S206E Lecture 13, 5/22/2016, Grasshopper Math and Logic Rules

Size: px
Start display at page:

Download "S206E Lecture 13, 5/22/2016, Grasshopper Math and Logic Rules"

Transcription

1 S206E Lecture 13, 5/22/2016, Grasshopper Math and Logic Rules Copyright 2016, Chiu-Shui Chan. All Rights Reserved. Interface of Math and Logic Functions 1. Basic mathematic operations: For example, choose the mathematic operators of +, -, *, / from the Maths tag > Operators panel, define inputs of A and B variables through number sliders, calculations of these operations will be displayed in a panel. A + B A - B A * B A / B Reminder of A/B A B Other operators could also be found under Maths > Util panel, for instance, the Natural logarithm or Pi, or even type in the expression or the name of the Pi or e (natural logarithm) in the panel area. See examples below. Page 1 (5/1/2016)

2 Arch534 Spring 2015 Similarity threshold between A & B is within 10%. A = B, true or false? A > B or A B, true or false? A< B or A B, true or false? 2. Mathematic equation input executing a formula GH provides some math equations to let users set up their own math equations for geometric calculation and form generation. For example, it is easy to use an equation to draw a shape in Rhino. This example given in this tutorial handout is based on the Lynda.com Grasshopper tutorial. 1. Choose Maths tag > Script panel > Evaluate, or double click the Canvas, type eval to activate the Evaluation component; 2. Zoom in to be able to remove the Y index parameter away from the component. 3. F is an expression, and x & Y are two variables. Remove Y variable 4. We will use a simple formula Y = X 2 to draw a parabolic curve. In this Eval component, F is the formula, X is the input and the result of the calculation will pass over to r as the calculation results. 5. There are three ways of setting up the formula, method A is to right click F, type in X*X to the Expression Editor > click Commit Changes. The Eval component will do the calculation and pass the results in real number format to r for output. Page 2 (5/1/2016)

3 6. Method B is to click Expression Editor to define a complicate formula in the window. Formula could be typed in here and click Commit changes to complete the input. 7. Method C is to provide a visual clue by choosing Params tag > Input > Panel to display the formula and provide the expression on the sub-window and provide output to F in Eval. So, create two panels and type in the formula on one Panel and link it to the F input. 8. For constructing a parabolic, the X input must be a series of numbers. We could use Range component for doing it. Range divides a domain into a number of equal sections. It takes two inputs. The first one is Domain, which gives us the high and the low value between which to operate. The second is a Number of steps, which is a number of divisions to make over the domain. In this example, we have 10 steps, so the function will generate 10 numbers (steps) evenly spaced between 0 and 10. We could also figure out the space between those numbers, which is also called the step size, by dividing the length of the domain by the number of steps. In this example, 10 over 10 equals 1. So, it shows in the panel that the values are spaced one unit apart from each other. Page 3 (5/1/2016)

4 Arch534 Spring The domain could be well-defined by Construct Domain. Delete the old Domain input and replace it with Construct Domain, which will set up a low and high domain, link the Construct Domain output to the D input in Range. Set up two sliders of -20<-5<0, wire it to A, and 0<5<20 slider for B in Construct Domain component. Now, wire the Range output to Eval X input. 10. Now show the results in Rhino points. Choose Vector Tag < Point < Construct Point. While applying the Y=X 2 to generate the parabola, the X values are the list of numbers coming straight out of the range component. So link the R in Range to X in Pt component. Then, in Rhino, evenly spaced points are shown on the X axis. The Y values are from the Eval calculated output list. Thus, link the r from Eval to Y in Pt. Then a parabolic shape is generated in Rhino. 11. Finally draw the curve Go to the Curve Tag > Spline > Nurbs Curve Page 4 (5/1/2016)

5 The point output of the Construct Point component will serve as the Vertices component of the Nurbs Curve. So, after the link, the parabola is created in Rhino. 2. Logic expression: Logic expression relates to the if-then-else, conditional cases, etc which also be done by Eval component. Here is an example. Exercise: For example, if X>Y, then return True value. Here are the steps: 1. Use the component of Panel to set up the formula X>Y. 2. Apply two sliders to provide user input. 3. Use Evaluation component. The panel output is the expression input in Eval, X and Y are inputs. Return of the evaluation values, true or false, to another panel for review. Here are the results. If X>30, then draw a circle, otherwise draw a polygon in Rhino. The radius of these shapes would depend upon the amount of input value. Here is the algorithm applied in GH. 1. In this example, a dispatch component is used to decide whether it is true or false. The dispatch will sort a list based on true false pattern output from a conditional statement. Page 5 (5/1/2016)

6 Arch534 Spring Dispatch will receive an input from Eval as the dispatch pattern. If it is true then do A, otherwise do B. A is to draw a circle, whereas B is to draw a polygon. I also put a panel on both A and B output to get a better idea on (or to visualize) what the output values are. What happens if x equals to 30, and how to implement the coding? The Dispatch function has more ability to sort out the input data into two parts. See the following example: Input: List = [A, B, C, D} Dispatch pattern = [True, False] Resulting output: List A = [A, C] List B = [B, D] Page 6 (5/1/2016)

7 Example 3: How to separate a list of numbers from -10 to +25 into three different lists? 1. X < < X < X > 15 Method A: Apply Series to create a series of numbers, use three evaluations and three dispatch to provide three lists. Method B: Same ideas but applying different Boolean operations. More will be explained in later lectures and exercises. Yet, the most important point is the design thinking and intension that could be implemented digitally and executed in Grasshopper. Page 7 (5/1/2016)

S206E Lecture 23, 5/26/2016, Interaction between Python and Grasshopper

S206E Lecture 23, 5/26/2016, Interaction between Python and Grasshopper S206E057 -- Lecture 23, 5/26/2016, Interaction between Python and Grasshopper Copyright 2016, Chiu-Shui Chan. All Rights Reserved. S206E057 Spring 2016 This lecture covers the techniques of using rhinoscriptsyntax

More information

S206E Lecture 16, 4/27/2018, Rhino 3D, Grasshopper & Architecture Modeling

S206E Lecture 16, 4/27/2018, Rhino 3D, Grasshopper & Architecture Modeling Copyright 2018, Chiu-Shui Chan. All Rights Reserved. Create regular features on façade and form: S206E057 Spring 2018 Modeling panel features or structural components could be done by a few components

More information

S206E Lecture 17, 5/1/2018, Rhino & Grasshopper, Tower modeling

S206E Lecture 17, 5/1/2018, Rhino & Grasshopper, Tower modeling S206E057 -- Lecture 17, 5/1/2018, Rhino & Grasshopper, Tower modeling Copyright 2018, Chiu-Shui Chan. All Rights Reserved. Concept of Morph in Rhino and Grasshopper: S206E057 Spring 2018 Morphing is a

More information

S206E Lecture 15, 4/27/2018, Rhino 3D, Grasshopper, Shanghai Tower modeling

S206E Lecture 15, 4/27/2018, Rhino 3D, Grasshopper, Shanghai Tower modeling S206E057 -- Lecture 15, 4/27/2018, Rhino 3D, Grasshopper, Shanghai Tower modeling Copyright 2018, Chiu-Shui Chan. All Rights Reserved. Creation of high-rise building models has a typical algorithm, which

More information

GRASSHOPPER TUTORIAL 02 PERFORATED CURVATURE.

GRASSHOPPER TUTORIAL 02 PERFORATED CURVATURE. GRASSHOPPER TUTORIAL 02 PERFORATED CURVATURE www.exlab.org IDEA PERFORATED CURVATURE THIS TUTORIAL EXTENDS UPON TUTORIAL 01 BY CREATING A SIMPLE DEFINITION THAT ANALYSES THE CURVATURE OF A DOUBLY CURVED

More information

S206E Lecture 22, 5/26/2016, Python and Rhino interface

S206E Lecture 22, 5/26/2016, Python and Rhino interface S206E057 Spring 2016 Copyright 2016, Chiu-Shui Chan. All Rights Reserved. Rhino and Python interface: An example How to run Rhino model by executing Python programs? And what kind of information is needed

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

Lecture 4, 5/27/2017, Rhino Interface an overview

Lecture 4, 5/27/2017, Rhino Interface an overview 數字建築與城市设计 Spring 2017 Lecture 4, 5/27/2017, Rhino Interface an overview Copyright 2017, Chiu-Shui Chan. All Rights Reserved. This lecture concentrates on the use of tools, 3D solid modeling and editing

More information

S206E Lecture 5, 5/18/2016, Importing and Tracing Drawing Information

S206E Lecture 5, 5/18/2016, Importing and Tracing Drawing Information Copyright 2016, Chiu-Shui Chan. All Rights Reserved. S206E057 Spring 2016 2D information in the form of drawings can be brought into Rhino in two major ways. The first one is to import the actual digital

More information

Graphs of Equations. MATH 160, Precalculus. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Graphs of Equations

Graphs of Equations. MATH 160, Precalculus. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Graphs of Equations Graphs of Equations MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: sketch the graphs of equations, find the x- and y-intercepts

More information

Use Geometry Expressions to create and graph functions, and constrain points to functions.

Use Geometry Expressions to create and graph functions, and constrain points to functions. Learning Objectives Parametric Functions Lesson 1: Function Review Level: Algebra Time required: 30 minutes This is the first lesson in the unit on parametric functions. Parametric functions are not really

More information

Envelope Parametric Model using Grasshopper

Envelope Parametric Model using Grasshopper Envelope Parametric Model using Grasshopper i Table of Contents Overview... 1 Learning Objectives... 1 Pre-requisites... 1 Glossary... 1 Tutorial... 2 1. Parametric Model Structure... 2 2. Drivers... 3

More information

Summary of Formulas: see

Summary of Formulas: see To review the Conic Sections, Identify them and sketch them from the given equations, watch the following set of YouTube videos. They are followed by several practice problems for you to try, covering

More information

Math 8 Honors Coordinate Geometry part 3 Unit Updated July 29, 2016

Math 8 Honors Coordinate Geometry part 3 Unit Updated July 29, 2016 Review how to find the distance between two points To find the distance between two points, use the Pythagorean theorem. The difference between is one leg and the difference between and is the other leg.

More information

Conic Sections: Parabolas

Conic Sections: Parabolas Conic Sections: Parabolas Why are the graphs of parabolas, ellipses, and hyperbolas called 'conic sections'? Because if you pass a plane through a double cone, the intersection of the plane and the cone

More information

GRAPH MATHEMATICS (SAMACHEERKALVI) HARDWORK IS THE BEST WEAPON TO DEFEAT FAILURE. SELF CONFIDENCE +HARDWORK = SUCCESS X- STANDARD

GRAPH MATHEMATICS (SAMACHEERKALVI) HARDWORK IS THE BEST WEAPON TO DEFEAT FAILURE.   SELF CONFIDENCE +HARDWORK = SUCCESS X- STANDARD 1 GRAPH (Fully solved for better understanding and to work out easily) MATHEMATICS (SAMACHEERKALVI) HARDWORK IS THE BEST WEAPON TO DEFEAT FAILURE SELF CONFIDENCE +HARDWORK = SUCCESS X- STANDARD PREPARED

More information

Dgp _ lecture 2. Curves

Dgp _ lecture 2. Curves Dgp _ lecture 2 Curves Questions? This lecture will be asking questions about curves, their Relationship to surfaces, and how they are used and controlled. Topics of discussion will be: Free form Curves

More information

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous.

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous. Module 8 : Applications of Integration - II Lecture 22 : Arc Length of a Plane Curve [Section 221] Objectives In this section you will learn the following : How to find the length of a plane curve 221

More information

Rhino Grasshopper Tutorial. Ivo A. Semerdjiev digiitalarchfab.com/portal

Rhino Grasshopper Tutorial. Ivo A. Semerdjiev digiitalarchfab.com/portal Rhino Grasshopper Tutorial Ivo A. Semerdjiev isemerdj@iit.edu digiitalarchfab.com/portal overview The purpose of this tutorial is to create a folding origami skin based on parametric principles. The first

More information

TI- Nspire Testing Instructions

TI- Nspire Testing Instructions TI- Nspire Testing Instructions Table of Contents How to Nsolve How to Check Compositions of Functions How to Verify Compositions of Functions How to Check Factoring How to Use Graphs to Backward Factor

More information

Z+z 1 X2 Y2. or y, Graph / 4 25 jj y=±x. x2+y 2=

Z+z 1 X2 Y2. or y, Graph / 4 25 jj y=±x. x2+y 2= Conic Sections Understanding the graphs of conic sections is made easier if you first begin with the simplest form of a conic section. These would be the graphs that are centered at the origin. If we can

More information

12.4 Rotations. Learning Objectives. Review Queue. Defining Rotations Rotations

12.4 Rotations. Learning Objectives. Review Queue. Defining Rotations Rotations 12.4. Rotations www.ck12.org 12.4 Rotations Learning Objectives Find the image of a figure in a rotation in a coordinate plane. Recognize that a rotation is an isometry. Review Queue 1. Reflect XY Z with

More information

Output Primitives. Dr. S.M. Malaek. Assistant: M. Younesi

Output Primitives. Dr. S.M. Malaek. Assistant: M. Younesi Output Primitives Dr. S.M. Malaek Assistant: M. Younesi Output Primitives Output Primitives: Basic geometric structures (points, straight line segment, circles and other conic sections, quadric surfaces,

More information

Set 5, Total points: 100 Issued: week of

Set 5, Total points: 100 Issued: week of Prof. P. Koumoutsakos Prof. Dr. Jens Walther ETH Zentrum, CLT F 1, E 11 CH-809 Zürich Models, Algorithms and Data (MAD): Introduction to Computing Spring semester 018 Set 5, Total points: 100 Issued: week

More information

CPSC / Scan Conversion

CPSC / Scan Conversion CPSC 599.64 / 601.64 Computer Screens: Raster Displays pixel rasters (usually) square pixels in rectangular raster evenly cover the image problem no such things such as lines, circles, etc. scan conversion

More information

Rectangular Coordinates in Space

Rectangular Coordinates in Space Rectangular Coordinates in Space Philippe B. Laval KSU Today Philippe B. Laval (KSU) Rectangular Coordinates in Space Today 1 / 11 Introduction We quickly review one and two-dimensional spaces and then

More information

Objectives. Materials

Objectives. Materials Activity 13 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the

More information

SWITCHING FROM GRASSHOPPER TO VECTORWORKS

SWITCHING FROM GRASSHOPPER TO VECTORWORKS SWITCHING FROM GRASSHOPPER TO VECTORWORKS HOW TO PLACE A MARIONETTE NODE To use the Marionette tool in Vectorworks, you don t need to load a plug-in or work in a separate interface. The Marionette tool

More information

Bézier Splines. B-Splines. B-Splines. CS 475 / CS 675 Computer Graphics. Lecture 14 : Modelling Curves 3 B-Splines. n i t i 1 t n i. J n,i.

Bézier Splines. B-Splines. B-Splines. CS 475 / CS 675 Computer Graphics. Lecture 14 : Modelling Curves 3 B-Splines. n i t i 1 t n i. J n,i. Bézier Splines CS 475 / CS 675 Computer Graphics Lecture 14 : Modelling Curves 3 n P t = B i J n,i t with 0 t 1 J n, i t = i=0 n i t i 1 t n i No local control. Degree restricted by the control polygon.

More information

Name: Date: 1. Match the equation with its graph. Page 1

Name: Date: 1. Match the equation with its graph. Page 1 Name: Date: 1. Match the equation with its graph. y 6x A) C) Page 1 D) E) Page . Match the equation with its graph. ( x3) ( y3) A) C) Page 3 D) E) Page 4 3. Match the equation with its graph. ( x ) y 1

More information

ME 111: Engineering Drawing. Geometric Constructions

ME 111: Engineering Drawing. Geometric Constructions ME 111: Engineering Drawing Lecture 2 01-08-2011 Geometric Constructions Indian Institute of Technology Guwahati Guwahati 781039 Geometric Construction Construction of primitive geometric forms (points,

More information

Section 2.3 (e-book 4.1 & 4.2) Rational Functions

Section 2.3 (e-book 4.1 & 4.2) Rational Functions Section 2.3 (e-book 4.1 & 4.2) Rational Functions Definition 1: The ratio of two polynomials is called a rational function, i.e., a rational function has the form, where both and are polynomials. Remark

More information

Lesson 3: Investigating the Parts of a Parabola

Lesson 3: Investigating the Parts of a Parabola Opening Exercise 1. Use the graph at the right to fill in the Answer column of the chart below. (You ll fill in the last column in Exercise 9.) Question Answer Bring in the Math! A. What is the shape of

More information

Properties of Quadratic functions

Properties of Quadratic functions Name Today s Learning Goals: #1 How do we determine the axis of symmetry and vertex of a quadratic function? Properties of Quadratic functions Date 5-1 Properties of a Quadratic Function A quadratic equation

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

CS 475 / CS Computer Graphics. Modelling Curves 3 - B-Splines

CS 475 / CS Computer Graphics. Modelling Curves 3 - B-Splines CS 475 / CS 675 - Computer Graphics Modelling Curves 3 - Bézier Splines n P t = i=0 No local control. B i J n,i t with 0 t 1 J n,i t = n i t i 1 t n i Degree restricted by the control polygon. http://www.cs.mtu.edu/~shene/courses/cs3621/notes/spline/bezier/bezier-move-ct-pt.html

More information

Renderer Implementation: Basics and Clipping. Overview. Preliminaries. David Carr Virtual Environments, Fundamentals Spring 2005

Renderer Implementation: Basics and Clipping. Overview. Preliminaries. David Carr Virtual Environments, Fundamentals Spring 2005 INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET Renderer Implementation: Basics and Clipping David Carr Virtual Environments, Fundamentals Spring 2005 Feb-28-05 SMM009, Basics and Clipping 1

More information

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics 1 DISTANCE BETWEEN TWO POINTS - REVIEW To find the distance between two points, use the Pythagorean theorem. The difference between x 1 and x

More information

CS 130. Scan Conversion. Raster Graphics

CS 130. Scan Conversion. Raster Graphics CS 130 Scan Conversion Raster Graphics 2 1 Image Formation Computer graphics forms images, generally two dimensional, using processes analogous to physical imaging systems like: - Cameras - Human visual

More information

B. Examples Set up the integral(s) needed to find the area of the region bounded by

B. Examples Set up the integral(s) needed to find the area of the region bounded by Math 176 Calculus Sec. 6.1: Area Between Curves I. Area between the Curve and the x Axis A. Let f(x) 0 be continuous on [a,b]. The area of the region between the graph of f and the x-axis is A = f ( x)

More information

13.2 LIMITS AND CONTINUITY

13.2 LIMITS AND CONTINUITY 3.2 Limits and Continuity Contemporary Calculus 3.2 LIMITS AND CONTINUITY Our development of the properties and the calculus of functions z = f(x,y) of two (and more) variables parallels the development

More information

2D and 3D Transformations AUI Course Denbigh Starkey

2D and 3D Transformations AUI Course Denbigh Starkey 2D and 3D Transformations AUI Course Denbigh Starkey. Introduction 2 2. 2D transformations using Cartesian coordinates 3 2. Translation 3 2.2 Rotation 4 2.3 Scaling 6 3. Introduction to homogeneous coordinates

More information

INTRODUCTION // MODELING PROCESS COMPARISON

INTRODUCTION // MODELING PROCESS COMPARISON INTRODUCTION // MODELING PROCESS COMPARISON INTRODUCTION // MODELING PROCESS IN RHINO ROTATION AXIS PROFILE CRV - TYPE REVOLVE - HIT - PICK PROFILE CRV - HIT - PICK ROTATION AXIS - HIT - TYPE 0 AS START

More information

= secant lines of the n+1 unit circle divisions (d)

= secant lines of the n+1 unit circle divisions (d) The logarithm of is a complex number such that. In my theory, I represent as the complex number, which is the same as Euler s, where Taking it a step further with, you get a complex number and its conjugate

More information

Chapter 3: The Parabola

Chapter 3: The Parabola Chapter 3: The Parabola SSMth1: Precalculus Science and Technology, Engineering and Mathematics (STEM) Mr. Migo M. Mendoza Chapter 3: The Parabola Lecture 7: Introduction to Parabola Lecture 8: Converting

More information

Bezier Curves. An Introduction. Detlef Reimers

Bezier Curves. An Introduction. Detlef Reimers Bezier Curves An Introduction Detlef Reimers detlefreimers@gmx.de http://detlefreimers.de September 1, 2011 Chapter 1 Bezier Curve Basics 1.1 Linear Interpolation This section will give you a basic introduction

More information

Solved Examples. Parabola with vertex as origin and symmetrical about x-axis. We will find the area above the x-axis and double the area.

Solved Examples. Parabola with vertex as origin and symmetrical about x-axis. We will find the area above the x-axis and double the area. Solved Examples Example 1: Find the area common to the curves x 2 + y 2 = 4x and y 2 = x. x 2 + y 2 = 4x (i) (x 2) 2 + y 2 = 4 This is a circle with centre at (2, 0) and radius 2. y = (4x-x 2 ) y 2 = x

More information

3.1 Investigating Quadratic Functions in Vertex Form

3.1 Investigating Quadratic Functions in Vertex Form Math 2200 Date: 3.1 Investigating Quadratic Functions in Vertex Form Degree of a Function - refers to the highest exponent on the variable in an expression or equation. In Math 1201, you learned about

More information

Math 165 Guided Activity to study ahead some concepts from sections 1.1 and 1.2 Name Section Distance and Midpoint Formula

Math 165 Guided Activity to study ahead some concepts from sections 1.1 and 1.2 Name Section Distance and Midpoint Formula Math 165 Guided Activity to study ahead some concepts from sections 1.1 and 1. Name Section 1.1 - Distance and Midpoint Formula Use the power point presentation for sections 1.1 and 1. to answer the following

More information

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH6 2.1 Warm-Up: See Solved Homework questions 2.2 Cartesian coordinate system Coordinate axes: Two perpendicular lines that intersect at the origin O on each line.

More information

Collisions/Reflection

Collisions/Reflection Collisions/Reflection General Collisions The calculating whether or not two 2D objects collide is equivalent to calculating if the two shapes share a common area (intersect). For general polygons this

More information

Pure Math 30: Explained!

Pure Math 30: Explained! www.puremath30.com 30 part i: stretches about other lines Stretches about other lines: Stretches about lines other than the x & y axis are frequently required. Example 1: Stretch the graph horizontally

More information

1 MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988: edited March 26, 2013.

1 MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988: edited March 26, 2013. 1 MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988: edited March 26, 2013. TANGENTS Suppose that Apple Computers notices that every time they raise (or lower) the price of a $5,000 Mac II by $100, the number

More information

Geometry: Angle Relationships

Geometry: Angle Relationships Geometry: Angle Relationships I. Define the following angles (in degrees) and draw an example of each. 1. Acute 3. Right 2. Obtuse 4. Straight Complementary angles: Supplementary angles: a + b = c + d

More information

Floor Plan Optimization through Evolutionary Simulation

Floor Plan Optimization through Evolutionary Simulation Floor Plan Optimization through Evolutionary Simulation Stephen Holman, Kevin Kerr, Nicholas Perseo Background: Evolutionary computation (EC) is an umbrella term for a range of problem-solving techniques

More information

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12.

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12. Multivariable Calculus Exam 2 Preparation Math 28 (Spring 2) Exam 2: Thursday, May 2. Friday May, is a day off! Instructions: () There are points on the exam and an extra credit problem worth an additional

More information

GRAPHING WORKSHOP. A graph of an equation is an illustration of a set of points whose coordinates satisfy the equation.

GRAPHING WORKSHOP. A graph of an equation is an illustration of a set of points whose coordinates satisfy the equation. GRAPHING WORKSHOP A graph of an equation is an illustration of a set of points whose coordinates satisfy the equation. The figure below shows a straight line drawn through the three points (2, 3), (-3,-2),

More information

Grade 6 Math Circles Fall 2010 Tessellations I

Grade 6 Math Circles Fall 2010 Tessellations I 1 University of Waterloo Faculty of Mathematics entre for Education in Mathematics and omputing Grade 6 Math ircles Fall 2010 Tessellations I tessellation is a collection of shapes that fit together with

More information

Lectures on Challenging Mathematics. Integrated Mathematics 3. Idea Math. Algebra (part 2) Summer Internal Use

Lectures on Challenging Mathematics. Integrated Mathematics 3. Idea Math. Algebra (part 2) Summer Internal Use Lectures on Challenging Mathematics c Copyright 2008 2018 Integrated Mathematics 3 Algebra (part 2) Summer 2018 Zuming Feng Phillips Exeter Academy and IDEA Math zfeng@exeteredu Copyright c 2008 2018 IDEA

More information

2. The LabView Environment Two panes will open, one is the Front panel, and one is the Block Diagram

2. The LabView Environment Two panes will open, one is the Front panel, and one is the Block Diagram E80 Spring 2015 Lecture 3 LabView 1. Creating a VI (Virtual Instrument) From the File drop-down menu, select New VI 2. The LabView Environment Two panes will open, one is the Front panel, and one is the

More information

Lecture 5. If, as shown in figure, we form a right triangle With P1 and P2 as vertices, then length of the horizontal

Lecture 5. If, as shown in figure, we form a right triangle With P1 and P2 as vertices, then length of the horizontal Distance; Circles; Equations of the form Lecture 5 y = ax + bx + c In this lecture we shall derive a formula for the distance between two points in a coordinate plane, and we shall use that formula to

More information

VOLUME OF A REGION CALCULATOR EBOOK

VOLUME OF A REGION CALCULATOR EBOOK 19 March, 2018 VOLUME OF A REGION CALCULATOR EBOOK Document Filetype: PDF 390.92 KB 0 VOLUME OF A REGION CALCULATOR EBOOK How do you calculate volume. A solid of revolution is a solid formed by revolving

More information

Green Globs And Graphing Equations

Green Globs And Graphing Equations Green Globs And Graphing Equations Green Globs and Graphing Equations has four parts to it which serve as a tool, a review or testing device, and two games. The menu choices are: Equation Plotter which

More information

CCNY Math Review Chapter 2: Functions

CCNY Math Review Chapter 2: Functions CCN Math Review Chapter : Functions Section.1: Functions.1.1: How functions are used.1.: Methods for defining functions.1.3: The graph of a function.1.: Domain and range.1.5: Relations, functions, and

More information

Year 7 Term 1 Intermediate

Year 7 Term 1 Intermediate Year 7 Term 1 Intermediate Overview: Term 1 Learning Objectives Topic: Integers, Powers and Roots Big Questions: - How do you know when you have found all the factors of a number? - What would the HCF

More information

Loop Invariant Examples

Loop Invariant Examples Loop Invariant Examples Page 1 Problems Page 3 Help (Code) Page 5 Solutions (to Help Code) Problems: Exercise 0 @return the average of the list average(double[ ] a) // Yes, this should be as easy as it

More information

Name. Center axis. Introduction to Conic Sections

Name. Center axis. Introduction to Conic Sections Name Introduction to Conic Sections Center axis This introduction to conic sections is going to focus on what they some of the skills needed to work with their equations and graphs. year, we will only

More information

Lecture 19: Functions, Types and Data Structures in Haskell

Lecture 19: Functions, Types and Data Structures in Haskell The University of North Carolina at Chapel Hill Spring 2002 Lecture 19: Functions, Types and Data Structures in Haskell Feb 25 1 Functions Functions are the most important kind of value in functional programming

More information

7. r = r = r = r = r = 2 5

7. r = r = r = r = r = 2 5 Exercise a: I. Write the equation in standard form of each circle with its center at the origin and the given radius.. r = 4. r = 6 3. r = 7 r = 5 5. r = 6. r = 6 7. r = 0.3 8. r =.5 9. r = 4 0. r = 3.

More information

4 = 1 which is an ellipse of major axis 2 and minor axis 2. Try the plane z = y2

4 = 1 which is an ellipse of major axis 2 and minor axis 2. Try the plane z = y2 12.6 Quadrics and Cylinder Surfaces: Example: What is y = x? More correctly what is {(x,y,z) R 3 : y = x}? It s a plane. What about y =? Its a cylinder surface. What about y z = Again a cylinder surface

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

3.7. Vertex and tangent

3.7. Vertex and tangent 3.7. Vertex and tangent Example 1. At the right we have drawn the graph of the cubic polynomial f(x) = x 2 (3 x). Notice how the structure of the graph matches the form of the algebraic expression. The

More information

Section 4.4: Parabolas

Section 4.4: Parabolas Objective: Graph parabolas using the vertex, x-intercepts, and y-intercept. Just as the graph of a linear equation y mx b can be drawn, the graph of a quadratic equation y ax bx c can be drawn. The graph

More information

More Formulas: circles Elementary Education 12

More Formulas: circles Elementary Education 12 More Formulas: circles Elementary Education 12 As the title indicates, this week we are interested in circles. Before we begin, please take some time to define a circle: Due to the geometric shape of circles,

More information

Matlab Tutorial: Basics

Matlab Tutorial: Basics Matlab Tutorial: Basics Topics: opening matlab m-files general syntax plotting function files loops GETTING HELP Matlab is a program which allows you to manipulate, analyze and visualize data. MATLAB allows

More information

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves Block #1: Vector-Valued Functions Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves 1 The Calculus of Moving Objects Problem.

More information

RHINO SURFACE MAKING PART 1

RHINO SURFACE MAKING PART 1 TUTORIAL 04: RHINO SURFACE MAKING PART 1 By Jeremy L Roh, Professor of Digital Methods I UNC Charlotte s School of Architecture Surfaces are a key component in shaping 3D objects within Rhinoceros. All

More information

RHINOCEROS AND NURBS MODELING

RHINOCEROS AND NURBS MODELING Introduction RHINOCEROS AND NURBS MODELING There are three main ways to create a 3D computer model using 3D applications. Each has particular advantages and drawbacks, and the ability to create (or convert

More information

Digitizer Leapfrogging

Digitizer Leapfrogging Digitizer Leapfrogging Leapfrogging lets you digitize objects that are larger than your digitizing arm. You start with one section of the object, then leapfrog around by creating leapfrog stations in both

More information

Lesson 6: Manipulating Equations

Lesson 6: Manipulating Equations Lesson 6: Manipulating Equations Manipulating equations is probably one of the most important skills to master in a high school physics course. Although it is based on familiar (and fairly simple) math

More information

Unit: Quadratic Functions

Unit: Quadratic Functions Unit: Quadratic Functions Learning increases when you have a goal to work towards. Use this checklist as guide to track how well you are grasping the material. In the center column, rate your understand

More information

Chapter 2: Rhino Objects

Chapter 2: Rhino Objects The fundamental geometric objects in Rhino are points, curves, surfaces, polysurfaces, extrusion objects, and polygon mesh objects. Why NURBS modeling NURBS (non-uniform rational B-splines) are mathematical

More information

Geometry and Curve Definition

Geometry and Curve Definition Geometry and Curve Definition 1 NAPA 2014 What should I learn? How the Geometric hierarchy works How the coordinate system is defined Make curve definitions How to define the location surface How to define

More information

S206E Lecture 3, 5/15/2017, Rhino 2D drawing an overview

S206E Lecture 3, 5/15/2017, Rhino 2D drawing an overview Copyright 2017, Chiu-Shui Chan. All Rights Reserved. S206E057 Spring 2017 Rhino 2D drawing is very much the same as it is developed in AutoCAD. There are a lot of similarities in interface and in executing

More information

Slope of the Tangent Line. Estimating with a Secant Line

Slope of the Tangent Line. Estimating with a Secant Line Slope of the Tangent Line Given a function f find the slope of the line tangent to the graph of f, that is, to the curve, at the point P(a, f (a)). The graph of a function f and the tangent line at a point

More information

Essential Mathematics for Computational Design

Essential Mathematics for Computational Design Essential Mathematics for Computational Design, Third edition, by Robert McNeel & Associates, 2013 is licensed under a Creative Commons Attribution-Share Alike 3.0 United States License. ii Preface Essential

More information

Accelerated Pre-Calculus Unit 1 Task 1: Our Only Focus: Circles & Parabolas Review

Accelerated Pre-Calculus Unit 1 Task 1: Our Only Focus: Circles & Parabolas Review Accelerated Pre-Calculus Unit 1 Task 1: Our Only Focus: Circles & Parabolas Review Name: Date: Period: For most students, you last learned about conic sections in Analytic Geometry, which was a while ago.

More information

Level8opaedia. A level is a level. Compiled for

Level8opaedia. A level is a level. Compiled for Level8opaedia A level is a level Compiled for www.glosmaths.org, 2008 Numbers and the Number System Understand the equivalence between recurring decimals and fractions Decide which of the following fractions

More information

MAT 003 Brian Killough s Instructor Notes Saint Leo University

MAT 003 Brian Killough s Instructor Notes Saint Leo University MAT 003 Brian Killough s Instructor Notes Saint Leo University Success in online courses requires self-motivation and discipline. It is anticipated that students will read the textbook and complete sample

More information

Section 1.1 Patterns in Division

Section 1.1 Patterns in Division Section 1.1 Patterns in Division Divisibility refers to whether or not a number is divisible by another number. If a number divides evenly into another number (no remainder), then it is divisible by that

More information

Table of Contents. Introduction to the Math Practice Series...1

Table of Contents. Introduction to the Math Practice Series...1 Table of Contents Table of Contents Introduction to the Math Practice Series...1 Common Mathematics/Geometry Symbols and Terms...2 Chapter 1: Introduction To Geometry...13 Shapes, Congruence, Similarity,

More information

10.7. Polar Coordinates. Introduction. What you should learn. Why you should learn it. Example 1. Plotting Points on the Polar Coordinate System

10.7. Polar Coordinates. Introduction. What you should learn. Why you should learn it. Example 1. Plotting Points on the Polar Coordinate System _7.qxd /8/5 9: AM Page 779 Section.7 Polar Coordinates 779.7 Polar Coordinates What ou should learn Plot points on the polar coordinate sstem. Convert points from rectangular to polar form and vice versa.

More information

Learning Task: Exploring Reflections and Rotations

Learning Task: Exploring Reflections and Rotations Learning Task: Exploring Reflections and Rotations Name Date Mathematical Goals Develop and demonstrate an understanding of reflections and rotations of figures in general and on a coordinate plane. Essential

More information

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning by example.

More information

Exploring Quadratic Graphs

Exploring Quadratic Graphs Exploring Quadratic Graphs The general quadratic function is y=ax 2 +bx+c It has one of two basic graphs shapes, as shown below: It is a symmetrical "U"-shape or "hump"-shape, depending on the sign of

More information

Objective. m y 1 y = x 1 x 2

Objective. m y 1 y = x 1 x 2 Objective Use the CellSheet App to approximate the slope of a line tangent to a curve Activity 6 Introduction The Slope of the Tangent Line (Part 1) You have learned that the equation y = mx + b is a linear

More information

Workshop: Dynamic Inspirations with Nspire Dr. René Hugelshofer, Heerbrugg, Switzerland.

Workshop: Dynamic Inspirations with Nspire Dr. René Hugelshofer, Heerbrugg, Switzerland. Workshop: Dynamic Inspirations with Nspire Dr. René Hugelshofer, Heerbrugg, Switzerland. Part One: Presentation of TI-nspire Preface: TI-nspire is the new software from TI. This version is only a test

More information

a) Draw a line through points A and B. What is one symbol or name for it?

a) Draw a line through points A and B. What is one symbol or name for it? Lesson 1A: Geometric Notation Name: Use correct notation when referring to lines, segments, rays, and angles. 1. Lines P A C D Q E F G H I a) Draw a line through points A and. What is one symbol or name

More information

Describe Plane Shapes

Describe Plane Shapes Lesson 12.1 Describe Plane Shapes You can use math words to describe plane shapes. point an exact position or location line endpoints line segment ray a straight path that goes in two directions without

More information

Computer Graphics : Bresenham Line Drawing Algorithm, Circle Drawing & Polygon Filling

Computer Graphics : Bresenham Line Drawing Algorithm, Circle Drawing & Polygon Filling Computer Graphics : Bresenham Line Drawing Algorithm, Circle Drawing & Polygon Filling Downloaded from :www.comp.dit.ie/bmacnamee/materials/graphics/006- Contents In today s lecture we ll have a loo at:

More information