceleration

More information

A Comparison of Sequence-Trained Deep Neural Networks and Recurrent Neural Networks Optical Modeling For Handwriting Recognition

A Comparison of Sequence-Trained Deep Neural Networks and Recurrent Neural Networks Optical Modeling For Handwriting Recognition A Comparison of Sequence-Trained Deep Neural Networks and Recurrent Neural Networks Optical Modeling For Handwriting Recognition Théodore Bluche, Hermann Ney, Christopher Kermorvant SLSP 14, Grenoble October

More information

An Experimental Evaluation of the Best-of-Many Christofides Algorithm for the Traveling Salesman Problem

An Experimental Evaluation of the Best-of-Many Christofides Algorithm for the Traveling Salesman Problem An Experimental Evaluation of the Best-of-Many Christofides Algorithm for the Traveling Salesman Problem David P. Williamson Cornell University Joint work with Kyle Genova, Cornell University July 14,

More information

arxiv: v5 [stat.ml] 4 May 2017

arxiv: v5 [stat.ml] 4 May 2017 Machine Learning on Sequential Data Using a Recurrent Weighted Average arxiv:1703.01253v5 [stat.ml] 4 May 2017 Jared Ostmeyer * Lindsay Cowell Department of Clinical Sciences UT Southwestern Medical Center

More information

A New Progressive Lossy-to-Lossless Coding Method for 2.5-D Triangle Mesh with Arbitrary Connectivity

A New Progressive Lossy-to-Lossless Coding Method for 2.5-D Triangle Mesh with Arbitrary Connectivity A New Progressive Lossy-to-Lossless Coding Method for 2.5-D Triangle Mesh with Arbitrary Connectivity Dan Han University of Victoria October 31, 2016 New Mesh-Coding Method Dan Han 1 Outline 1 Introduction

More information

Spatial Data Structures

Spatial Data Structures CSCI 480 Computer Graphics Lecture 7 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids BSP Trees [Ch. 0.] March 8, 0 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s/

More information

Structured Attention Networks

Structured Attention Networks Structured Attention Networks Yoon Kim Carl Denton Luong Hoang Alexander M. Rush HarvardNLP 1 Deep Neural Networks for Text Processing and Generation 2 Attention Networks 3 Structured Attention Networks

More information

Fast Prediction of Solutions to an Integer Linear Program with Machine Learning

Fast Prediction of Solutions to an Integer Linear Program with Machine Learning Fast Prediction of Solutions to an Integer Linear Program with Machine Learning CERMICS 2018 June 29, 2018, Fre jus ERIC LARSEN, CIRRELT and Universite de Montre al (UdeM) SE BASTIEN LACHAPELLE, CIRRELT

More information

Outline GF-RNN ReNet. Outline

Outline GF-RNN ReNet. Outline Outline Gated Feedback Recurrent Neural Networks. arxiv1502. Introduction: RNN & Gated RNN Gated Feedback Recurrent Neural Networks (GF-RNN) Experiments: Character-level Language Modeling & Python Program

More information

Hidden Units. Sargur N. Srihari

Hidden Units. Sargur N. Srihari Hidden Units Sargur N. srihari@cedar.buffalo.edu 1 Topics in Deep Feedforward Networks Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation

More information

MIXED PRECISION TRAINING: THEORY AND PRACTICE Paulius Micikevicius

MIXED PRECISION TRAINING: THEORY AND PRACTICE Paulius Micikevicius MIXED PRECISION TRAINING: THEORY AND PRACTICE Paulius Micikevicius What is Mixed Precision Training? Reduced precision tensor math with FP32 accumulation, FP16 storage Successfully used to train a variety

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

Machine Learning for Natural Language Processing. Alice Oh January 17, 2018

Machine Learning for Natural Language Processing. Alice Oh January 17, 2018 Machine Learning for Natural Language Processing Alice Oh January 17, 2018 Overview Distributed representation Temporal neural networks RNN LSTM GRU Sequence-to-sequence models Machine translation Response

More information

Generating composite SQL queries from natural language questions using recurrent neural networks. Matthias De Groote

Generating composite SQL queries from natural language questions using recurrent neural networks. Matthias De Groote Generating composite SQL queries from natural language questions using recurrent neural networks Matthias De Groote Supervisors: Prof. dr. ir. Joni Dambre, Prof. dr. Wesley De Neve Counsellors: Ir. Fréderic

More information

How to Develop Encoder-Decoder LSTMs

How to Develop Encoder-Decoder LSTMs Chapter 9 How to Develop Encoder-Decoder LSTMs 9.0.1 Lesson Goal The goal of this lesson is to learn how to develop encoder-decoder LSTM models. completing this lesson, you will know: After ˆ The Encoder-Decoder

More information