Final Exam information

Size: px
Start display at page:

Download "Final Exam information"

Transcription

1 Fial Exam iformatio Wedesday, Jue 6, 2012, 9:30 am - 11:18 am Locatio: i recitatio room Comprehesive (covers all course material) 35 multiple-choice questios --> 175 poits Closed book ad otes Make up your ow equatio sheet (same rules as midterm)

2 26.2 Sell s Law ad the Refractio of Light Because light from the chest is refracted away from the ormal whe the light eters the air, the apparet depth of the image is less tha the actual depth. Simpler case -- look directly above the object. Apparet depth, observer directly above object & d' = d $ % 1 -- medium of object 2 -- medium of observer 2 1 #! "

3 26.2 Sell s Law ad the Refractio of Light Example. O the Iside Lookig Out A swimmer is uder water ad lookig up at the surface. Someoe holds a coi i the air, directly above the swimmer s eyes at a distace of 50 cm above the water. Fid the apparet height of the coi as see by the swimmer (assume = 1.33 for water). Use the equatio d' = & d $ % 2 1 #! " I this case, d will be the apparet height of the coi, d is the actual height above the water, 1 = 1.00 for air (object), ad 2 = 1.33 for water (the observer), d = (50)(1.33/1.00) = 66.5 cm è greater tha the actual height

4 26.2 Sell s Law ad the Refractio of Light THE DISPLACEMENT OF LIGHT BY A SLAB OF MATERIAL Whe a ray of light passes through a pae of glass that has parallel surfaces ad is surrouded by air, the emerget ray is parallel to the icidet ray, θ 3 = θ 1, but is displaced from it. 1 st iterface: 1 si θ 1 = 2 si θ 2 2 d iterface: 2 si θ 2 = 1 si θ 3 è 1 si θ 1 = 1 si θ 3 è θ 3 = θ 1

5 26.3 Total Iteral Reflectio Whe light passes from a medium of larger refractive idex ito oe of smaller refractive idex, the refracted ray beds away from the ormal. 1 si θ 1 = 2 si θ 2 siθ 2 c = > 1 Critical agle 1 2 For this water/air iterface: 1 si θ c = 2 si 90 o ê For θ 1 > θ c the ray is totally reflected si θ c = 1.00/1.33 = è θ c = 48.8 o

6 26.3 Total Iteral Reflectio Example. Total Iteral Reflectio A beam of light is propagatig through diamod ad strikes the diamod-air iterface at a agle of icidece of 28 degrees. (a) Will part of the beam eter the air or will there be total iteral reflectio? (b) Repeat part (a) assumig that the diamod is surrouded by water.

7 26.3 Total Iteral Reflectio Icidet agle i diamod = θ 1 = 28 o (a) Diamod i air: θ c = si 1 & $ % 2 1 #! " = si 1 & $ % #! " = 24.4 θ 1 > θ c è ray is totally reflected back ito the diamod (b) Diamod i water: θ c = si 1 & $ % 2 1 #! " = si 1 & $ % #! " = 33.3 θ 1 < θ c è some light is reflected back ito the diamod ad some light is trasmitted ito the water

8 26.3 Total Iteral Reflectio Coceptual Example. The Sparkle of a Diamod The diamod is famous for its sparkle because the light comig from it glitters as the diamod is moved about. Why does a diamod exhibit such brilliace? Why does it lose much of its brilliace whe placed uder water? As see i the last example, θ c is relatively small for the diamod i air so much of the light icidet o its back surface reflects back through the top of the diamod, makig it sparkle. I water θ c is larger so less light is reflected through the top, reducig its sparkle.

9 26.3 Total Iteral Reflectio Total iteral reflectio at a glass-air iterface. Sice = 1.5 for glass, at a glass-air iterface the critical agle is si θ c = 2 / 1 = 1.00/1.5 = è θ c = 42 o This ca be used to tur a ray of light through a agle of 90 o or 180 o with total iteral reflectio usig a prism of glass ad keepig θ 1 = 45 o è useful i the desig of optical istrumets. Two prisms, each reflectig the light twice by total iteral reflectio, are Sometimes used i bioculars to produce a lateral displacemet of a light ray.

10 26.3 Total Iteral Reflectio Total iteral reflectio i optical fibers. Light ca travel with little loss i a curved optical fiber made of glass or plastic ( light pipe ) because the light is totally reflected wheever it strikes the core-claddig Iterface ad sice the absorptio of light by the core itself is small. Usig optical fibers, light ca be piped from oe place to aother for may applicatios, e.g. telecommuicatios.

11 Example. A optical fiber cosists of a core made of flit glass ( flit = 1.667) surrouded by a claddig made of crow glass ( crow = 1.523). A ray of light i air eters the fiber at a agle θ 1 with respect to the ormal. What is θ 1 if this light also strikes the core-claddig iterface at a agle that just barely exceeds the critical agle?

12 claddig = crow = core = flit = Strategy: fid θ c usig the kow core ad claddig fid θ 2 usig θ c ad geometry fid θ 1 from θ 2, core ad Sell s Law si θ c = claddig / core = 1.523/1.667 = è θ c = o From figure, sice right triagle è θ 2 = 90 o - θ c = 90 o o = o Usig Sell s Law at the air-core iterface è air si θ 1 = core si θ 2 (1.000) si θ 1 = (1.667) si o è si θ 1 = è θ 1 = o

13 26.6 Leses Covergig ad divergig leses. Leses refract light i such a way that a image of the light source is formed. With a covergig les, paraxial rays that are parallel to the pricipal axis coverge to the focal poit, F. The focal legth, f, is the distace betwee F ad the les. Two prisms ca bed light toward the pricipal axis actig like a crude covergig les but caot create a sharp focus.

14 26.6 Leses With a divergig les, paraxial rays that are parallel to the pricipal axis appear to origiate from the focal poit, F. The focal legth, f, is the distace betwee F ad the les. Two prisms ca bed light away from the pricipal axis actig like a crude divergig les, but the apparet focus is ot sharp.

15 26.6 Leses Covergig ad divergig les come i a variety of shapes depedig o their applicatio. We will assume that the thickess of a les is small compared with its focal legth è Thi Les Approximatio

Chapter 18: Ray Optics Questions & Problems

Chapter 18: Ray Optics Questions & Problems Chapter 18: Ray Optics Questios & Problems c -1 2 1 1 1 h s θr= θi 1siθ 1 = 2si θ 2 = θ c = si ( ) + = m = = v s s f h s 1 Example 18.1 At high oo, the su is almost directly above (about 2.0 o from the

More information

AP B mirrors and lenses websheet 23.2

AP B mirrors and lenses websheet 23.2 Name: Class: _ Date: _ ID: A AP B mirrors ad leses websheet 232 Multiple Choice Idetify the choice that best completes the statemet or aswers the questio 1 The of light ca chage whe light is refracted

More information

Apparent Depth. B' l'

Apparent Depth. B' l' REFRACTION by PLANE SURFACES Apparet Depth Suppose we have a object B i a medium of idex which is viewed from a medium of idex '. If '

More information

The Nature of Light. Chapter 22. Geometric Optics Using a Ray Approximation. Ray Approximation

The Nature of Light. Chapter 22. Geometric Optics Using a Ray Approximation. Ray Approximation The Nature of Light Chapter Reflectio ad Refractio of Light Sectios: 5, 8 Problems: 6, 7, 4, 30, 34, 38 Particles of light are called photos Each photo has a particular eergy E = h ƒ h is Plack s costat

More information

Spherical Mirrors. Types of spherical mirrors. Lecture convex mirror: the. geometrical center is on the. opposite side of the mirror as

Spherical Mirrors. Types of spherical mirrors. Lecture convex mirror: the. geometrical center is on the. opposite side of the mirror as Lecture 14-1 Spherical Mirrors Types of spherical mirrors covex mirror: the geometrical ceter is o the opposite side of the mirror as the object. cocave mirror: the geometrical ceter is o the same side

More information

27 Refraction, Dispersion, Internal Reflection

27 Refraction, Dispersion, Internal Reflection Chapter 7 Refractio, Dispersio, Iteral Reflectio 7 Refractio, Dispersio, Iteral Reflectio Whe we talked about thi film iterferece, we said that whe light ecouters a smooth iterface betwee two trasparet

More information

Physics 11b Lecture #19

Physics 11b Lecture #19 Physics b Lecture #9 Geometrical Optics S&J Chapter 34, 35 What We Did Last Time Itesity (power/area) of EM waves is give by the Poytig vector See slide #5 of Lecture #8 for a summary EM waves are produced

More information

. Perform a geometric (ray-optics) construction (i.e., draw in the rays on the diagram) to show where the final image is formed.

. Perform a geometric (ray-optics) construction (i.e., draw in the rays on the diagram) to show where the final image is formed. MASSACHUSETTS INSTITUTE of TECHNOLOGY Departmet of Electrical Egieerig ad Computer Sciece 6.161 Moder Optics Project Laboratory 6.637 Optical Sigals, Devices & Systems Problem Set No. 1 Geometric optics

More information

Lecture 7 7 Refraction and Snell s Law Reading Assignment: Read Kipnis Chapter 4 Refraction of Light, Section III, IV

Lecture 7 7 Refraction and Snell s Law Reading Assignment: Read Kipnis Chapter 4 Refraction of Light, Section III, IV Lecture 7 7 Refractio ad Sell s Law Readig Assigmet: Read Kipis Chapter 4 Refractio of Light, Sectio III, IV 7. History I Eglish-speakig coutries, the law of refractio is kow as Sell s Law, after the Dutch

More information

Lenses and Imaging (Part I) Parabloid mirror: perfect focusing

Lenses and Imaging (Part I) Parabloid mirror: perfect focusing Leses ad Imagig (Part I) eview: paraboloid reflector, focusig Why is imagig ecessary: Huyges priciple Spherical & parallel ray budles, poits at ifiity efractio at spherical surfaces (paraial approimatio)

More information

Lenses and imaging. MIT 2.71/ /10/01 wk2-a-1

Lenses and imaging. MIT 2.71/ /10/01 wk2-a-1 Leses ad imagig Huyges priciple ad why we eed imagig istrumets A simple imagig istrumet: the pihole camera Priciple of image formatio usig leses Quatifyig leses: paraial approimatio & matri approach Focusig

More information

Lenses and Imaging (Part I)

Lenses and Imaging (Part I) Leses ad Imagig (Part I) Why is imagig ecessary: Huyge s priciple Spherical & parallel ray budles, poits at ifiity efractio at spherical surfaces (paraial approimatio) Optical power ad imagig coditio Matri

More information

Basic Optics: Index of Refraction

Basic Optics: Index of Refraction Basic Optics: Idex of Refractio Deser materials have lower speeds of light Idex of Refractio = where c = speed of light i vacuum v = velocity i medium Eve small chages ca create differece i Higher idex

More information

Aberrations in Lens & Mirrors (Hecht 6.3)

Aberrations in Lens & Mirrors (Hecht 6.3) Aberratios i Les & Mirrors (Hecht 6.3) Aberratios are failures to focus to a "poit" Both mirrors ad les suffer from these Some are failures of paraxial assumptio 3 5 θ θ si( θ ) = θ + L 3! 5! Paraxial

More information

Propagation of light: rays versus wave fronts; geometrical and physical optics

Propagation of light: rays versus wave fronts; geometrical and physical optics Propagatio of light: rays versus wave frots; geometrical ad physical optics A ray is a imagiary lie alog the directio of propagatio of the light wave: this lie is perpedicular to the wave frot If descriptio

More information

Get Solution of These Packages & Learn by Video Tutorials on GEOMETRICAL OPTICS

Get Solution of These Packages & Learn by Video Tutorials on   GEOMETRICAL OPTICS . CONDITION FOR F RECTILINEAR PROP OPAGATION OF LIGHT : (ONLY FORF INFORMA ORMATION NOTE IN JEE SYLLABUS) Some part of the optics ca be uderstood if we assume that light travels i a straight lie ad it

More information

Section 4. Imaging and Paraxial Optics

Section 4. Imaging and Paraxial Optics 4-1 Sectio 4 Imagig ad Paraxial Optics Optical Sstems A optical sstem is a collectio of optical elemets (leses ad mirrors). While the optical sstem ca cotai multiple optical elemets, the first order properties

More information

Section 4. Imaging and Paraxial Optics

Section 4. Imaging and Paraxial Optics Sectio 4 Imagig ad Paraxial Optics 4- Optical Sstems A optical sstem is a collectio of optical elemets (leses ad mirrors). While the optical sstem ca cotai multiple optical elemets, the first order properties

More information

World Scientific Research Journal (WSRJ) ISSN: Research on Fresnel Lens Optical Receiving Antenna in Indoor Visible

World Scientific Research Journal (WSRJ) ISSN: Research on Fresnel Lens Optical Receiving Antenna in Indoor Visible World Scietific Research Joural (WSRJ) ISSN: 2472-3703 www.wsr-j.org Research o Fresel Les Optical Receivig Atea i Idoor Visible Light Commuicatio Zhihua Du College of Electroics Egieerig, Chogqig Uiversity

More information

Übungsblatt 2 Geometrische und Technische Optik WS 2012/2013

Übungsblatt 2 Geometrische und Technische Optik WS 2012/2013 Übugsblatt 2 Geometrische u Techische Optik WS 202/203 Eie icke Lise besteht aus zwei sphärische Grezfläche mit e beie Krümmugsraie R u R 2, ie eie Absta habe. Die Brechzahle vor er Lise, i er Lise u ach

More information

EVALUATION OF TRIGONOMETRIC FUNCTIONS

EVALUATION OF TRIGONOMETRIC FUNCTIONS EVALUATION OF TRIGONOMETRIC FUNCTIONS Whe first exposed to trigoometric fuctios i high school studets are expected to memorize the values of the trigoometric fuctios of sie cosie taget for the special

More information

RAY OPTICS AND OPTICAL INSTRUMENTS

RAY OPTICS AND OPTICAL INSTRUMENTS 9 AY OPTICS AND OPTICAL INSTUMENTS Optics is the brach of Physics which deals with the study of light. ay optics is based o the rectiliear propagatio of light ad the laws of reflectio ad refractio. Laws

More information

Intro to Scientific Computing: Solutions

Intro to Scientific Computing: Solutions Itro to Scietific Computig: Solutios Dr. David M. Goulet. How may steps does it take to separate 3 objects ito groups of 4? We start with 5 objects ad apply 3 steps of the algorithm to reduce the pile

More information

Area As A Limit & Sigma Notation

Area As A Limit & Sigma Notation Area As A Limit & Sigma Notatio SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should referece Chapter 5.4 of the recommeded textbook (or the equivalet chapter i your

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Exam 2 is scheduled on Tuesday, March 26 @ 8 10 PM In Physics 114 It will cover four Chapters 21, 22, 23, and 24. Start reviewing lecture

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000.

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000. 5-23 The course that gives CM its Zip Memory Maagemet II: Dyamic Storage Allocatio Mar 6, 2000 Topics Segregated lists Buddy system Garbage collectio Mark ad Sweep Copyig eferece coutig Basic allocator

More information

Phys102 Lecture 21/22 Light: Reflection and Refraction

Phys102 Lecture 21/22 Light: Reflection and Refraction Phys102 Lecture 21/22 Light: Reflection and Refraction Key Points The Ray Model of Light Reflection and Mirrors Refraction, Snell s Law Total internal Reflection References 23-1,2,3,4,5,6. The Ray Model

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

Draw a diagram showing the fibre and the path of the ray of light. Describe one use of optical fibres in medicine. You may draw a diagram.

Draw a diagram showing the fibre and the path of the ray of light. Describe one use of optical fibres in medicine. You may draw a diagram. 1 (a) (i) A ray of light passes through a length of curved optical fibre. Draw a diagram showing the fibre and the path of the ray of light. [1] Describe one use of optical fibres in medicine. You may

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

EE 584 MACHINE VISION

EE 584 MACHINE VISION METU EE 584 Lecture Notes by A.Aydi ALATAN 0 EE 584 MACHINE VISION Itroductio elatio with other areas Image Formatio & Sesig Projectios Brightess Leses Image Sesig METU EE 584 Lecture Notes by A.Aydi ALATAN

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

Computer Graphics. Shading. Page. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science, Technion. The Physics

Computer Graphics. Shading. Page. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science, Technion. The Physics Comuter Grahics Illumiatio Models & The Physics 2 Local vs. Global Illumiatio Models Examle Local model direct ad local iteractio of each object with the light. Ambiet Diffuse Global model: iteractios

More information

NAME:... REFRACTION. Page 1

NAME:... REFRACTION.   Page 1 NAME:... REFRACTION 1. A ray of red light enters a semi-circular glass block normal to the curved surface. Which diagram correctly shows the partial reflection and refraction of the ray? www.kcpe-kcse.com

More information

Computer Graphics Hardware An Overview

Computer Graphics Hardware An Overview Computer Graphics Hardware A Overview Graphics System Moitor Iput devices CPU/Memory GPU Raster Graphics System Raster: A array of picture elemets Based o raster-sca TV techology The scree (ad a picture)

More information

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 34 Lecture RANDALL D. KNIGHT Chapter 34 Ray Optics IN THIS CHAPTER, you will learn about and apply the ray model of light Slide 34-2

More information

Introduction. Experiment A: Snell s Law. Physics 1CL REFLECTION AND REFRACTION OF LIGHT Summer Session II 2010

Introduction. Experiment A: Snell s Law. Physics 1CL REFLECTION AND REFRACTION OF LIGHT Summer Session II 2010 Introduction This laboratory is a quantitative investigation of the reflection and refraction of light off optical interfaces. An optical interface is a boundary between two transparent media of different

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Today Last Time Recall from last time. Reflection: q i = q r Flat Mirror: image equidistant behind Spherical

More information

Home Lab 7 Refraction, Ray Tracing, and Snell s Law

Home Lab 7 Refraction, Ray Tracing, and Snell s Law Home Lab Week 7 Refraction, Ray Tracing, and Snell s Law Home Lab 7 Refraction, Ray Tracing, and Snell s Law Activity 7-1: Snell s Law Objective: Verify Snell s law Materials Included: Laser pointer Cylindrical

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

How to Select the Best Refractive Index

How to Select the Best Refractive Index How to Select the Best Refractive Idex Jeffrey Bodycomb, Ph.D. HORIBA Scietific www.horiba.com/us/particle 2013HORIBA, Ltd. All rights reserved. Outlie Laser Diffractio Calculatios Importace of Refractive

More information

Field Guide to. Geometrical Optics. John E. Greivenkamp. University of Arizona. SPIE Field Guides Volume FG01. John E. Greivenkamp, Series Editor

Field Guide to. Geometrical Optics. John E. Greivenkamp. University of Arizona. SPIE Field Guides Volume FG01. John E. Greivenkamp, Series Editor Field Guide to Geometrical Optics Joh E. Greivekamp Uiversity of Arizoa SPIE Field Guides Volume FG01 Joh E. Greivekamp, Series Editor Belligham, Washigto USA Library of Cogress Catalogig-i-Publicatio

More information

Image Formation by Refraction

Image Formation by Refraction Image Formation by Refraction If you see a fish that appears to be swimming close to the front window of the aquarium, but then look through the side of the aquarium, you ll find that the fish is actually

More information

Review: 22.4: Dispersion. Refraction in a Prism. Announcements

Review: 22.4: Dispersion. Refraction in a Prism. Announcements Announcements The second midterm exam is coming Monday, Nov 8 Will cover from 18.1 thru 22.7 Same format as Exam 1 20 multiple choice questions Room assignments TBA QUESTIONS? PLEASE ASK! Review: Light

More information

Lens Design II. Lecture 5: Field flattening Herbert Gross. Winter term

Lens Design II. Lecture 5: Field flattening Herbert Gross. Winter term Les Desig II Lecture 5: Field flatteig 05-8-0 Herbert Gross Witer term 05 www.iap.ui-ea.de Prelimiary Schedule 0.0. Aberratios ad optimizatio Repetitio 7.0. Structural modificatios Zero operads, les splittig,

More information

What Is an Optical System?

What Is an Optical System? What Is an Optical System? Anything that involves light Used to study how light behaves Optical devices: lens, mirror, prism 2 Functions: collect light rays and bend the rays to form an image Rays bounce

More information

PHYS2002 Spring 2012 Practice Exam 3 (Chs. 25, 26, 27) Constants

PHYS2002 Spring 2012 Practice Exam 3 (Chs. 25, 26, 27) Constants PHYS00 Spring 01 Practice Exam 3 (Chs. 5, 6, 7) Constants m m q q p e ε = 8.85 o o p e = 1.67 = 9.11 7 9 7 31 = + 1.60 = 1.60 μ = 4π k = 8.99 g = 9.8 m/s 1 kg 19 19 C kg T m/a N m C / N m C / C 1. A convex

More information

Lecture # 09: Flow visualization techniques: schlieren and shadowgraphy

Lecture # 09: Flow visualization techniques: schlieren and shadowgraphy AerE 344 Lecture Notes Lecture # 9: Flow visualizatio techiques: schliere ad shadowgraph Dr. Hui Hu Dr. Re M Waldma Departmet of Aerospace Egieerig owa State Uiversit Ames, owa 5, U.S.A Sources/ Further

More information

Light and shading. Source: A. Efros

Light and shading. Source: A. Efros Light ad shadig Source: A. Efros Image formatio What determies the brightess of a image piel? Sesor characteristics Light source properties Eposure Surface shape ad orietatio Optics Surface reflectace

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

EECS 442 Computer vision. Multiple view geometry Affine structure from Motion

EECS 442 Computer vision. Multiple view geometry Affine structure from Motion EECS 442 Computer visio Multiple view geometry Affie structure from Motio - Affie structure from motio problem - Algebraic methods - Factorizatio methods Readig: [HZ] Chapters: 6,4,8 [FP] Chapter: 2 Some

More information

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria.

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria. Computer Sciece Foudatio Exam August, 005 Computer Sciece Sectio A No Calculators! Name: SSN: KEY Solutios ad Gradig Criteria Score: 50 I this sectio of the exam, there are four (4) problems. You must

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview Chapter 23 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 23-2 Chapter 23 Preview Slide 23-3 Chapter 23 Preview Slide 23-4 1 Chapter 23 Preview Slide 23-5 Chapter 23 Preview

More information

Refraction of Light. This bending of the ray is called refraction

Refraction of Light. This bending of the ray is called refraction Refraction & Lenses Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium, part of the ray is reflected and part of

More information

Today s Topic: Refraction / Snell s Law

Today s Topic: Refraction / Snell s Law Today s Topic: Refraction / Snell s Law Learning Goal: Students will be able to calculate the angle of reflection of a bent light wave. Take out your notes from yesterday as we learn about Snell s Law.

More information

Homework 1 Solutions MA 522 Fall 2017

Homework 1 Solutions MA 522 Fall 2017 Homework 1 Solutios MA 5 Fall 017 1. Cosider the searchig problem: Iput A sequece of umbers A = [a 1,..., a ] ad a value v. Output A idex i such that v = A[i] or the special value NIL if v does ot appear

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Reflection & Mirrors

Reflection & Mirrors Reflection & Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media A ray of light is

More information

Physics 1202: Lecture 17 Today s Agenda

Physics 1202: Lecture 17 Today s Agenda Physics 1202: Lecture 17 Today s Agenda Announcements: Team problems today Team 10, 11 & 12: this Thursday Homework #8: due Friday Midterm 2: Tuesday April 10 Office hours if needed (M-2:30-3:30 or TH

More information

Light. Reflection of light. Types of reflection

Light. Reflection of light. Types of reflection Light Reflection of light Reflection is when light bounces off an object. If the surface is smooth and shiny, like glass, water or polished metal, the light will reflect at the same angle as it hit the

More information

Conceptual Practice Problems for PHYS 1112 In-Class Exam #1A+1B

Conceptual Practice Problems for PHYS 1112 In-Class Exam #1A+1B Conceptual Practice Problems for PHYS 1112 In-Class Exam #1A+1B Thu. Feb. 4, 2010, 9:30am-10:45am and 11:00am-12:15pm CP 1.01: A student runs westward at 3m/s, away from a vertical plane mirror, while

More information

4. Refraction. glass, air, Perspex and water.

4. Refraction. glass, air, Perspex and water. Mr. C. Grima 11 1. Rays and Beams A ray of light is a narrow beam of parallel light, which can be represented by a line with an arrow on it, in diagrams. A group of rays makes up a beam of light. In laboratory

More information

Refraction and Polarization of Light

Refraction and Polarization of Light Chapter 9 Refraction and Polarization of Light Name: Lab Partner: Section: 9.1 Purpose The purpose of this experiment is to demonstrate several consequences of the fact that materials have di erent indexes

More information

Homework Set 3 Due Thursday, 07/14

Homework Set 3 Due Thursday, 07/14 Homework Set 3 Due Thursday, 07/14 Problem 1 A room contains two parallel wall mirrors, on opposite walls 5 meters apart. The mirrors are 8 meters long. Suppose that one person stands in a doorway, in

More information

WebAssign Lesson 6-1b Geometric Series (Homework)

WebAssign Lesson 6-1b Geometric Series (Homework) WebAssig Lesso 6-b Geometric Series (Homework) Curret Score : / 49 Due : Wedesday, July 30 204 :0 AM MDT Jaimos Skriletz Math 75, sectio 3, Summer 2 204 Istructor: Jaimos Skriletz. /2 poitsrogac alcet2

More information

Coherent effects of flow- and pressure hull of a generic submarine on target scattering in an active sonar performance model

Coherent effects of flow- and pressure hull of a generic submarine on target scattering in an active sonar performance model Coheret effects of flow- ad pressure hull of a geeric submarie o target scatterig i a active soar performace model P. Schippers TNO-D&V-Uderwater Techology, Oude Waalsdorperweg 63, Post Box 96864, 2509

More information

3D Model Retrieval Method Based on Sample Prediction

3D Model Retrieval Method Based on Sample Prediction 20 Iteratioal Coferece o Computer Commuicatio ad Maagemet Proc.of CSIT vol.5 (20) (20) IACSIT Press, Sigapore 3D Model Retrieval Method Based o Sample Predictio Qigche Zhag, Ya Tag* School of Computer

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Recall from last time. Today Last Time Reflection: θ i = θ r Flat Mirror: image equidistant behind Spherical

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

Refraction of Light. c = m / s. n = c v. The index of refraction is never less than 1. Some common indices of refraction are listed below.

Refraction of Light. c = m / s. n = c v. The index of refraction is never less than 1. Some common indices of refraction are listed below. Refraction of Light The speed of light in a vacuum is c = 3.00 10 8 m / s In air, the speed is only slightly less. In other transparent materials, such as glass and water, the speed is always less than

More information

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v.

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v. Refraction Index of refraction When an EM wave travels in a vacuum, its speed is: c = 3.00 x 10 8 m/s. In any other medium, light generally travels at a slower speed. The speed of light v in a material

More information

Mathematics and Art Activity - Basic Plane Tessellation with GeoGebra

Mathematics and Art Activity - Basic Plane Tessellation with GeoGebra 1 Mathematics ad Art Activity - Basic Plae Tessellatio with GeoGebra Worksheet: Explorig Regular Edge-Edge Tessellatios of the Cartesia Plae ad the Mathematics behid it. Goal: To eable Maths educators

More information

It just came to me that I 8.2 GRAPHS AND CONVERGENCE

It just came to me that I 8.2 GRAPHS AND CONVERGENCE 44 Chapter 8 Discrete Mathematics: Fuctios o the Set of Natural Numbers (a) Take several odd, positive itegers for a ad write out eough terms of the 3N sequece to reach a repeatig loop (b) Show that ot

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

ONE MARK QUESTIONS GEOMETRICAL OPTICS QUESTION BANK

ONE MARK QUESTIONS GEOMETRICAL OPTICS QUESTION BANK ONE MARK QUESTIONS 1. What is lateral shift? 2. What should be the angle of incidence to have maximum lateral shift? 3. For what angle, lateral shift is minimum? 4. What is Normal shift? 5. What is total

More information

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image. I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

More information

Refraction and Polarization of Light

Refraction and Polarization of Light Chapter 9 Refraction and Polarization of Light Name: Lab Partner: Section: 9.1 Purpose The purpose of this experiment is to demonstrate several consequences of the fact that materials have di erent indexes

More information

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

Refraction of Light. light ray. rectangular plastic slab. normal rectangular slab

Refraction of Light. light ray. rectangular plastic slab. normal rectangular slab Refraction of Light light ray light box single slit rectangular plastic slab What is the light path for a ray aligned with the normal? What is the light path for rays not aligned with the normal? light

More information

Message Integrity and Hash Functions. TELE3119: Week4

Message Integrity and Hash Functions. TELE3119: Week4 Message Itegrity ad Hash Fuctios TELE3119: Week4 Outlie Message Itegrity Hash fuctios ad applicatios Hash Structure Popular Hash fuctios 4-2 Message Itegrity Goal: itegrity (ot secrecy) Allows commuicatig

More information

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals UNIT 4 Sectio 8 Estimatig Populatio Parameters usig Cofidece Itervals To make ifereces about a populatio that caot be surveyed etirely, sample statistics ca be take from a SRS of the populatio ad used

More information

speed of light in vacuum = speed of light in the material

speed of light in vacuum = speed of light in the material Chapter 5 Let Us Entertain You Snell s law states that as light enters a substance such as acrylic (high index of refraction) from air (low index of refraction), the light bends toward the normal. When

More information

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction Holt Chapter 14 Student Outline Light and Refraction Variables introduced or used in chapter: Quantity Symbol Units Speed of light frequency wavelength angle Object Distance Image Distance Radius of Curvature

More information

Lecture 28: Data Link Layer

Lecture 28: Data Link Layer Automatic Repeat Request (ARQ) 2. Go ack N ARQ Although the Stop ad Wait ARQ is very simple, you ca easily show that it has very the low efficiecy. The low efficiecy comes from the fact that the trasmittig

More information

SNC2D PHYSICS 5/20/2013. LIGHT & GEOMETRIC OPTICS L Total Internal Reflection (TIR) (P ) Total Internal Reflection (TIR)

SNC2D PHYSICS 5/20/2013. LIGHT & GEOMETRIC OPTICS L Total Internal Reflection (TIR) (P ) Total Internal Reflection (TIR) SNC2D PHYSICS LIGHT & GEOMETRIC OPTICS L (P.442-443) Sometimes, such as in the case of fibre optics or laser light travelling from water into air, the light does not pass from one medium to another but

More information

Leica Lino Accurate, self-levelling point and line lasers

Leica Lino Accurate, self-levelling point and line lasers Leica Lio Accurate, self-levellig poit ad lie lasers Setup, Switch o, Ready! With the Leica Lio everythig is plumb ad perfectly aliged Leica Lios project lies or poits to millimeter accuracy, leavig your

More information

1.! Questions about reflected intensity. [Use the formulas on p. 8 of Light.] , no matter

1.! Questions about reflected intensity. [Use the formulas on p. 8 of Light.] , no matter Reading: Light Key concepts: Huygens s principle; reflection; refraction; reflectivity; total reflection; Brewster angle; polarization by absorption, reflection and Rayleigh scattering. 1.! Questions about

More information

Examples and Applications of Binary Search

Examples and Applications of Binary Search Toy Gog ITEE Uiersity of Queeslad I the secod lecture last week we studied the biary search algorithm that soles the problem of determiig if a particular alue appears i a sorted list of iteger or ot. We

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

3. LENSES & PRISM

3. LENSES & PRISM 3. LENSES & PRISM. A transparent substance bounded by two surfaces of definite geometrical shape is called lens.. A lens may be considered to be made up of a number of small prisms put together. 3. Principal

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information

Reflection and Refraction of Light

Reflection and Refraction of Light PC1222 Fundamentals of Physics II Reflection and Refraction of Light 1 Objectives Investigate for reflection of rays from a plane surface, the dependence of the angle of reflection on the angle of incidence.

More information

Performance Plus Software Parameter Definitions

Performance Plus Software Parameter Definitions Performace Plus+ Software Parameter Defiitios/ Performace Plus Software Parameter Defiitios Chapma Techical Note-TG-5 paramete.doc ev-0-03 Performace Plus+ Software Parameter Defiitios/2 Backgroud ad Defiitios

More information

15 UNSUPERVISED LEARNING

15 UNSUPERVISED LEARNING 15 UNSUPERVISED LEARNING [My father] advised me to sit every few moths i my readig chair for a etire eveig, close my eyes ad try to thik of ew problems to solve. I took his advice very seriously ad have

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information