Recitation 1-6 Projectile Motion

Size: px
Start display at page:

Download "Recitation 1-6 Projectile Motion"

Transcription

1 Preliminaries Recitation 1-6 Projectile Motion The Recorder is the youngest person at your table. The Recorder Should write down everyone s name on the worksheet and put your Table No. on the worksheet. Other You will turn these papers in at the end of the day so be neat. Task 1 Exit Speed Using the photogates Task 2 Time-of-Flight Using the photogate and time-of-flight accessory Table 1 Table 2 Table 3 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 7 Table 8 Table 9 Task 3 Distances Equal Elevations Calculations Task 4 Distances Unequal Elevations Calculations 30 o 60 o 30 o 60 o 30 o 60 o 30 o 60 o 30 o 60 o 30 o 60 o Table 1 Table 2 Table 3 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 7 Table 8 Table 9 1

2

3

4

5

6

7

8

9

10

11

12 EF 157 Recitation Instructions Task 1: Determination of the exit speed. Equipment: Launcher, ball, tape measure, two photogates, timer. Procedure: 1. Set the launcher so that it is horizontal (i.e., 0 o ) 2. Measure the vertical distance (in cm) from the bottom edge of the launcher's bore to the floor (see diagram). Why the bottom? Record your answer on the worksheet. 3. Set the launcher on the medium (the middle) position. Load ball and fire. 4. Have three students mark where they think the ball landed (use small pieces of tape). 5. Repeat steps 3-4, two more times. There should be a total of nine marks. 6. Eyeball the location of the average mark. 7. Measure the horizontal distance (in cm) from the end of the launcher to the average mark. Record your answer on the worksheet. 8. Using one of the y-motion equations, calculate the theoretical time-of-flight. Record your answer on the worksheet. 9. Using one of the x-motion equations and the time value calculated in step eight; calculate the theoretical horizontal velocity. Record your answer on the worksheet. 10. Set the launcher on the medium (the middle) position and load the ball. 11. Activate the photogate timer. 12. Fire the ball and record the time on the worksheet. 13. Repeat steps two more times. You will have three measurements. 14. Measure the distance between the photogates. Using the average time measurement, calculate the exit speed. Record your answer on the worksheet. 15. Calculate the percentage error in the two determinations. Which one do you think is more accurate? Task 2: Time-of-Flight. Equipment: Launcher, ball, one photogate, timer, time-of-flight accessory. WARNING: The time-of-flight accessory is fragile. Do NOT step on it. Procedure: 1. Disconnect the second photogate from the timer. Connect the time-of-flight accessory to the timer. 2. Set the time-of-flight accessory on top of the average mark from Task 1, step Set the launcher on the medium position and load the ball. 4. Activate the photogate timer. 5. Fire the ball and record the time on the worksheet. 6. Repeat steps 3-5 two more times (three measurements total). 7. Set the launcher on low (the first) position and load the ball. 8. Fire the ball once and observe where it lands (you may have to repeat to get a good estimate). 9. Move the time-of-flight accessory to the new landing position. 10. Repeat the time-of-flight measurements using the low position of the launcher (three measurements) 11. Calculate and record the required averages and percentage error from Task 1, step Did you account for the height of the time-of-flight accessory? What are other possible errors?

13 EF 157 Recitation Instructions Task 3: Horizontal distance same elevation. Equipment: launcher, ball, tape measure, target. Procedure: 1. Using the launch speed calculated in Task 1, step 14, calculate the horizontal distance from the launcher where the ball will hit if the vertical elevation of the target is the same as the exit of the launcher. Do this calculation for the two angles and enter the results on the worksheet. 2. Set the launcher at 30 o and set the target at the theoretical location. 3. Launch the ball and measure the horizontal distance where it hits the target. Record the result on the worksheet. 4. Repeat two more times for the 30 o angle (i.e., there will be a total of 3 data points at this angle). 5. Repeat steps 2-4 for the launcher set at 60 o. 6. Calculate the required statistics and percentage error. Task 4: Horizontal distance different elevation. Equipment: launcher, ball, tape measure. Procedure: 1. Using the y distance measured in Task 1, step 2 and the launch speed calculated in Task 1, step 14, calculate the horizontal distance from the launcher where the ball will hit if the vertical elevation of the target is NOT the same as the exit of the launcher. Do this calculation for both angles and enter the results on the worksheet. 2. Set the launcher at 30 o and remove the target. 3. Launch the ball and measure the horizontal distance where it hits the floor. Record the result on the worksheet. 4. Repeat two more times for the 30 o angle (i.e., there will be a total of 3 data points at this angle). 5. Repeat steps 2-4 for the launcher set 60 o. 6. Calculate the required statistics and percentage error.

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate)

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate) Name Class Date Activity P37: Time of Flight versus Initial Speed (Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Projectile motion P37 Time of Flight.DS P08 Time of Flight P08_TOF.SWS

More information

Projectile Motion. A.1. Finding the flight time from the vertical motion. The five variables for the vertical motion are:

Projectile Motion. A.1. Finding the flight time from the vertical motion. The five variables for the vertical motion are: Projectile Motion A. Finding the muzzle speed v0 The speed of the projectile as it leaves the gun can be found by firing it horizontally from a table, and measuring the horizontal range R0. On the diagram,

More information

Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND?

Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND? Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND? You have watched a ball roll off a table and strike the floor. What determines where it will land? Could you predict where it will land?

More information

(40-455) Student Launcher

(40-455) Student Launcher 611-1415 (40-455) Student Launcher Congratulations on your purchase of the Science First student launcher. You will find Science First products in almost every school in the world. We have been making

More information

SPH3U1 Lesson 12 Kinematics

SPH3U1 Lesson 12 Kinematics SPH3U1 Lesson 12 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the motion of an object thrown at arbitrary angles through the air. Describe the horizontal and vertical motions of

More information

Purpose of the experiment

Purpose of the experiment Projectile Motion PES 116 Advanced Physics Lab I Purpose of the experiment Measure the velocity of a ball using two photogates and Logger Pro. Apply the concepts of two-dimensional kinematics to predict

More information

Stomp Rocket Lab Physics

Stomp Rocket Lab Physics Stomp Rocket Lab Physics Stomp Rockets are plastic projectiles that are launched when a bladder of air is hit or stomped with a foot. Typically the launch angle can be changed, but should be left at 90

More information

You are going to need to access the video that was taken of your device - it can be accessed here:

You are going to need to access the video that was taken of your device - it can be accessed here: Part 2: Projectile Launcher Analysis Report Submit Assignment Due Dec 17, 2015 by 10:30am Points 100 Submitting a file upload Available after Dec 17, 2015 at 6am Step 2 - Now We Look At The Real World

More information

Projectile Trajectory Scenarios

Projectile Trajectory Scenarios Projectile Trajectory Scenarios Student Worksheet Name Class Note: Sections of this document are numbered to correspond to the pages in the TI-Nspire.tns document ProjectileTrajectory.tns. 1.1 Trajectories

More information

(40-405) Projectile Launcher

(40-405) Projectile Launcher 611-1410 (40-405) Projectile Launcher Replacement Parts: 24-0405 Instructions 40-030 Aluminum ball with hole 40-069 Steel ball with hole Congratulations on your purchase of a Science First product You

More information

Exploring Projectile Motion with Interactive Physics

Exploring Projectile Motion with Interactive Physics Purpose: The purpose of this lab will is to simulate a laboratory exercise using a program known as "Interactive Physics." Such simulations are becoming increasingly common, as they allow dynamic models

More information

Projectile Motion. Photogate 2 Photogate 1 Ramp and Marble. C-clamp. Figure 1

Projectile Motion. Photogate 2 Photogate 1 Ramp and Marble. C-clamp. Figure 1 Projectile Motion Purpose Apply concepts from two-dimensional kinematics to predict the impact point of a ball in projectile motion, and compare the result with direct measurement. Introduction and Theory

More information

Vector Decomposition

Vector Decomposition Projectile Motion AP Physics 1 Vector Decomposition 1 Coordinate Systems A coordinate system is an artificially imposed grid that you place on a problem. You are free to choose: Where to place the origin,

More information

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical With no gravity the projectile would follow the straight-line path (dashed line).

More information

PROJECTILE. 5) Define the terms Velocity as related to projectile motion: 6) Define the terms angle of projection as related to projectile motion:

PROJECTILE. 5) Define the terms Velocity as related to projectile motion: 6) Define the terms angle of projection as related to projectile motion: 1) Define Trajectory a) The path traced by particle in air b) The particle c) Vertical Distance d) Horizontal Distance PROJECTILE 2) Define Projectile a) The path traced by particle in air b) The particle

More information

Lab 4 Projectile Motion

Lab 4 Projectile Motion b Lab 4 Projectile Motion What You Need To Know: x = x v = v v o ox = v + v ox ox + at 1 t + at + a x FIGURE 1 Linear Motion Equations The Physics So far in lab you ve dealt with an object moving horizontally

More information

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!!

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!! Zero Launch Angle y h since θ=0, then v oy =0 and v ox = v o and based on our coordinate system we have x o =0, y o =h x The time required to reach the water independent of v o!! 1 2 Combining Eliminating

More information

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured =

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured = Lesson 5: Vectors and Projectile Motion Name Period 5.1 Introduction: Vectors vs. Scalars (a) Read page 69 of the supplemental Conceptual Physics text. Name at least 3 vector quantities and at least 3

More information

Edexcel Mechanics 2 Kinematics of a particle. Section 1: Projectiles

Edexcel Mechanics 2 Kinematics of a particle. Section 1: Projectiles Edecel Mechanics Kinematics of a particle Section 1: Projectiles Notes and Eamples These notes contain subsections on Investigating projectiles Modelling assumptions General strateg for projectile questions

More information

Two-Dimensional Motion

Two-Dimensional Motion Two-Dimensional Motion Objects don't always move in a straight line. When an object moves in two dimensions, we must look at vector components. The most common kind of two dimensional motion you will encounter

More information

Stunt Car Lab P4-1340

Stunt Car Lab P4-1340 WWW.ARBORSCI.COM Stunt Car Lab P4-1340 BACKGROUND: Create an exciting indoor projectile investigation with this complete lab, inspired by the movie Speed. Calculate the bus s landing spot, and then test

More information

Lab #4: 2-Dimensional Kinematics. Projectile Motion

Lab #4: 2-Dimensional Kinematics. Projectile Motion Lab #4: -Dimensional Kinematics Projectile Motion A medieval trebuchet b Kolderer, c1507 http://members.iinet.net.au/~rmine/ht/ht0.html#5 Introduction: In medieval das, people had a ver practical knowledge

More information

Math 2250 Lab #3: Landing on Target

Math 2250 Lab #3: Landing on Target Math 2250 Lab #3: Landing on Target 1. INTRODUCTION TO THE LAB PROGRAM. Here are some general notes and ideas which will help you with the lab. The purpose of the lab program is to expose you to problems

More information

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10 Quadratic Modeling STEM 10 Today we are going to put together an understanding of the two physics equations we have been using. Distance: Height : Recall the variables: o acceleration o gravitation force

More information

Review for Quarter 3 Cumulative Test

Review for Quarter 3 Cumulative Test Review for Quarter 3 Cumulative Test I. Solving quadratic equations (LT 4.2, 4.3, 4.4) Key Facts To factor a polynomial, first factor out any common factors, then use the box method to factor the quadratic.

More information

Figure 1: The trajectory of a projectile launched at θ 1 > 0.

Figure 1: The trajectory of a projectile launched at θ 1 > 0. 3 Projectile Motion Introduction Important: Complete and submit the Lab 3 problem set on WebAssin before you leave lab today. Your instructor and lab assistant will be happy to help. In Lab 2, you tested

More information

Applied Parabolas: Catapult (one test grade)

Applied Parabolas: Catapult (one test grade) Name: I. Overview: PreCalculus Applied Parabola Project Applied Parabolas: Catapult (one test grade) You will use catapults to launch candy into the air. Using a stopwatch, you will time how long the projectile

More information

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion Two-Dimensional Motion and Vectors Section 1 Preview Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Two-Dimensional Motion and Vectors

More information

Lesson 3.1 Vertices and Intercepts. Important Features of Parabolas

Lesson 3.1 Vertices and Intercepts. Important Features of Parabolas Lesson 3.1 Vertices and Intercepts Name: _ Learning Objective: Students will be able to identify the vertex and intercepts of a parabola from its equation. CCSS.MATH.CONTENT.HSF.IF.C.7.A Graph linear and

More information

OCR Maths M2. Topic Questions from Papers. Projectiles

OCR Maths M2. Topic Questions from Papers. Projectiles OCR Maths M2 Topic Questions from Papers Projectiles PhysicsAndMathsTutor.com 21 Aparticleisprojectedhorizontallywithaspeedof6ms 1 from a point 10 m above horizontal ground. The particle moves freely under

More information

Stunt Car Challenge! 28 October January 2009

Stunt Car Challenge! 28 October January 2009 Title: Stunt Car Challenge! Original: Revision: Authors: Appropriate Level: Abstract: Time Required: NY Standards Met: Special Notes: 28 October 2007 9 January 2009 Buzz Putnam High School Physics (New

More information

Position vs Time Graphs *

Position vs Time Graphs * OpenStax-CNX module: m54110 1 Position vs Time Graphs * OpenStax HS Physics This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 1 : By the end of this

More information

Math 2250 Lab #3: Landing on Target

Math 2250 Lab #3: Landing on Target Math 2250 Lab #3: Landing on Target 1. INTRODUCTION TO THE LAB PROGRAM. Here are some general notes and ideas which will help you with the lab. The purpose of the lab program is to expose you to problems

More information

Lesson 5.2: Transformations of Sinusoidal Functions (Sine and Cosine)

Lesson 5.2: Transformations of Sinusoidal Functions (Sine and Cosine) Lesson 5.2: Transformations of Sinusoidal Functions (Sine and Cosine) Reflections Horizontal Translation (c) Vertical Translation (d) Remember: vertical stretch horizontal stretch 1 Part A: Reflections

More information

2.3 Projectile Motion

2.3 Projectile Motion Figure 1 An Olympic ski jumper uses his own body as a projectile. projectile an object that moves along a two-dimensional curved trajectory in response to gravity projectile motion the motion of a projectile

More information

Math 4: Advanced Algebra Ms. Sheppard-Brick A Quiz Review LT ,

Math 4: Advanced Algebra Ms. Sheppard-Brick A Quiz Review LT , 4A Quiz Review LT 3.4 3.10, 4.1 4.3 Key Facts Know how to use the formulas for projectile motion. The formulas will be given to you on the quiz, but you ll need to know what the variables stand for Horizontal:

More information

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height.

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height. 1 Inthis question take g =10. A golf ball is hit from ground level over horizontal ground. The initial velocity of the ball is 40 m s 1 at an angle α to the horizontal, where sin α = 0.6 and cos α = 0.8.

More information

Projectile Motion. Honors Physics

Projectile Motion. Honors Physics Projectile Motion Honors Physics What is projectile? Projectile -Any object which projected by some means and continues to moe due to its own inertia (mass). Projectiles moe in TWO dimensions Since a projectile

More information

ENED 1090: Engineering Models I Homework Assignment #2 Due: Week of September 16 th at the beginning of your Recitation Section

ENED 1090: Engineering Models I Homework Assignment #2 Due: Week of September 16 th at the beginning of your Recitation Section ENED 1090: Engineering Models I Homework Assignment #2 Due: Week of September 16 th at the beginning of your Recitation Section Instructions: 1. Before you begin editing this document, you must save this

More information

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion 3-7 A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola. 3-7 It can be understood by analyzing the horizontal and vertical motions separately.

More information

AA Simulation: Firing Range

AA Simulation: Firing Range America's Army walkthrough AA Simulation: Firing Range Firing Range This simulation serves as an introduction to uniform motion and the relationship between distance, rate, and time. Gravity is removed

More information

2D Kinematics Projectiles Relative motion

2D Kinematics Projectiles Relative motion 2D Kinematics Projectiles Relative motion Lana heridan De Anza College Oct 4, 2017 Last time 2 dimensional motion projectile motion height of a projectile Overview range of a projectile trajectory equation

More information

Precalculus 2 Section 10.6 Parametric Equations

Precalculus 2 Section 10.6 Parametric Equations Precalculus 2 Section 10.6 Parametric Equations Parametric Equations Write parametric equations. Graph parametric equations. Determine an equivalent rectangular equation for parametric equations. Determine

More information

Practice Exams. Exam logistics. Projectile Motion Problem-Solving. ax = 0 m/s2 ay = -9.8 m/s2. You won t do well if you wait then cram.

Practice Exams. Exam logistics. Projectile Motion Problem-Solving. ax = 0 m/s2 ay = -9.8 m/s2. You won t do well if you wait then cram. 1 v projectile is in free fall! ax = 0 m/s2 ay = -9.8 m/s2 Projectile Motion Problem-Solving Last year s exam equation sheet. 2 What are you getting stuck on in problem-solving? Topics: Chapters 1 3 including:

More information

Projectile Motion. Remember that the projectile travels vertically (up and down y) in the same time that it is traveling above the horizontal (x)

Projectile Motion. Remember that the projectile travels vertically (up and down y) in the same time that it is traveling above the horizontal (x) Projectile Motion Consider motion in and y separately Ignore air resistance elocity in -direction is constant Write down positions in and y as a function of time Remember that the projectile traels ertically

More information

Name. Beaumont Middle School 8th Grade, Advanced Algebra I. A = l w P = 2 l + 2w

Name. Beaumont Middle School 8th Grade, Advanced Algebra I. A = l w P = 2 l + 2w 1 Name Beaumont Middle School 8th Grade, 2015-2016 Advanced Algebra I A = l w P = 2 l + 2w Graphing Quadratic Functions, Using the Zeroes (x-intercepts) EXAMPLES 1) y = x 2 9 2 a) Standard Form: b) a =,

More information

Projectile Launched Horizontally

Projectile Launched Horizontally Projectile Launched Horizontally by Nada Saab-Ismail, PhD, MAT, MEd, IB nhsaab.weebly.com nhsaab2014@gmail.com P3.3c Explain the recoil of a projectile launcher in terms of forces and masses. P3.4e Solve

More information

Graph Matching. walk back and forth in front of Motion Detector

Graph Matching. walk back and forth in front of Motion Detector Graph Matching Experiment 1 One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration vs. time. From such a graphical representation, it is possible

More information

Rationalize the Denominator: Get the root the denom. Multiply by more roots to cancel. w/ and w/

Rationalize the Denominator: Get the root the denom. Multiply by more roots to cancel. w/ and w/ Name Unit 2 Day 1 Simplifying Square Roots Properties: 1. = Examples: 2. = 12 4 9 4 9 4 + 9 4 + 9 Rationalize the Denominator: Get the root the denom. Multiply by more roots to cancel. w/ and w/ Conjugate:

More information

Self-Correcting Projectile Launcher. Josh Schuster Yena Park Diana Mirabello Ryan Kindle

Self-Correcting Projectile Launcher. Josh Schuster Yena Park Diana Mirabello Ryan Kindle Self-Correcting Projectile Launcher Josh Schuster Yena Park Diana Mirabello Ryan Kindle Motivation & Applications Successfully reject disturbances without use of complex sensors Demonstrate viability of

More information

Toy animal ball poppers provide a great way to use projectile motion in the classroom. We used

Toy animal ball poppers provide a great way to use projectile motion in the classroom. We used Using Toy Animal Ball Poppers to Explore Projectile Motion in Algebra and Calculus Classes Marsha Nicol Guntharp, Palm Beach Atlantic University Fred Browning, Palm Beach Atlantic University Gloria Royle,

More information

Position and Piecewise Velocity

Position and Piecewise Velocity Math Objectives Students will modify a piecewise linear graph of velocity to model a scenario. Students will make connections between a graph of an object s velocity and a corresponding graph of an object

More information

Uniform Motion Lab. The position equation for an object moving with a constant velocity is:

Uniform Motion Lab. The position equation for an object moving with a constant velocity is: Uniform Motion Lab INTRODUCTION: In this experiment we will investigate motion without acceleration. Motion without acceleration is uniform (constant velocity) motion, which means it describes the motion

More information

Chapter 3: Vectors & 2D Motion. Brent Royuk Phys-111 Concordia University

Chapter 3: Vectors & 2D Motion. Brent Royuk Phys-111 Concordia University Chapter 3: Vectors & 2D Motion Brent Royuk Phys-111 Concordia University Vectors What is a vector? Examples? Notation:! a or! a or a 2 Vector Addition Graphical Methods Triangle, parallelogram, polygon

More information

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus How do you roll? Purpose: Observe and compare the motion of a cart rolling down hill versus a cart rolling up hill. Develop a mathematical model of the position versus time and velocity versus time for

More information

November 18, RocketLab16.notebook. Read through the sample directions for assembling a straw rocket.

November 18, RocketLab16.notebook. Read through the sample directions for assembling a straw rocket. IN 1. Gather materials: clay, 3 X 5 index cards or card stock, Pitsco mini rocket launcher, 1 precision straw, tape, scissors, measuring tape, protractor, pencil, lab sheet, 2. Roll clay into 0.5 grams,

More information

LAB 02: Graph Matching

LAB 02: Graph Matching LAB 02: Graph Matching One of the most effective methods of describing motion is to plot graphs of position/displacement, velocity, and acceleration vs. time. From such a graphical representation, it is

More information

Changing from Standard to Vertex Form Date: Per:

Changing from Standard to Vertex Form Date: Per: Math 2 Unit 11 Worksheet 1 Name: Changing from Standard to Vertex Form Date: Per: [1-9] Find the value of cc in the expression that completes the square, where cc =. Then write in factored form. 1. xx

More information

LAB 03: The Equations of Uniform Motion

LAB 03: The Equations of Uniform Motion LAB 03: The Equations of Uniform Motion This experiment uses a ramp and a low-friction cart. If you give the cart a gentle push up the ramp, the cart will roll upward, slow and stop, and then roll back

More information

Introduction to VBA for Excel-Tutorial 7. The syntax to declare an array starts by using the Dim statement, such that:

Introduction to VBA for Excel-Tutorial 7. The syntax to declare an array starts by using the Dim statement, such that: Introduction to VBA for Excel-Tutorial 7 In this tutorial, you will learn deal with arrays. We will first review how to declare the arrays, then how to pass data in and how to output arrays to Excel environment.

More information

The Marble Slab. Roller Coaster Team Project. Bryan Schow, Brandon Johnson, Ben Burns 12/6/2008

The Marble Slab. Roller Coaster Team Project. Bryan Schow, Brandon Johnson, Ben Burns 12/6/2008 The Marble Slab Roller Coaster Team Project Bryan Schow, Brandon Johnson, Ben Burns 12/6/2008 We acknowledge that we have read and approved the following report. Bryan Schow Brandon Johnson Ben Burns ii

More information

7-5 Parametric Equations

7-5 Parametric Equations 3. Sketch the curve given by each pair of parametric equations over the given interval. Make a table of values for 6 t 6. t x y 6 19 28 5 16.5 17 4 14 8 3 11.5 1 2 9 4 1 6.5 7 0 4 8 1 1.5 7 2 1 4 3 3.5

More information

Assignments for Algebra 1 Unit 9 Quadratics, Part 1

Assignments for Algebra 1 Unit 9 Quadratics, Part 1 Name: Assignments for Algebra 1 Unit 9 Quadratics, Part 1 Day 1, Quadratic Transformations: p.1-2 Day 2, Vertex Form of Quadratics: p. 3 Day 3, Solving Quadratics: p. 4-5 Day 4, No Homework (be sure you

More information

Lecture Outlines Chapter 26

Lecture Outlines Chapter 26 Lecture Outlines Chapter 26 11/18/2013 2 Chapter 26 Geometrical Optics Objectives: After completing this module, you should be able to: Explain and discuss with diagrams, reflection and refraction of light

More information

Detailed instructions for video analysis using Logger Pro.

Detailed instructions for video analysis using Logger Pro. Detailed instructions for video analysis using Logger Pro. 1. Begin by locating or creating a video of a projectile (or any moving object). Save it to your computer. Most video file types are accepted,

More information

2-D Motion: Projectiles at an Angle Physics

2-D Motion: Projectiles at an Angle Physics -D Motion: Projectiles at an Angle Physics Be sure your calculator is set to DEGREES! I. Trigonometry Reiew: 1. Find the alues of the following functions. (Use scientific calculator) i) sin45º ii) cos40º

More information

Two-Dimensional Projectile Motion

Two-Dimensional Projectile Motion Two-Dimensional Projectile Motion I. Introduction. This experiment involves the study of motion using a CCD video camera in which a sequence of video frames (a movie ) is recorded onto computer disk and

More information

Student Exploration: Quadratics in Polynomial Form

Student Exploration: Quadratics in Polynomial Form Name: Date: Student Exploration: Quadratics in Polynomial Form Vocabulary: axis of symmetry, parabola, quadratic function, vertex of a parabola Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

Using Technology to Make Connections in Algebra

Using Technology to Make Connections in Algebra Using Technology to Make Connections in Algebra Richard Parr rparr@rice.edu Rice University School Mathematics Project http://rusmp.rice.edu All On The Line Alg1Week17_Systems.tns Name Class Problem 1

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

The same procedure is used for the other factors.

The same procedure is used for the other factors. When DOE Wisdom software is opened for a new experiment, only two folders appear; the message log folder and the design folder. The message log folder includes any error message information that occurs

More information

REFLECTION & REFRACTION

REFLECTION & REFRACTION REFLECTION & REFRACTION OBJECTIVE: To study and verify the laws of reflection and refraction using a plane mirror and a glass block. To see the virtual images that can be formed by the reflection and refraction

More information

Student Exploration: Trebuchet

Student Exploration: Trebuchet Name: Date: Student Exploration: Trebuchet Vocabulary: air resistance, counterweight, counterweight trebuchet, efficiency, gravitational potential energy, kinetic energy, launch angle, payload, projectile,

More information

225L Acceleration of Gravity and Measurement Statistics

225L Acceleration of Gravity and Measurement Statistics 225L Acceleration of Gravity and Measurement Statistics Introduction: The most important and readily available source of acceleration has been gravity, and in particular, free fall. One of the problems

More information

HALF YEARLY EXAMINATIONS 2016/2017. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places.

HALF YEARLY EXAMINATIONS 2016/2017. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places. Track 3 GIRLS SECON DARY, MRIEHEL HALF YEARLY EXAMINATIONS 2016/2017 FORM: 4 PHYSICS Time: 1½ hrs Name: Class: Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal

More information

Inverses of Trigonometric. Who uses this? Hikers can use inverse trigonometric functions to navigate in the wilderness. (See Example 3.

Inverses of Trigonometric. Who uses this? Hikers can use inverse trigonometric functions to navigate in the wilderness. (See Example 3. 1-4 Inverses of Trigonometric Functions Objectives Evaluate inverse trigonometric functions. Use trigonometric equations and inverse trigonometric functions to solve problems. Vocabulary inverse sine function

More information

EEN118 LAB FOUR. h = v t ½ g t 2

EEN118 LAB FOUR. h = v t ½ g t 2 EEN118 LAB FOUR In this lab you will be performing a simulation of a physical system, shooting a projectile from a cannon and working out where it will land. Although this is not a very complicated physical

More information

Lesson 2: The Area of Right Triangles

Lesson 2: The Area of Right Triangles NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 6 5 Lesson : The Area of Right Triangles Student Outcomes Students justify the area formula for a right triangle by viewing the right triangle as part of a

More information

Algebra II. Chapter 13 Notes Sections 13.1 & 13.2

Algebra II. Chapter 13 Notes Sections 13.1 & 13.2 Algebra II Chapter 13 Notes Sections 13.1 & 13.2 Name Algebra II 13.1 Right Triangle Trigonometry Day One Today I am using SOHCAHTOA and special right triangle to solve trig problems. I am successful

More information

PROJECTILE MOTION PURPOSE

PROJECTILE MOTION PURPOSE PURPOSE The purpose of this experiment is to study the motion of an object in two dimensions. The motion of the projectile is analyzed using Newton's laws of motion. During the motion of the projectile,

More information

Unit 6 Quadratic Functions

Unit 6 Quadratic Functions Unit 6 Quadratic Functions 12.1 & 12.2 Introduction to Quadratic Functions What is A Quadratic Function? How do I tell if a Function is Quadratic? From a Graph The shape of a quadratic function is called

More information

Marshall & Swift SwiftEstimator

Marshall & Swift SwiftEstimator Getting Started Marshall & Swift SwiftEstimator Commercial Estimator Program June 2016 2016 CoreLogic, Inc. All Rights Reserved Worldwide. No part of this documentation may be reproduced, stored in a retrieval

More information

Pre-Lab Excel Problem

Pre-Lab Excel Problem Pre-Lab Excel Problem Read and follow the instructions carefully! Below you are given a problem which you are to solve using Excel. If you have not used the Excel spreadsheet a limited tutorial is given

More information

Centripetal Force Apparatus

Centripetal Force Apparatus Instruction Manual Manual No. 012-08478B Centripetal Force Apparatus Table of Contents Equipment List... 3-4 Introduction... 5 Equipment Setup... 5-7 Suggested Experiments... 8 Experiment 1: Centripetal

More information

Falling Balls. Names: Date: About this Laboratory

Falling Balls. Names: Date: About this Laboratory Falling Balls Names: Date: About this Laboratory In this laboratory,1 we will explore quadratic functions and how they relate to the motion of an object that is dropped from a specified height above ground

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

learning outcomes 10 min.

learning outcomes 10 min. Reflecting light Light H 49 time 60 minutes Tip. In this lesson every child makes their own periscope. If you prefer they can also work in pairs or small groups. learning outcomes To: know that light always

More information

Contents 10. Graphs of Trigonometric Functions

Contents 10. Graphs of Trigonometric Functions Contents 10. Graphs of Trigonometric Functions 2 10.2 Sine and Cosine Curves: Horizontal and Vertical Displacement...... 2 Example 10.15............................... 2 10.3 Composite Sine and Cosine

More information

HALF YEARLY EXAMINATIONS 2016/2017. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places.

HALF YEARLY EXAMINATIONS 2016/2017. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places. Track 2 GIRLS SECON DARY, MRIEHEL HALF YEARLY EXAMINATIONS 2016/2017 FORM: 4 PHYSICS Time: 1½ hrs Name: Class: Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal

More information

2. a. approximately cm 3 or 9p cm b. 20 layers c. approximately cm 3 or 180p cm Answers will vary.

2. a. approximately cm 3 or 9p cm b. 20 layers c. approximately cm 3 or 180p cm Answers will vary. Answers Investigation ACE Assignment Choices Problem. Core Other Connections Problem. Core,, Other Applications 7, ; Connections 7 0; unassigned choices from previous problems Problem. Core 7 Other Connections,

More information

Pixel Software/Firmware Update Instructions

Pixel Software/Firmware Update Instructions 1 Loading Software on to USB Flash Drive 1. The latest Pixel software can be downloaded from the Elevator Controls website (elevatorcontrols.com/downloads/download) a user name and password is required.

More information

Lesson 2: The Area of Right Triangles

Lesson 2: The Area of Right Triangles NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 6 5 Lesson : Student Outcomes Students justify the area formula for a right triangle by viewing the right triangle as part of a rectangle composed of two right

More information

Graphing functions by plotting points. Knowing the values of the sine function for the special angles.

Graphing functions by plotting points. Knowing the values of the sine function for the special angles. Spaghetti Sine Graphs Summary In this lesson, students use uncooked spaghetti and string to measure heights on the unit circle and create the graph of the y = sin(x). This is a great lesson to help students

More information

Step 2: Find the coordinates of the vertex (h, k) Step 5: State the zeros and interpret what they mean. Step 6: Make sure you answered all questions.

Step 2: Find the coordinates of the vertex (h, k) Step 5: State the zeros and interpret what they mean. Step 6: Make sure you answered all questions. Chapter 4 No Problem Word Problems! Name: Algebra 2 Period: 1 2 3 4 5 6 A. Solving from Standard Form 1. A ball is thrown so its height, h, in feet, is given by the equation h = 16t! + 10t where t is the

More information

Parametric Equations: Motion in a Plane Notes for Section 6.3. are parametric equations for the curve.

Parametric Equations: Motion in a Plane Notes for Section 6.3. are parametric equations for the curve. Parametric Equations: Motion in a Plane Notes for Section 6.3 In Laman s terms: Parametric equations allow us to put and into terms of a single variable known as the parameter. Time, t, is a common parameter

More information

2. Find the muzzle speed of a gun whose maximum range is 24.5 km.

2. Find the muzzle speed of a gun whose maximum range is 24.5 km. 1. A projectile is fired at a speed of 840 m/sec at an angle of 60. How long will it take to get 21 km downrange? 2. Find the muzzle speed of a gun whose maximum range is 24.5 km. 3. A projectile is fired

More information

4.5 Conservative Forces

4.5 Conservative Forces 4 CONSERVATION LAWS 4.5 Conservative Forces Name: 4.5 Conservative Forces In the last activity, you looked at the case of a block sliding down a curved plane, and determined the work done by gravity as

More information

Chapter 4: Linear Relations

Chapter 4: Linear Relations Chapter 4: Linear Relations How many people can sit around 1 table? If you put two tables together, how many will the new arrangement seat? What if there are 10 tables? What if there are 378 tables in

More information

Worksheet: Transformations of Quadratic Functions

Worksheet: Transformations of Quadratic Functions Worksheet: Transformations of Quadratic Functions Multiple Choice Identif the choice that best completes the statement or answers the question.. Which correctl identifies the values of the parameters a,

More information

Unit Lesson Plan: Measuring Length and Area: Area of shapes

Unit Lesson Plan: Measuring Length and Area: Area of shapes Unit Lesson Plan: Measuring Length and Area: Area of shapes Day 1: Area of Square, Rectangles, and Parallelograms Day 2: Area of Triangles Trapezoids, Rhombuses, and Kites Day 3: Quiz over Area of those

More information