REAL-TIME DIGITAL SIGNAL PROCESSING

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "REAL-TIME DIGITAL SIGNAL PROCESSING"

Transcription

1 REAL-TIME DIGITAL SIGNAL PROCESSING FUNDAMENTALS, IMPLEMENTATIONS AND APPLICATIONS Third Edition Sen M. Kuo Northern Illinois University, USA Bob H. Lee Ittiam Systems, Inc., USA Wenshun Tian Sonus Networks, Inc., USA Wiley

2 vi Contents 2.2 System Concepts LTI Systems The z-transform Transfer Functions Poles and Zeros Frequency Responses Discrete Fourier Transform Introduction to Random Variables Review of Random Variables Operations of Random Variables Fixed-Point Representations and Quantization Effects Fixed-Point Formats Quantization Errors Signal Quantization Coefficient Quantization Roundoff Noise Fixed-Point Toolbox Overflow and Solutions Saturation Arithmetic Overflow Handling Scaling of Signals Guard Bits Experiments and Program Examples Overflow and Saturation Arithmetic Function Approximations Real-Time Signal Generation Using ezdsp 94 Exercises 99 References 101 Design and Implementation of FIR Filters Introduction to FIR Filters Filter Characteristics Filter Types Filter Specifications Linear Phase FIR Filters Realization of FIR Filters Design of FIR Filters Fourier Series Method Gibbs Phenomenon Window Functions Design of FIR Filters Using MATLAB Design of FIR Filters Using the FDATool Implementation Considerations Quantization Effects in FIR Filters MATLAB Implementations Floating-Point C Implementations Fixed-Point C Implementations 129

3 vii 3.4 Applications: Interpolation and Decimation Filters Interpolation Decimation Sampling Rate Conversion MATLAB Implementations Experiments and Program Examples FIR Filtering Using Fixed-Point C FIR Filtering Using C55xx Assembly Program Symmetric FIR Filtering Using C55xx Assembly Program Optimization Using Dual-MAC Architecture Real-Time FIR Filtering Decimation Using C and Assembly Programs Interpolation Using Fixed-Point C Sampling Rate Conversion Real-Time Sampling Rate Conversion 143 Exercises 144 References Design and Implementation of IIR Filters Introduction Analog Systems Mapping Properties Characteristics of Analog Filters Frequency Transforms Design of IIR Filters Bilinear Transform Filter Design Using the Bilinear Transform Realization of HR Filters Direct Forms Cascade Realizations Parallel Realizations Realization of IIR Filters Using MATLAB Design of IIR Filters Using MATLAB Filter Design Using MATLAB Frequency Transforms Using MATLAB Filter Design and Realization Using the FDATool Implementation Considerations Stability Finite-Precision Effects and Solutions MATLAB Implementations of IIR Filters Practical Applications Recursive Resonators Recursive Quadrature Oscillators Parametric Equalizers Experiments and Program Examples Direct-Form I IIR Filter Using Floating-Point C 179

4 viii Contents Direct-Form II1R Filter Using Fixed-Point C Cascade IIR Filter Using Fixed-Point C Cascade IIR Filter Using Intrinsics Cascade IIR Filter Using Assembly Program Real-Time IIR Filtering Parametric Equalizer Using Fixed-Point C Real-Time Parametric Equalizer 190 Exercises 191 References 194 Frequency Analysis and the Discrete Fourier Transform Fourier Series and Fourier Transform Fourier Series Fourier Transform Discrete Fourier Transform Discrete-Time Fourier Transform Discrete Fourier Transform Important Properties Fast Fourier Transforms Decimation-in-Time Decimation-in-Frequency Inverse Fast Fourier Transform Implementation Considerations Computational Issues Finite-Precision Effects MATLAB -' Implementations Fixed-Point Implementation Using MATLAB" Practical1 Applications Spectral Analysis Spectral Leakage and Resolution Power Spectral Density Convolution Experiments and Program Examples DFT Using Floating-Point C DFT Using the C55xx Assembly Program FFT Using Floating-Point C FFT Using Fixed-Point C with Intrinsics Experiment with the FFT and IFFT FFT Using the C55xx Hardware Accelerator Real-Time FFT Using the C55xx Hardware Accelerator Fast Convolution Using the Overlap-Add Technique Real-Time Fast Convolution 235 Exercises 236 References 238

5 ix Adaptive Filtering Introduction to Random Processes Adaptive Filters Introduction to Adaptive Filtering Performance Function Method of Steepest Descent LMS Algorithm Modified LMS Algorithms Performance Analysis Stability Constraint Convergence Speed Excess Mean-Square Error Normalized LMS Algorithm Implementation Considerations Computational Issues Finite-Precision Effects MATLAB- Implementations Practical[ Applications Adaptive System Identification Adaptive Prediction Adaptive Noise Cancellation Adaptive Inverse Modeling Experiments and Program Examples LMS Algorithm Using Floating-Point C Leaky LMS Algorithm Using Fixed-Point C Normalized LMS Algorithm Using Fixed-Point C and Intrinsics Delayed LMS Algorithm Using Assembly Program Experiment of Adaptive System Identification Experiment of Adaptive Predictor Experiment ofadaptive Channel Equalizer Real-Time Adaptive Prediction Using ezdsp 279 Exercises 280 References 282 Digital Signal Generation and Detection Sine Wave Generators Lookup Table Method Linear Chirp Signal Noise Generators Linear Congruential Sequence Generator Pseudo-random Binary Sequence Generator White, Color, and Gaussian Noise DTMF Generation and Detection DTMF Generator DTMF Detection 292

6 X Contents 7.4 Experiments and Program Examples Sine Wave Generator Using Table Lookup Siren Generator Using Table Lookup DTMF Generator DTMF Detection Using Fixed-Point C DTMF Detection Using Assembly Program 301 Exercises 302 References Adaptive Echo Cancellation Introduction to Line Echoes Adaptive Line Echo Canceler Principles of Adaptive Echo Cancellation Performance Evaluation Practical Considerations Pre-whitening of Signals Delay Estimation Double-Talk Effects and Solutions Nonlinear Processor Center Clipper Comfort Noise Adaptive Acoustic Echo Cancellation Acoustic Echoes Acoustic Echo Canceler Subband Implementations Delay-Free Structures ' Integration of Acoustic Echo Cancellation with Noise Reduction Implementation Considerations Experiments and Program Examples Acoustic Echo Canceler Using Floating-Point C Acoustic Echo Canceler Using Fixed-Point C with Intrinsics Integration ofaec and Noise Reduction 326 Exercises 328 References Speech Signal Processing Speech Coding Techniques Speech Production Model Using LPC CELP Coding Synthesis Filter Excitation Signals Perceptual Based Minimization Procedure Voice Activity Detection ACELP Codecs Speech Enhancement Noise Reduction Techniques 350

7 xi Short-Time Spectrum Estimation Magnitude Spectrum Subtraction VoIP Applications Overview of VoIP Discontinuous Transmission Packet Loss Concealment Quality Factors of Media Stream Experiments and Program Examples LPC Filter Using Fixed-Point C with Intrinsics Perceptual Weighting Filter Using Fixed-Point C with Intrinsics VAD Using Floating-Point C VAD Using Fixed-Point C Speech Encoder with Discontinuous Transmission Speech Decoder with CNG Spectral Subtraction Using Floating-Point C G Using Fixed-Point C G.711 Companding Using Fixed-Point C Real-Time G.711 Audio Loopback 373 Exercises 374 References Audio Signal Processing Introduction Audio Coding Basic Principles Frequency-Domain Coding Lossless Audio Coding Overview of MP Audio Equalizers Graphic Equalizers Parametric Equalizers Audio Effects Sound Reverberation Time Stretch and Pitch Shift Modulated and Mixed Sounds Spatial Sounds Experiments and Program Examples MDCT Using Floating-Point C MDCT Using Fixed-Point C and Intrinsics Pre-echo Effects MP3 Decoding Using Floating-Point C Real-Time Parametric Equalizer Using ezdsp Flanger Effects Real-Time Flanger Effects Using ezdsp Tremolo Effects Real-Time Tremolo Effects Using ezdsp 425

8 Spatial Sound Effects Real-Time Spatial Effects Using ezdsp 426 Exercises 427 References 428 ' 11 Introduction to Digital Image Processing Digital Images and Systems Digital Images Digital Image Systems Color Spaces YCbCr Sub-sampled Color Space Color Balance and Correction Color Balance Color Correction Gamma Correction Histogram Equalization Image Filtering Fast Convolution Practical Applications DCTand JPEG Two-Dimensional DCT Fingerprint Discrete Wavelet Transform Experiments and Program Examples YCbCr to RGB Conversion White Balance Gamma Correction and Contrast Adjustment Image Filtering A DCT and IDCT Image Processing for Fingerprints The 2-D Wavelet Transform 470 Exercises 474 References 475 Appendix A Some Useful Formulas and Definitions 477 A.l Trigonometric Identities 477 A.2 Geometric Series 478 A.3 Complex Variables 479 A.4 Units of Power 480 References 483 Appendix B Software Organization and List of Experiments 484 Appendix C Introduction to the TMS320C55xx Digital Signal Processor 490 C.l Introduction 490 C.2 TMS320C55xx Architecture 490

9 xiii C.2.1 Architecture Overview 490 C.2.2 On-Chip Memories 494 C.2.3 Memory-Mapped Registers 495 C.2.4 Interrupts and Interrupt Vector 498 C.3 TMS320C55xx Addressing Modes 498 C.3.1 Direct Addressing Modes 501 C.3.2 Indirect Addressing Modes 502 C.3.3 Absolute Addressing Modes 505 C.3.4 MMR Addressing Mode 505 C.3.5 Register Bits Addressing Mode 506 C.3.6 Circular Addressing Mode 507 C.4 TMS320C55xx Assembly Language Programming 508 C.4.1 Arithmetic Instructions 508 C.4.2 Logic and Bit Manipulation Instructions 509 C.4.3 Move Instruction 509 C.4.4 Program Flow Control Instructions 510 C.4.5 Parallel Execution 514 C.4.6 Assembly Directives 516 C.4.7 Assembly Statement Syntax 518 C.5 C Programming for TMS320C55xx 520 C.5.I Data Types 520 C.5.2 Assembly Code Generation by C Compiler 520 C.5.3 Compiler Keywords and Pragma Directives 522 C.6 Mixed C and Assembly Programming 525 C.7 Experiments and Program Examples 529 C.7.1 Examples 529 C.7.2 Assembly Program 530 C.7.3 Multiplication 530 C.7.4 Loops 531 C.7.5 Modulo Operator 532 C.7.6 Use Mixed C and Assembly Programs 533 C.7.7 Working with AIC C.7.8 Analog Input and Output 534 References 535 Index 537

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 13 Audio Signal Processing 14/04/01 http://www.ee.unlv.edu/~b1morris/ee482/

More information

MULTIDIMENSIONAL SIGNAL, IMAGE, AND VIDEO PROCESSING AND CODING

MULTIDIMENSIONAL SIGNAL, IMAGE, AND VIDEO PROCESSING AND CODING MULTIDIMENSIONAL SIGNAL, IMAGE, AND VIDEO PROCESSING AND CODING JOHN W. WOODS Rensselaer Polytechnic Institute Troy, New York»iBllfllfiii.. i. ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD

More information

1 Audio quality determination based on perceptual measurement techniques 1 John G. Beerends

1 Audio quality determination based on perceptual measurement techniques 1 John G. Beerends Contents List of Figures List of Tables Contributing Authors xiii xxi xxiii Introduction Karlheinz Brandenburg and Mark Kahrs xxix 1 Audio quality determination based on perceptual measurement techniques

More information

All MSEE students are required to take the following two core courses: Linear systems Probability and Random Processes

All MSEE students are required to take the following two core courses: Linear systems Probability and Random Processes MSEE Curriculum All MSEE students are required to take the following two core courses: 3531-571 Linear systems 3531-507 Probability and Random Processes The course requirements for students majoring in

More information

Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming Nasser Kehtarnavaz

Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming Nasser Kehtarnavaz Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming Nasser Kehtarnavaz Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming by Nasser Kehtarnavaz University

More information

Adaptive Filtering using Steepest Descent and LMS Algorithm

Adaptive Filtering using Steepest Descent and LMS Algorithm IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 4 October 2015 ISSN (online): 2349-784X Adaptive Filtering using Steepest Descent and LMS Algorithm Akash Sawant Mukesh

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Third Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive PEARSON Prentice Hall Pearson Education International Contents Preface xv Acknowledgments

More information

MPEG-l.MPEG-2, MPEG-4

MPEG-l.MPEG-2, MPEG-4 The MPEG Handbook MPEG-l.MPEG-2, MPEG-4 Second edition John Watkinson PT ^PVTPR AMSTERDAM BOSTON HEIDELBERG LONDON. NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Focal Press is an

More information

Perceptual Coding. Lossless vs. lossy compression Perceptual models Selecting info to eliminate Quantization and entropy encoding

Perceptual Coding. Lossless vs. lossy compression Perceptual models Selecting info to eliminate Quantization and entropy encoding Perceptual Coding Lossless vs. lossy compression Perceptual models Selecting info to eliminate Quantization and entropy encoding Part II wrap up 6.082 Fall 2006 Perceptual Coding, Slide 1 Lossless vs.

More information

2.4 Audio Compression

2.4 Audio Compression 2.4 Audio Compression 2.4.1 Pulse Code Modulation Audio signals are analog waves. The acoustic perception is determined by the frequency (pitch) and the amplitude (loudness). For storage, processing and

More information

Image Transformation Techniques Dr. Rajeev Srivastava Dept. of Computer Engineering, ITBHU, Varanasi

Image Transformation Techniques Dr. Rajeev Srivastava Dept. of Computer Engineering, ITBHU, Varanasi Image Transformation Techniques Dr. Rajeev Srivastava Dept. of Computer Engineering, ITBHU, Varanasi 1. Introduction The choice of a particular transform in a given application depends on the amount of

More information

DSP Applications Using C and the TMS320C6x DSK

DSP Applications Using C and the TMS320C6x DSK DSP Applications Using C and the TMS320C6x DSK DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing Copyright 2002 John Wiley & Sons, Inc. ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

More information

Adaptive System Identification and Signal Processing Algorithms

Adaptive System Identification and Signal Processing Algorithms Adaptive System Identification and Signal Processing Algorithms edited by N. Kalouptsidis University of Athens S. Theodoridis University of Patras Prentice Hall New York London Toronto Sydney Tokyo Singapore

More information

Lecture 5: Compression I. This Week s Schedule

Lecture 5: Compression I. This Week s Schedule Lecture 5: Compression I Reading: book chapter 6, section 3 &5 chapter 7, section 1, 2, 3, 4, 8 Today: This Week s Schedule The concept behind compression Rate distortion theory Image compression via DCT

More information

Audio Coding and MP3

Audio Coding and MP3 Audio Coding and MP3 contributions by: Torbjørn Ekman What is Sound? Sound waves: 20Hz - 20kHz Speed: 331.3 m/s (air) Wavelength: 165 cm - 1.65 cm 1 Analogue audio frequencies: 20Hz - 20kHz mono: x(t)

More information

CS 335 Graphics and Multimedia. Image Compression

CS 335 Graphics and Multimedia. Image Compression CS 335 Graphics and Multimedia Image Compression CCITT Image Storage and Compression Group 3: Huffman-type encoding for binary (bilevel) data: FAX Group 4: Entropy encoding without error checks of group

More information

Storage I/O Summary. Lecture 16: Multimedia and DSP Architectures

Storage I/O Summary. Lecture 16: Multimedia and DSP Architectures Storage I/O Summary Storage devices Storage I/O Performance Measures» Throughput» Response time I/O Benchmarks» Scaling to track technological change» Throughput with restricted response time is normal

More information

The VC-1 and H.264 Video Compression Standards for Broadband Video Services

The VC-1 and H.264 Video Compression Standards for Broadband Video Services The VC-1 and H.264 Video Compression Standards for Broadband Video Services by Jae-Beom Lee Sarnoff Corporation USA Hari Kalva Florida Atlantic University USA 4y Sprin ger Contents PREFACE ACKNOWLEDGEMENTS

More information

EQUALIZER DESIGN FOR SHAPING THE FREQUENCY CHARACTERISTICS OF DIGITAL VOICE SIGNALS IN IP TELEPHONY. Manpreet Kaur Gakhal

EQUALIZER DESIGN FOR SHAPING THE FREQUENCY CHARACTERISTICS OF DIGITAL VOICE SIGNALS IN IP TELEPHONY. Manpreet Kaur Gakhal EQUALIZER DESIGN FOR SHAPING THE FREQUENCY CHARACTERISTICS OF DIGITAL VOICE SIGNALS IN IP TELEPHONY By: Manpreet Kaur Gakhal A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

More information

Digital Speech Coding

Digital Speech Coding Digital Speech Processing David Tipper Associate Professor Graduate Program of Telecommunications and Networking University of Pittsburgh Telcom 2700/INFSCI 1072 Slides 7 http://www.sis.pitt.edu/~dtipper/tipper.html

More information

Parametric Coding of High-Quality Audio

Parametric Coding of High-Quality Audio Parametric Coding of High-Quality Audio Prof. Dr. Gerald Schuller Fraunhofer IDMT & Ilmenau Technical University Ilmenau, Germany 1 Waveform vs Parametric Waveform Filter-bank approach Mainly exploits

More information

Compressed Audio Demystified by Hendrik Gideonse and Connor Smith. All Rights Reserved.

Compressed Audio Demystified by Hendrik Gideonse and Connor Smith. All Rights Reserved. Compressed Audio Demystified Why Music Producers Need to Care About Compressed Audio Files Download Sales Up CD Sales Down High-Definition hasn t caught on yet Consumers don t seem to care about high fidelity

More information

A DSP Systems Design Course based on TI s C6000 Family of DSPs

A DSP Systems Design Course based on TI s C6000 Family of DSPs A DSP Systems Design Course based on TI s C6000 Family of DSPs Evangelos Zigouris, Athanasios Kalantzopoulos and Evangelos Vassalos Electronics Lab., Electronics and Computers Div., Department of Physics,

More information

The Steganography In Inactive Frames Of Voip

The Steganography In Inactive Frames Of Voip The Steganography In Inactive Frames Of Voip This paper describes a novel high-capacity steganography algorithm for embedding data in the inactive frames of low bit rate audio streams encoded by G.723.1

More information

VoIP Forgery Detection

VoIP Forgery Detection VoIP Forgery Detection Satish Tummala, Yanxin Liu and Qingzhong Liu Department of Computer Science Sam Houston State University Huntsville, TX, USA Emails: sct137@shsu.edu; yanxin@shsu.edu; liu@shsu.edu

More information

System Identification Related Problems at SMN

System Identification Related Problems at SMN Ericsson research SeRvices, MulTimedia and Networks System Identification Related Problems at SMN Erlendur Karlsson SysId Related Problems @ ER/SMN Ericsson External 2015-04-28 Page 1 Outline Research

More information

Figure 1. Generic Encoder. Window. Spectral Analysis. Psychoacoustic Model. Quantize. Pack Data into Frames. Additional Coding.

Figure 1. Generic Encoder. Window. Spectral Analysis. Psychoacoustic Model. Quantize. Pack Data into Frames. Additional Coding. Introduction to Digital Audio Compression B. Cavagnolo and J. Bier Berkeley Design Technology, Inc. 2107 Dwight Way, Second Floor Berkeley, CA 94704 (510) 665-1600 info@bdti.com http://www.bdti.com INTRODUCTION

More information

Redundant Data Elimination for Image Compression and Internet Transmission using MATLAB

Redundant Data Elimination for Image Compression and Internet Transmission using MATLAB Redundant Data Elimination for Image Compression and Internet Transmission using MATLAB R. Challoo, I.P. Thota, and L. Challoo Texas A&M University-Kingsville Kingsville, Texas 78363-8202, U.S.A. ABSTRACT

More information

Video Codec Design Developing Image and Video Compression Systems

Video Codec Design Developing Image and Video Compression Systems Video Codec Design Developing Image and Video Compression Systems Iain E. G. Richardson The Robert Gordon University, Aberdeen, UK JOHN WILEY & SONS, LTD Contents 1 Introduction l 1.1 Image and Video Compression

More information

Compression Part 2 Lossy Image Compression (JPEG) Norm Zeck

Compression Part 2 Lossy Image Compression (JPEG) Norm Zeck Compression Part 2 Lossy Image Compression (JPEG) General Compression Design Elements 2 Application Application Model Encoder Model Decoder Compression Decompression Models observe that the sensors (image

More information

Source Coding Basics and Speech Coding. Yao Wang Polytechnic University, Brooklyn, NY11201

Source Coding Basics and Speech Coding. Yao Wang Polytechnic University, Brooklyn, NY11201 Source Coding Basics and Speech Coding Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Why do we need to compress speech signals Basic components in a source coding

More information

The MPEG-4 General Audio Coder

The MPEG-4 General Audio Coder The MPEG-4 General Audio Coder Bernhard Grill Fraunhofer Institute for Integrated Circuits (IIS) grl 6/98 page 1 Outline MPEG-2 Advanced Audio Coding (AAC) MPEG-4 Extensions: Perceptual Noise Substitution

More information

ISO/IEC INTERNATIONAL STANDARD. Information technology MPEG audio technologies Part 3: Unified speech and audio coding

ISO/IEC INTERNATIONAL STANDARD. Information technology MPEG audio technologies Part 3: Unified speech and audio coding INTERNATIONAL STANDARD This is a preview - click here to buy the full publication ISO/IEC 23003-3 First edition 2012-04-01 Information technology MPEG audio technologies Part 3: Unified speech and audio

More information

Wavelet filter bank based wide-band audio coder

Wavelet filter bank based wide-band audio coder Wavelet filter bank based wide-band audio coder J. Nováček Czech Technical University, Faculty of Electrical Engineering, Technicka 2, 16627 Prague, Czech Republic novacj1@fel.cvut.cz 3317 New system for

More information

AVR32765: AVR32 DSPLib Reference Manual. 32-bit Microcontrollers. Application Note. 1 Introduction. 2 Reference

AVR32765: AVR32 DSPLib Reference Manual. 32-bit Microcontrollers. Application Note. 1 Introduction. 2 Reference AVR32765: AVR32 DSPLib Reference Manual 1 Introduction The AVR 32 DSP Library is a compilation of digital signal processing functions. All function availables in the DSP Library, from the AVR32 Software

More information

GSM Network and Services

GSM Network and Services GSM Network and Services Voice coding 1 From voice to radio waves voice/source coding channel coding block coding convolutional coding interleaving encryption burst building modulation diff encoding symbol

More information

Statistical Image Compression using Fast Fourier Coefficients

Statistical Image Compression using Fast Fourier Coefficients Statistical Image Compression using Fast Fourier Coefficients M. Kanaka Reddy Research Scholar Dept.of Statistics Osmania University Hyderabad-500007 V. V. Haragopal Professor Dept.of Statistics Osmania

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Dynamic Range and Weber s Law HVS is capable of operating over an enormous dynamic range, However, sensitivity is far from uniform over this range Example:

More information

Performance Analysis of Line Echo Cancellation Implementation Using TMS320C6201

Performance Analysis of Line Echo Cancellation Implementation Using TMS320C6201 Performance Analysis of Line Echo Cancellation Implementation Using TMS320C6201 Application Report: SPRA421 Zhaohong Zhang and Gunter Schmer Digital Signal Processing Solutions March 1998 IMPORTANT NOTICE

More information

Audio and video compression

Audio and video compression Audio and video compression 4.1 introduction Unlike text and images, both audio and most video signals are continuously varying analog signals. Compression algorithms associated with digitized audio and

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Using MATLAB Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive Steven L. Eddins The MathWorks, Inc. Upper Saddle River, NJ 07458 Library of Congress

More information

Digital Signal Processing Lecture Notes 22 November 2010

Digital Signal Processing Lecture Notes 22 November 2010 Digital Signal Processing Lecture otes 22 ovember 2 Topics: Discrete Cosine Transform FFT Linear and Circular Convolution Rate Conversion Includes review of Fourier transforms, properties of Fourier transforms,

More information

Hardware Implementation for the Echo Canceller System based Subband Technique using TMS320C6713 DSP Kit

Hardware Implementation for the Echo Canceller System based Subband Technique using TMS320C6713 DSP Kit Hardware Implementation for the Echo Canceller System based Subband Technique using TMS3C6713 DSP Kit Mahmod. A. Al Zubaidy Ninevah University Mosul, Iraq Sura Z. Thanoon (MSE student) School of Electronics

More information

JNTUWORLD. 4. Prove that the average value of laplacian of the equation 2 h = ((r2 σ 2 )/σ 4 ))exp( r 2 /2σ 2 ) is zero. [16]

JNTUWORLD. 4. Prove that the average value of laplacian of the equation 2 h = ((r2 σ 2 )/σ 4 ))exp( r 2 /2σ 2 ) is zero. [16] Code No: 07A70401 R07 Set No. 2 1. (a) What are the basic properties of frequency domain with respect to the image processing. (b) Define the terms: i. Impulse function of strength a ii. Impulse function

More information

Chapter 14 MPEG Audio Compression

Chapter 14 MPEG Audio Compression Chapter 14 MPEG Audio Compression 14.1 Psychoacoustics 14.2 MPEG Audio 14.3 Other Commercial Audio Codecs 14.4 The Future: MPEG-7 and MPEG-21 14.5 Further Exploration 1 Li & Drew c Prentice Hall 2003 14.1

More information

Rapid Prototyping System for Teaching Real-Time Digital Signal Processing

Rapid Prototyping System for Teaching Real-Time Digital Signal Processing IEEE TRANSACTIONS ON EDUCATION, VOL. 43, NO. 1, FEBRUARY 2000 19 Rapid Prototyping System for Teaching Real-Time Digital Signal Processing Woon-Seng Gan, Member, IEEE, Yong-Kim Chong, Wilson Gong, and

More information

CONTACT: ,

CONTACT: , S.N0 Project Title Year of publication of IEEE base paper 1 Design of a high security Sha-3 keccak algorithm 2012 2 Error correcting unordered codes for asynchronous communication 2012 3 Low power multipliers

More information

AN10913 DSP library for LPC1700 and LPC1300

AN10913 DSP library for LPC1700 and LPC1300 Rev. 3 11 June 2010 Application note Document information Info Content Keywords LPC1700, LPC1300, DSP library Abstract This application note describes how to use the DSP library with the LPC1700 and LPC1300

More information

Data Representation and Networking

Data Representation and Networking Data Representation and Networking Instructor: Dmitri A. Gusev Spring 2007 CSC 120.02: Introduction to Computer Science Lecture 3, January 30, 2007 Data Representation Topics Covered in Lecture 2 (recap+)

More information

CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING. domain. In spatial domain the watermark bits directly added to the pixels of the cover

CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING. domain. In spatial domain the watermark bits directly added to the pixels of the cover 38 CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING Digital image watermarking can be done in both spatial domain and transform domain. In spatial domain the watermark bits directly added to the pixels of the

More information

COMPARISONS OF DCT-BASED AND DWT-BASED WATERMARKING TECHNIQUES

COMPARISONS OF DCT-BASED AND DWT-BASED WATERMARKING TECHNIQUES COMPARISONS OF DCT-BASED AND DWT-BASED WATERMARKING TECHNIQUES H. I. Saleh 1, M. E. Elhadedy 2, M. A. Ashour 1, M. A. Aboelsaud 3 1 Radiation Engineering Dept., NCRRT, AEA, Egypt. 2 Reactor Dept., NRC,

More information

Topic 5 Image Compression

Topic 5 Image Compression Topic 5 Image Compression Introduction Data Compression: The process of reducing the amount of data required to represent a given quantity of information. Purpose of Image Compression: the reduction of

More information

Image Processing Tricks in OpenGL. Simon Green NVIDIA Corporation

Image Processing Tricks in OpenGL. Simon Green NVIDIA Corporation Image Processing Tricks in OpenGL Simon Green NVIDIA Corporation Overview Image Processing in Games Histograms Recursive filters JPEG Discrete Cosine Transform Image Processing in Games Image processing

More information

A Parallel Reconfigurable Architecture for DCT of Lengths N=32/16/8

A Parallel Reconfigurable Architecture for DCT of Lengths N=32/16/8 Page20 A Parallel Reconfigurable Architecture for DCT of Lengths N=32/16/8 ABSTRACT: Parthiban K G* & Sabin.A.B ** * Professor, M.P. Nachimuthu M. Jaganathan Engineering College, Erode, India ** PG Scholar,

More information

Analytical Approach for Numerical Accuracy Estimation of Fixed-Point Systems Based on Smooth Operations

Analytical Approach for Numerical Accuracy Estimation of Fixed-Point Systems Based on Smooth Operations 2326 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL 59, NO 10, OCTOBER 2012 Analytical Approach for Numerical Accuracy Estimation of Fixed-Point Systems Based on Smooth Operations Romuald

More information

A framework for automatic generation of audio processing applications on a dual-core system

A framework for automatic generation of audio processing applications on a dual-core system A framework for automatic generation of audio processing applications on a dual-core system Etienne Cornu, Tina Soltani and Julie Johnson etienne_cornu@amis.com, tina_soltani@amis.com, julie_johnson@amis.com

More information

4.1 QUANTIZATION NOISE

4.1 QUANTIZATION NOISE DIGITAL SIGNAL PROCESSING UNIT IV FINITE WORD LENGTH EFFECTS Contents : 4.1 Quantization Noise 4.2 Fixed Point and Floating Point Number Representation 4.3 Truncation and Rounding 4.4 Quantization Noise

More information

( ) ; For N=1: g 1. g n

( ) ; For N=1: g 1. g n L. Yaroslavsky Course 51.7211 Digital Image Processing: Applications Lect. 4. Principles of signal and image coding. General principles General digitization. Epsilon-entropy (rate distortion function).

More information

Intel s MMX. Why MMX?

Intel s MMX. Why MMX? Intel s MMX Dr. Richard Enbody CSE 820 Why MMX? Make the Common Case Fast Multimedia and Communication consume significant computing resources. Providing specific hardware support makes sense. 1 Goals

More information

Lecture 6: Compression II. This Week s Schedule

Lecture 6: Compression II. This Week s Schedule Lecture 6: Compression II Reading: book chapter 8, Section 1, 2, 3, 4 Monday This Week s Schedule The concept behind compression Rate distortion theory Image compression via DCT Today Speech compression

More information

Audio Processing on ARM Cortex -M4 for Automotive Applications

Audio Processing on ARM Cortex -M4 for Automotive Applications Audio Processing on ARM Cortex -M4 for Automotive Applications Introduction By Pradeep D, Ittiam Systems Pvt. Ltd. Automotive infotainment systems have become an integral part of the in-car experience.

More information

A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm

A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm International Journal of Engineering Research and General Science Volume 3, Issue 4, July-August, 15 ISSN 91-2730 A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm

More information

PROBLEM SOLVING WITH FORTRAN 90

PROBLEM SOLVING WITH FORTRAN 90 David R. Brooks PROBLEM SOLVING WITH FORTRAN 90 FOR SCIENTISTS AND ENGINEERS Springer Contents Preface v 1.1 Overview for Instructors v 1.1.1 The Case for Fortran 90 vi 1.1.2 Structure of the Text vii

More information

Comparison of Digital Image Watermarking Algorithms. Xu Zhou Colorado School of Mines December 1, 2014

Comparison of Digital Image Watermarking Algorithms. Xu Zhou Colorado School of Mines December 1, 2014 Comparison of Digital Image Watermarking Algorithms Xu Zhou Colorado School of Mines December 1, 2014 Outlier Introduction Background on digital image watermarking Comparison of several algorithms Experimental

More information

Real Time Implementation of TETRA Speech Codec on TMS320C54x

Real Time Implementation of TETRA Speech Codec on TMS320C54x Real Time Implementation of TETRA Speech Codec on TMS320C54x B. Sheetal Kiran, Devendra Jalihal, R. Aravind Department of Electrical Engineering, Indian Institute of Technology Madras Chennai 600 036 {sheetal,

More information

Laboratory Exercise #5

Laboratory Exercise #5 ECEN4002/5002 Spring 2003 Digital Signal Processing Laboratory Laboratory Exercise #5 Signal Synthesis Introduction Up to this point we have been developing and implementing signal processing algorithms:

More information

IMAGE COMPRESSION. Image Compression. Why? Reducing transportation times Reducing file size. A two way event - compression and decompression

IMAGE COMPRESSION. Image Compression. Why? Reducing transportation times Reducing file size. A two way event - compression and decompression IMAGE COMPRESSION Image Compression Why? Reducing transportation times Reducing file size A two way event - compression and decompression 1 Compression categories Compression = Image coding Still-image

More information

TeleBench 1.1. software benchmark data book.

TeleBench 1.1. software benchmark data book. TeleBench 1.1 software benchmark data book Table of Contents Autocorrelation...2 Bit Allocation...4 Convolutional Encoder...6 Fast Fourier Transform (FFT)...8 Viterbi Decoder... 11 1 TeleBench Version

More information

Fixed Point LMS Adaptive Filter with Low Adaptation Delay

Fixed Point LMS Adaptive Filter with Low Adaptation Delay Fixed Point LMS Adaptive Filter with Low Adaptation Delay INGUDAM CHITRASEN MEITEI Electronics and Communication Engineering Vel Tech Multitech Dr RR Dr SR Engg. College Chennai, India MR. P. BALAVENKATESHWARLU

More information

DIGITAL IMAGE PROCESSING WRITTEN REPORT ADAPTIVE IMAGE COMPRESSION TECHNIQUES FOR WIRELESS MULTIMEDIA APPLICATIONS

DIGITAL IMAGE PROCESSING WRITTEN REPORT ADAPTIVE IMAGE COMPRESSION TECHNIQUES FOR WIRELESS MULTIMEDIA APPLICATIONS DIGITAL IMAGE PROCESSING WRITTEN REPORT ADAPTIVE IMAGE COMPRESSION TECHNIQUES FOR WIRELESS MULTIMEDIA APPLICATIONS SUBMITTED BY: NAVEEN MATHEW FRANCIS #105249595 INTRODUCTION The advent of new technologies

More information

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC Advanced Mathematics and Mechanics Applications Using MATLAB Third Edition Howard B. Wilson University of Alabama Louis H. Turcotte Rose-Hulman Institute of Technology David Halpern University of Alabama

More information

Yves Nievergelt. Wavelets Made Easy. Springer Science+Business Media, LLC

Yves Nievergelt. Wavelets Made Easy. Springer Science+Business Media, LLC Wavelets Made Easy Yves Nievergelt Wavelets Made Easy Springer Science+Business Media, LLC Yves Nievergelt Department of Mathematics Eastem Washington University Cheney, WA 99004-2431 USA Library of Congress

More information

QR Code Watermarking Algorithm based on Wavelet Transform

QR Code Watermarking Algorithm based on Wavelet Transform 2013 13th International Symposium on Communications and Information Technologies (ISCIT) QR Code Watermarking Algorithm based on Wavelet Transform Jantana Panyavaraporn 1, Paramate Horkaew 2, Wannaree

More information

Representation of Numbers and Arithmetic in Signal Processors

Representation of Numbers and Arithmetic in Signal Processors Representation of Numbers and Arithmetic in Signal Processors 1. General facts Without having any information regarding the used consensus for representing binary numbers in a computer, no exact value

More information

An introduction to Digital Signal Processors (DSP) Using the C55xx family

An introduction to Digital Signal Processors (DSP) Using the C55xx family An introduction to Digital Signal Processors (DSP) Using the C55xx family Group status (~2 minutes each) 5 groups stand up What processor(s) you are using Wireless? If so, what technologies/chips are you

More information

Video Compression Method for On-Board Systems of Construction Robots

Video Compression Method for On-Board Systems of Construction Robots Video Compression Method for On-Board Systems of Construction Robots Andrei Petukhov, Michael Rachkov Moscow State Industrial University Department of Automatics, Informatics and Control Systems ul. Avtozavodskaya,

More information

15 Data Compression 2014/9/21. Objectives After studying this chapter, the student should be able to: 15-1 LOSSLESS COMPRESSION

15 Data Compression 2014/9/21. Objectives After studying this chapter, the student should be able to: 15-1 LOSSLESS COMPRESSION 15 Data Compression Data compression implies sending or storing a smaller number of bits. Although many methods are used for this purpose, in general these methods can be divided into two broad categories:

More information

Signal Processing and Computer Vision Using MATLAB and Simulink

Signal Processing and Computer Vision Using MATLAB and Simulink Signal Processing and Computer Vision Using MATLAB and Simulink Tabrez Khan Senior Application Engineer C O NFID E NTIAL 2014 The MathWorks, Inc. 1 Agenda Signal Processing & Measurement Workflow Demos

More information

DSP. Presented to the IEEE Central Texas Consultants Network by Sergio Liberman

DSP. Presented to the IEEE Central Texas Consultants Network by Sergio Liberman DSP The Technology Presented to the IEEE Central Texas Consultants Network by Sergio Liberman Abstract The multimedia products that we enjoy today share a common technology backbone: Digital Signal Processing

More information

Audio Compression Using DCT and DWT Techniques

Audio Compression Using DCT and DWT Techniques Audio Compression Using DCT and DWT Techniques Jithin James 1, Vinod J Thomas 2 1 PG Scholar, 2 Assistant Professor Department of Electronics and Communication Engineering Vimal Jyothi Engineering College

More information

Computer Arithmetic andveriloghdl Fundamentals

Computer Arithmetic andveriloghdl Fundamentals Computer Arithmetic andveriloghdl Fundamentals Joseph Cavanagh Santa Clara University California, USA ( r ec) CRC Press vf J TayiorS«. Francis Group ^"*" "^ Boca Raton London New York CRC Press is an imprint

More information

FPGA Based Digital Signal Processing Applications & Techniques. Nathan Eddy Fermilab BIW12 Tutorial

FPGA Based Digital Signal Processing Applications & Techniques. Nathan Eddy Fermilab BIW12 Tutorial FPGA Based Digital Signal Processing Applications & Techniques BIW12 Tutorial Outline Digital Signal Processing Basics Modern FPGA Overview Instrumentation Examples Advantages of Digital Signal Processing

More information

Mpeg 1 layer 3 (mp3) general overview

Mpeg 1 layer 3 (mp3) general overview Mpeg 1 layer 3 (mp3) general overview 1 Digital Audio! CD Audio:! 16 bit encoding! 2 Channels (Stereo)! 44.1 khz sampling rate 2 * 44.1 khz * 16 bits = 1.41 Mb/s + Overhead (synchronization, error correction,

More information

IMAGE COMPRESSION. Chapter - 5 : (Basic)

IMAGE COMPRESSION. Chapter - 5 : (Basic) Chapter - 5 : IMAGE COMPRESSION (Basic) Q() Explain the different types of redundncies that exists in image.? (8M May6 Comp) [8M, MAY 7, ETRX] A common characteristic of most images is that the neighboring

More information

Quo Vadis JPEG : Future of ISO /T.81

Quo Vadis JPEG : Future of ISO /T.81 Quo Vadis JPEG : Future of ISO 10918-1/T.81 10918/T.81 is still the dominant standard for photographic images An entire toolchain exists to record, manipulate and display images encoded in this specification

More information

Digital Signal Processor 2010/1/4

Digital Signal Processor 2010/1/4 Digital Signal Processor 1 Analog to Digital Shift 2 Digital Signal Processing Applications FAX Phone Personal Computer Medical Instruments DVD player Air conditioner (controller) Digital Camera MP3 audio

More information

ROW.mp3. Colin Raffel, Jieun Oh, Isaac Wang Music 422 Final Project 3/12/2010

ROW.mp3. Colin Raffel, Jieun Oh, Isaac Wang Music 422 Final Project 3/12/2010 ROW.mp3 Colin Raffel, Jieun Oh, Isaac Wang Music 422 Final Project 3/12/2010 Motivation The realities of mp3 widespread use low quality vs. bit rate when compared to modern codecs Vision for row-mp3 backwards

More information

SOME ASSEMBLY REQUIRED

SOME ASSEMBLY REQUIRED SOME ASSEMBLY REQUIRED Assembly Language Programming with the AVR Microcontroller TIMOTHY S. MARGUSH CRC Press Taylor & Francis Group CRC Press is an imprint of the Taylor & Francis Croup an Informa business

More information

Digital Signal Processing Introduction to Finite-Precision Numerical Effects

Digital Signal Processing Introduction to Finite-Precision Numerical Effects Digital Signal Processing Introduction to Finite-Precision Numerical Effects D. Richard Brown III D. Richard Brown III 1 / 9 Floating-Point vs. Fixed-Point DSP chips are generally divided into fixed-point

More information

Digital Design. Verilo. and. Fundamentals. fit HDL. Joseph Cavanagh. CRC Press Taylor & Francis Group Boca Raton London New York

Digital Design. Verilo. and. Fundamentals. fit HDL. Joseph Cavanagh. CRC Press Taylor & Francis Group Boca Raton London New York Digital Design and Verilo fit HDL Fundamentals Joseph Cavanagh Santa Clara University California, USA CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor &

More information

Experiment 3. Getting Start with Simulink

Experiment 3. Getting Start with Simulink Experiment 3 Getting Start with Simulink Objectives : By the end of this experiment, the student should be able to: 1. Build and simulate simple system model using Simulink 2. Use Simulink test and measurement

More information

Operators to calculate the derivative of digital signals

Operators to calculate the derivative of digital signals 9 th IMEKO TC 4 Symposium and 7 th IWADC Workshop July 8-9, 3, Barcelona, Spain Operators to calculate the derivative of digital signals Lluís Ferrer-Arnau, Juan Mon-Gonzalez, Vicenç Parisi-Baradad Departament

More information

WHILE most digital signal processing algorithms are

WHILE most digital signal processing algorithms are IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 11, NOVEMBER 1998 1455 Fixed-Point Optimization Utility for C and C Based Digital Signal Processing Programs

More information

xcore-200 DSP Library

xcore-200 DSP Library xcore-200 DSP Library This API reference manual describes the XMOS fixed-point digital signal processing software library. The library implements of a suite of common signal processing functions for use

More information

Invisible Watermarking Audio Digital with Discrete Cosine Transform

Invisible Watermarking Audio Digital with Discrete Cosine Transform 207 IJSRST Volume 3 Issue Print ISSN: 2395-60 Online ISSN: 2395-602X Themed Section: Science and Technology Invisible Watermarking Audio Digital with Discrete Cosine Transform Nurmaliana Pohan, Rusmin

More information

xv Programming for image analysis fundamental steps

xv  Programming for image analysis fundamental steps Programming for image analysis xv http://www.trilon.com/xv/ xv is an interactive image manipulation program for the X Window System grab Programs for: image ANALYSIS image processing tools for writing

More information

AC : INCORPORATING SYSTEM-LEVEL DESIGN TOOLS INTO UPPER-LEVEL DIGITAL DESIGN AND CAPSTONE COURSES

AC : INCORPORATING SYSTEM-LEVEL DESIGN TOOLS INTO UPPER-LEVEL DIGITAL DESIGN AND CAPSTONE COURSES AC 2007-2290: ICORPORATIG SYSTEM-LEVEL DESIG TOOLS ITO UPPER-LEVEL DIGITAL DESIG AD CAPSTOE COURSES Wagdy Mahmoud, University of the District of Columbia IEEE Senior Member American Society for Engineering

More information

VIII. DSP Processors. Digital Signal Processing 8 December 24, 2009

VIII. DSP Processors. Digital Signal Processing 8 December 24, 2009 Digital Signal Processing 8 December 24, 2009 VIII. DSP Processors 2007 Syllabus: Introduction to programmable DSPs: Multiplier and Multiplier-Accumulator (MAC), Modified bus structures and memory access

More information

Implementing Biquad IIR filters with the ASN Filter Designer and the ARM CMSIS DSP software framework

Implementing Biquad IIR filters with the ASN Filter Designer and the ARM CMSIS DSP software framework Implementing Biquad IIR filters with the ASN Filter Designer and the ARM CMSIS DSP software framework Application note (ASN-AN05) November 07 (Rev 4) SYNOPSIS Infinite impulse response (IIR) filters are

More information

DCT Based, Lossy Still Image Compression

DCT Based, Lossy Still Image Compression DCT Based, Lossy Still Image Compression NOT a JPEG artifact! Lenna, Playboy Nov. 1972 Lena Soderberg, Boston, 1997 Nimrod Peleg Update: April. 2009 http://www.lenna.org/ Image Compression: List of Topics

More information