Aberrations in Lens & Mirrors (Hecht 6.3)

Size: px
Start display at page:

Download "Aberrations in Lens & Mirrors (Hecht 6.3)"

Transcription

1 Aberratios i Les & Mirrors (Hecht 6.3) Aberratios are failures to focus to a "poit" Both mirrors ad les suffer from these Some are failures of paraxial assumptio 3 5 θ θ si( θ ) = θ + L 3! 5! Paraxial assumptio assumes oly the first term Error results i poits havig halos aroud it For a image all these add up to make the image fuzzy

2 Why is Light Focus by a Les Why does all the light focus by a les Cosider a curved glass surface with idex o right side Radius of curvature r is cetered at C Let parallel light ray P at height h from axis hit the curvature at T Normal at T is through C formig agle φ to parallel beam Beam is refracted by Sell s law to agle φ to the ormal si( ϕ ) = si( ϕ ) Assumig small agles the si(φ)~φ ad si( ϕ ) = si( ϕ ) or ϕ ϕ From geometry for small agles h h si( φ ) = or φ r r Agle θ the beam makes to the axis is by geometry h θ = φ φ = φ φ = φ r Thus the focus poit is located at f = h si h h r h r ( θ ) θ Thus all light is focused at same poit idepedet of h positio

3 Spherical Aberratios from Paraxial Assumptio Formalism developed by Seidel: terms of the expasio L!! ) si( θ θ θ θ + = Gaussia Les formula r s s = + Now Cosider addig the θ 3 to the les calculatios The the formula becomes = s r s r s s h r s s Higher order terms add more Result ow light focus poit deped o h (distace from optic axis)

4 Types of Spherical Aberratio Logitudial Spherical Aberratio alog axis Trasverse Spherical Aberratio across axis These create a circle of least cofusio at focus Area over which differet parts of image come ito focus Leses also have aberratios due to idex of refractio issues

5 Mirrors ad Spherical Aberratios For mirrors problem is the shape of the mirror Because reflectors geerally ot wavelegth effects Corrected by chagig the mirror to parabola Mirrors usually have short f compared to radius Hece almost all mirror systems use parabolic mirrors

6 Hubble Telescope Example Hubble mirror was ot groud to proper parabola too flat Not foud util it was i orbit Images were terribly out of focus But they kew exactly what the errors Space walk added a les (called costar) to correct this

7 Spherical Aberratio Off axis rays are ot focused at the same plae as the o axis rays Called "skew rays" Pricipal ray, from object through optical axis to focused object Tagetal rays (horizotal) focused closer Sagittal rays (vertical) further away Corrected usig multiple curves o les Aspheric (ot spherical surfaces) shape to give sigle focus poit Or ca use combie two or more spherical surfaces

8 Coma Aberratio Comes from third order si correctio Off axis distortio Results i differet magificatios at differet poits Sigle poit becomes a comet like flare Coma icrease with NA Corrected with multiple surfaces

9 Field Curvature Aberratio All leses focus better o curved surfaces Called Field Curvature positive les, iward curves egative les, outward (covex) curves Reduced by combiig positive & eg leses

10 Distortio Aberratio Distortio meas image ot at paraaxial poits Grid used as commo meas of projected image Picushio: pulled to corers Barrel: Pulled to sides

11 Les Shape Coddigdo Shape Factor q r = r r1 r Shows how aberratios chage with shape 1

12 Idex of Refractio & Wavelegth: Chromatic Aberratio Differet wavelegths have differet idex of refractio Ofte list wavelegth by spectral colour lies (letters) Idex chage is what makes prism colour spread Typical chages 1-2% over visible rage Geerally higher idex at shorter wavelegths

13 Chromatic Aberratio Chromatic Aberratios differet wavelegth focus to differet poits Due to idex of refractio chage with wavelegth Hece focuses rays at differet poits Geerally blue closer (higher ) Red further away (lower idex) Importat for multilie lasers Achromatic leses: combie differet materials whose idex chages at differet rates Compesate each other

14 Lateral Colour Aberratio Blue rays refracted more typically tha red Blue image focused at differet height tha red image

15 Siglet vs Achromat Les Combiig two les sigificatly reduces distortio Each les has differet glass idex positive crow glass egative meiscus flit Give chromatic correctio as well

16 Combied les: Uit Cojugatio Bicovex most distortio Two plaocovex sigificat improvemet Two Achromats, best

17 Materials for Lasers Leses/Widows Stadard visible BK 7 Boro Silicate glass, pyrex For UV wat quartz, Lithium Fluroide For IR differet Silico, Germaium

Basic Optics: Index of Refraction

Basic Optics: Index of Refraction Basic Optics: Idex of Refractio Deser materials have lower speeds of light Idex of Refractio = where c = speed of light i vacuum v = velocity i medium Eve small chages ca create differece i Higher idex

More information

Spherical Mirrors. Types of spherical mirrors. Lecture convex mirror: the. geometrical center is on the. opposite side of the mirror as

Spherical Mirrors. Types of spherical mirrors. Lecture convex mirror: the. geometrical center is on the. opposite side of the mirror as Lecture 14-1 Spherical Mirrors Types of spherical mirrors covex mirror: the geometrical ceter is o the opposite side of the mirror as the object. cocave mirror: the geometrical ceter is o the same side

More information

Physics 11b Lecture #19

Physics 11b Lecture #19 Physics b Lecture #9 Geometrical Optics S&J Chapter 34, 35 What We Did Last Time Itesity (power/area) of EM waves is give by the Poytig vector See slide #5 of Lecture #8 for a summary EM waves are produced

More information

Chapter 18: Ray Optics Questions & Problems

Chapter 18: Ray Optics Questions & Problems Chapter 18: Ray Optics Questios & Problems c -1 2 1 1 1 h s θr= θi 1siθ 1 = 2si θ 2 = θ c = si ( ) + = m = = v s s f h s 1 Example 18.1 At high oo, the su is almost directly above (about 2.0 o from the

More information

Lenses and Imaging (Part I) Parabloid mirror: perfect focusing

Lenses and Imaging (Part I) Parabloid mirror: perfect focusing Leses ad Imagig (Part I) eview: paraboloid reflector, focusig Why is imagig ecessary: Huyges priciple Spherical & parallel ray budles, poits at ifiity efractio at spherical surfaces (paraial approimatio)

More information

Apparent Depth. B' l'

Apparent Depth. B' l' REFRACTION by PLANE SURFACES Apparet Depth Suppose we have a object B i a medium of idex which is viewed from a medium of idex '. If '

More information

Lenses and imaging. MIT 2.71/ /10/01 wk2-a-1

Lenses and imaging. MIT 2.71/ /10/01 wk2-a-1 Leses ad imagig Huyges priciple ad why we eed imagig istrumets A simple imagig istrumet: the pihole camera Priciple of image formatio usig leses Quatifyig leses: paraial approimatio & matri approach Focusig

More information

Lenses and Imaging (Part I)

Lenses and Imaging (Part I) Leses ad Imagig (Part I) Why is imagig ecessary: Huyge s priciple Spherical & parallel ray budles, poits at ifiity efractio at spherical surfaces (paraial approimatio) Optical power ad imagig coditio Matri

More information

Final Exam information

Final Exam information Fial Exam iformatio Wedesday, Jue 6, 2012, 9:30 am - 11:18 am Locatio: i recitatio room Comprehesive (covers all course material) 35 multiple-choice questios --> 175 poits Closed book ad otes Make up your

More information

The Nature of Light. Chapter 22. Geometric Optics Using a Ray Approximation. Ray Approximation

The Nature of Light. Chapter 22. Geometric Optics Using a Ray Approximation. Ray Approximation The Nature of Light Chapter Reflectio ad Refractio of Light Sectios: 5, 8 Problems: 6, 7, 4, 30, 34, 38 Particles of light are called photos Each photo has a particular eergy E = h ƒ h is Plack s costat

More information

AP B mirrors and lenses websheet 23.2

AP B mirrors and lenses websheet 23.2 Name: Class: _ Date: _ ID: A AP B mirrors ad leses websheet 232 Multiple Choice Idetify the choice that best completes the statemet or aswers the questio 1 The of light ca chage whe light is refracted

More information

Lens Design II. Lecture 5: Field flattening Herbert Gross. Winter term

Lens Design II. Lecture 5: Field flattening Herbert Gross. Winter term Les Desig II Lecture 5: Field flatteig 05-8-0 Herbert Gross Witer term 05 www.iap.ui-ea.de Prelimiary Schedule 0.0. Aberratios ad optimizatio Repetitio 7.0. Structural modificatios Zero operads, les splittig,

More information

Übungsblatt 2 Geometrische und Technische Optik WS 2012/2013

Übungsblatt 2 Geometrische und Technische Optik WS 2012/2013 Übugsblatt 2 Geometrische u Techische Optik WS 202/203 Eie icke Lise besteht aus zwei sphärische Grezfläche mit e beie Krümmugsraie R u R 2, ie eie Absta habe. Die Brechzahle vor er Lise, i er Lise u ach

More information

. Perform a geometric (ray-optics) construction (i.e., draw in the rays on the diagram) to show where the final image is formed.

. Perform a geometric (ray-optics) construction (i.e., draw in the rays on the diagram) to show where the final image is formed. MASSACHUSETTS INSTITUTE of TECHNOLOGY Departmet of Electrical Egieerig ad Computer Sciece 6.161 Moder Optics Project Laboratory 6.637 Optical Sigals, Devices & Systems Problem Set No. 1 Geometric optics

More information

EE 584 MACHINE VISION

EE 584 MACHINE VISION METU EE 584 Lecture Notes by A.Aydi ALATAN 0 EE 584 MACHINE VISION Itroductio elatio with other areas Image Formatio & Sesig Projectios Brightess Leses Image Sesig METU EE 584 Lecture Notes by A.Aydi ALATAN

More information

Section 4. Imaging and Paraxial Optics

Section 4. Imaging and Paraxial Optics 4-1 Sectio 4 Imagig ad Paraxial Optics Optical Sstems A optical sstem is a collectio of optical elemets (leses ad mirrors). While the optical sstem ca cotai multiple optical elemets, the first order properties

More information

27 Refraction, Dispersion, Internal Reflection

27 Refraction, Dispersion, Internal Reflection Chapter 7 Refractio, Dispersio, Iteral Reflectio 7 Refractio, Dispersio, Iteral Reflectio Whe we talked about thi film iterferece, we said that whe light ecouters a smooth iterface betwee two trasparet

More information

Propagation of light: rays versus wave fronts; geometrical and physical optics

Propagation of light: rays versus wave fronts; geometrical and physical optics Propagatio of light: rays versus wave frots; geometrical ad physical optics A ray is a imagiary lie alog the directio of propagatio of the light wave: this lie is perpedicular to the wave frot If descriptio

More information

Get Solution of These Packages & Learn by Video Tutorials on GEOMETRICAL OPTICS

Get Solution of These Packages & Learn by Video Tutorials on   GEOMETRICAL OPTICS . CONDITION FOR F RECTILINEAR PROP OPAGATION OF LIGHT : (ONLY FORF INFORMA ORMATION NOTE IN JEE SYLLABUS) Some part of the optics ca be uderstood if we assume that light travels i a straight lie ad it

More information

Section 4. Imaging and Paraxial Optics

Section 4. Imaging and Paraxial Optics Sectio 4 Imagig ad Paraxial Optics 4- Optical Sstems A optical sstem is a collectio of optical elemets (leses ad mirrors). While the optical sstem ca cotai multiple optical elemets, the first order properties

More information

Lens Design II. Lecture 5: Field flattening Herbert Gross. Winter term

Lens Design II. Lecture 5: Field flattening Herbert Gross. Winter term Les Desig II Lecture 5: Field flatteig 07--3 Herbert Gross Witer term 07 www.iap.ui-ea.de Prelimiary Schedule Les Desig II 07 6.0. Aberratios ad optimizatio Repetitio 3.0. Structural modificatios Zero

More information

Lecture 7 7 Refraction and Snell s Law Reading Assignment: Read Kipnis Chapter 4 Refraction of Light, Section III, IV

Lecture 7 7 Refraction and Snell s Law Reading Assignment: Read Kipnis Chapter 4 Refraction of Light, Section III, IV Lecture 7 7 Refractio ad Sell s Law Readig Assigmet: Read Kipis Chapter 4 Refractio of Light, Sectio III, IV 7. History I Eglish-speakig coutries, the law of refractio is kow as Sell s Law, after the Dutch

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

World Scientific Research Journal (WSRJ) ISSN: Research on Fresnel Lens Optical Receiving Antenna in Indoor Visible

World Scientific Research Journal (WSRJ) ISSN: Research on Fresnel Lens Optical Receiving Antenna in Indoor Visible World Scietific Research Joural (WSRJ) ISSN: 2472-3703 www.wsr-j.org Research o Fresel Les Optical Receivig Atea i Idoor Visible Light Commuicatio Zhihua Du College of Electroics Egieerig, Chogqig Uiversity

More information

Normals. In OpenGL the normal vector is part of the state Set by glnormal*()

Normals. In OpenGL the normal vector is part of the state Set by glnormal*() Ray Tracig 1 Normals OpeG the ormal vector is part of the state Set by glnormal*() -glnormal3f(x, y, z); -glnormal3fv(p); Usually we wat to set the ormal to have uit legth so cosie calculatios are correct

More information

Phys102 Lecture 21/22 Light: Reflection and Refraction

Phys102 Lecture 21/22 Light: Reflection and Refraction Phys102 Lecture 21/22 Light: Reflection and Refraction Key Points The Ray Model of Light Reflection and Mirrors Refraction, Snell s Law Total internal Reflection References 23-1,2,3,4,5,6. The Ray Model

More information

Lighting and Shading. Outline. Raytracing Example. Global Illumination. Local Illumination. Radiosity Example

Lighting and Shading. Outline. Raytracing Example. Global Illumination. Local Illumination. Radiosity Example CSCI 480 Computer Graphics Lecture 9 Lightig ad Shadig Light Sources Phog Illumiatio Model Normal Vectors [Agel Ch. 6.1-6.4] February 13, 2013 Jerej Barbic Uiversity of Souther Califoria http://www-bcf.usc.edu/~jbarbic/cs480-s13/

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Exam 2 is scheduled on Tuesday, March 26 @ 8 10 PM In Physics 114 It will cover four Chapters 21, 22, 23, and 24. Start reviewing lecture

More information

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 27 Propagation of Light Hecht, chapter 5 Spring 2016 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

How to Select the Best Refractive Index

How to Select the Best Refractive Index How to Select the Best Refractive Idex Jeffrey Bodycomb, Ph.D. HORIBA Scietific www.horiba.com/us/particle 2013HORIBA, Ltd. All rights reserved. Outlie Laser Diffractio Calculatios Importace of Refractive

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

Lens Design II. Lecture 14: Diffractive elements Herbert Gross. Winter term

Lens Design II. Lecture 14: Diffractive elements Herbert Gross. Winter term Les Desig II Lecture 4: Diffractive elemets 9--6 Herbert Gross Witer term 8 www.iap.ui-jea.de Prelimiary Schedule Les Desig II 8 7.. Aberratios ad optimizatio Repetitio 4.. Structural modificatios Zero

More information

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com)

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com) wwwtheopguptacom wwwimathematiciacom For all the Math-Gya Buy books by OP Gupta A Compilatio By : OP Gupta (WhatsApp @ +9-9650 350 0) For more stuffs o Maths, please visit : wwwtheopguptacom Time Allowed

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1 LIGHT & OPTICS Fundamentals of Physics 22 Chapter 34 Chapter 34 Images. Two Types of Images 2. Plane Mirrors 3. Spherical Mirrors 4. Images from Spherical Mirrors 5. Spherical Refracting Surfaces 6. Thin

More information

Lenses & Prism Consider light entering a prism At the plane surface perpendicular light is unrefracted Moving from the glass to the slope side light

Lenses & Prism Consider light entering a prism At the plane surface perpendicular light is unrefracted Moving from the glass to the slope side light Lenses & Prism Consider light entering a prism At the plane surace perpendicular light is unreracted Moving rom the glass to the slope side light is bent away rom the normal o the slope Using Snell's law

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

Parabolic Path to a Best Best-Fit Line:

Parabolic Path to a Best Best-Fit Line: Studet Activity : Fidig the Least Squares Regressio Lie By Explorig the Relatioship betwee Slope ad Residuals Objective: How does oe determie a best best-fit lie for a set of data? Eyeballig it may be

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

CHAPTER- 10 LIGHT REFLECTION AND REFRACTION

CHAPTER- 10 LIGHT REFLECTION AND REFRACTION CHAPTER- 10 LIGHT REFLECTION AND REFRACTION LIGHT Light is a form of energy, which enable us to see the object. Its speed is 3 10 8 m/s in vacuum. Light always travel in straight line. Reflection: The

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

Intro to Scientific Computing: Solutions

Intro to Scientific Computing: Solutions Itro to Scietific Computig: Solutios Dr. David M. Goulet. How may steps does it take to separate 3 objects ito groups of 4? We start with 5 objects ad apply 3 steps of the algorithm to reduce the pile

More information

OCR Statistics 1. Working with data. Section 3: Measures of spread

OCR Statistics 1. Working with data. Section 3: Measures of spread Notes ad Eamples OCR Statistics 1 Workig with data Sectio 3: Measures of spread Just as there are several differet measures of cetral tedec (averages), there are a variet of statistical measures of spread.

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

More information

Physics 1202: Lecture 17 Today s Agenda

Physics 1202: Lecture 17 Today s Agenda Physics 1202: Lecture 17 Today s Agenda Announcements: Team problems today Team 10, 11 & 12: this Thursday Homework #8: due Friday Midterm 2: Tuesday April 10 Office hours if needed (M-2:30-3:30 or TH

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4 1 3.6 I. Combiig Fuctios A. From Equatios Example: Let f(x) = 9 x ad g(x) = 4 f x. Fid (x) g ad its domai. 4 Example: Let f(x) = ad g(x) = x x 4. Fid (f-g)(x) B. From Graphs: Graphical Additio. Example:

More information

The Platonic solids The five regular polyhedra

The Platonic solids The five regular polyhedra The Platoic solids The five regular polyhedra Ole Witt-Hase jauary 7 www.olewitthase.dk Cotets. Polygos.... Topologically cosideratios.... Euler s polyhedro theorem.... Regular ets o a sphere.... The dihedral

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide!

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide! Welcome to: Physics I I m Dr Alex Pettitt, and I ll be your guide! Physics I: x Mirrors and lenses Lecture 13: 6-11-2018 Last lecture: Reflection & Refraction Reflection: Light ray hits surface Ray moves

More information

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical

More information

Computational Geometry

Computational Geometry Computatioal Geometry Chapter 4 Liear programmig Duality Smallest eclosig disk O the Ageda Liear Programmig Slides courtesy of Craig Gotsma 4. 4. Liear Programmig - Example Defie: (amout amout cosumed

More information

Advanced Lens Design

Advanced Lens Design Advaced Les Desig Lecture 4: Diffractive elemets 203-0-28 Herbert Gross Witer term 203 www.iap.ui-jea.de 2 Prelimiary Schedule 5.0. Itroductio Paraxial optics, ideal leses, optical systems, raytrace, Zemax

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

Advanced Lens Design

Advanced Lens Design Advanced Lens Design Lecture 9: Field flattening 04--6 Herbert Gross Winter term 04 www.iap.uni-ena.de Preliminary Schedule.0. Basics Paraxial optics, imaging, Zemax handling 8.0. Optical systems Optical

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5 Morga Kaufma Publishers 26 February, 28 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 5 Set-Associative Cache Architecture Performace Summary Whe CPU performace icreases:

More information

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb Chapter 3 Descriptive Measures Measures of Ceter (Cetral Tedecy) These measures will tell us where is the ceter of our data or where most typical value of a data set lies Mode the value that occurs most

More information

Overview Chapter 12 A display model

Overview Chapter 12 A display model Overview Chapter 12 A display model Why graphics? A graphics model Examples Bjare Stroustrup www.stroustrup.com/programmig 3 Why bother with graphics ad GUI? Why bother with graphics ad GUI? It s very

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Light travels in straight lines, this is referred to as... this means that light does not bend...

Light travels in straight lines, this is referred to as... this means that light does not bend... SNC 2DI - 10.2 Properties of Light and Reflection Light travels in straight lines, this is referred to as... this means that light does not bend... Reflection : Light travels in a straight line as long

More information

Size and Shape Parameters

Size and Shape Parameters Defied i the At the momet there is miimal stadardizatio for defiig particle size shape whe usig automated image aalsis. Although particle size distributio calculatios are defied i several stadards (1,

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

Reading. Subdivision curves and surfaces. Subdivision curves. Chaikin s algorithm. Recommended:

Reading. Subdivision curves and surfaces. Subdivision curves. Chaikin s algorithm. Recommended: Readig Recommeded: Stollitz, DeRose, ad Salesi. Wavelets for Computer Graphics: Theory ad Applicatios, 996, sectio 6.-6.3, 0., A.5. Subdivisio curves ad surfaces Note: there is a error i Stollitz, et al.,

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 26 Propagation of Light Hecht, chapter 5 Spring 2015 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

The Ray model of Light. Reflection. Class 18

The Ray model of Light. Reflection. Class 18 The Ray model of Light Over distances of a terrestrial scale light travels in a straight line. The path of a laser is now the best way we have of defining a straight line. The model of light which assumes

More information

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

Basic Course in Optics 1: Geometrical and Technical Optics

Basic Course in Optics 1: Geometrical and Technical Optics Basic Course i Optics : Geometrical a Techical Optics Norbert Lilei Uiversität Erlage-Nürberg Stautstr. 7/B, D-958 Erlage Basic Course i Optics : Geometrical a Techical Optics Motivatio Optics is a key

More information

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

Essential Physics I. Lecture 13:

Essential Physics I. Lecture 13: Essential Physics I E I Lecture 13: 11-07-16 Reminders No lecture: Monday 18th July (holiday) Essay due: Monday 25th July, 4:30 pm 2 weeks!! Exam: Monday 1st August, 4:30 pm Announcements 250 word essay

More information

Ch. 25 The Reflection of Light

Ch. 25 The Reflection of Light Ch. 25 The Reflection of Light 25. Wave fronts and rays We are all familiar with mirrors. We see images because some light is reflected off the surface of the mirror and into our eyes. In order to describe

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

COMP 558 lecture 6 Sept. 27, 2010

COMP 558 lecture 6 Sept. 27, 2010 Radiometry We have discussed how light travels i straight lies through space. We would like to be able to talk about how bright differet light rays are. Imagie a thi cylidrical tube ad cosider the amout

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

Refraction at a single curved spherical surface

Refraction at a single curved spherical surface Refraction at a single curved spherical surface This is the beginning of a sequence of classes which will introduce simple and complex lens systems We will start with some terminology which will become

More information

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview Chapter 23 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 23-2 Chapter 23 Preview Slide 23-3 Chapter 23 Preview Slide 23-4 1 Chapter 23 Preview Slide 23-5 Chapter 23 Preview

More information

3. LENSES & PRISM

3. LENSES & PRISM 3. LENSES & PRISM. A transparent substance bounded by two surfaces of definite geometrical shape is called lens.. A lens may be considered to be made up of a number of small prisms put together. 3. Principal

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

Reflection & Mirrors

Reflection & Mirrors Reflection & Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media A ray of light is

More information

LIGHT Measuring Angles

LIGHT Measuring Angles 1. Using a protractor LIGHT Measuring Angles This angle is 33 Put vertex (corner) of angle where lines cross One arm of angle goes through middle of 0 This angle is 45 Measure these angles: 66 Light an

More information

CS Polygon Scan Conversion. Slide 1

CS Polygon Scan Conversion. Slide 1 CS 112 - Polygo Sca Coversio Slide 1 Polygo Classificatio Covex All iterior agles are less tha 180 degrees Cocave Iterior agles ca be greater tha 180 degrees Degeerate polygos If all vertices are colliear

More information

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics ENGI 44 Probability ad Statistics Faculty of Egieerig ad Applied Sciece Problem Set Descriptive Statistics. If, i the set of values {,, 3, 4, 5, 6, 7 } a error causes the value 5 to be replaced by 50,

More information

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane.

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane. Laws of reflection Physics UNIT 9 Ray Optics The incident ray, the reflected ray and the normal drawn to the reflecting surface at the point of incidence, all lie in the same plane. The angle of incidence

More information

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2 Lenses lens equation (for a thin lens) 1 1 1 ---- = (η η ) ------ - ------ f r 1 r 2 Where object o f = focal length η = refractive index of lens material η = refractive index of adjacent material r 1

More information

Derivation of perspective stereo projection matrices with depth, shape and magnification consideration

Derivation of perspective stereo projection matrices with depth, shape and magnification consideration Derivatio of perspective stereo projectio matrices with depth, shape ad magificatio cosideratio Patrick Oberthür Jauary 2014 This essay will show how to costruct a pair of stereoscopic perspective projectio

More information

Physics 1C Lecture 26A. Beginning of Chapter 26

Physics 1C Lecture 26A. Beginning of Chapter 26 Physics 1C Lecture 26A Beginning of Chapter 26 Mirrors and Lenses! As we have noted before, light rays can be diverted by optical systems to fool your eye into thinking an object is somewhere that it is

More information

Thick Lenses and the ABCD Formalism

Thick Lenses and the ABCD Formalism Thick Lenses and the ABCD Formalism Thursday, 10/12/2006 Physics 158 Peter Beyersdorf Document info 12. 1 Class Outline Properties of Thick Lenses Paraxial Ray Matrices General Imaging Systems 12. 2 Thick

More information

Chapter 3: Mirrors and Lenses

Chapter 3: Mirrors and Lenses Chapter 3: Mirrors and Lenses Chapter 3: Mirrors and Lenses Lenses Refraction Converging rays Diverging rays Converging Lens Ray tracing rules Image formation Diverging Lens Ray tracing Image formation

More information

General Physics II. Mirrors & Lenses

General Physics II. Mirrors & Lenses General Physics II Mirrors & Lenses Nothing New! For the next several lectures we will be studying geometrical optics. You already know the fundamentals of what is going on!!! Reflection: θ 1 = θ r incident

More information

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ = Radiometry (From Intro to Optics, Pedrotti -4) Radiometry is measurement of Emag radiation (light) Consider a small spherical source Total energy radiating from the body over some time is Q total Radiant

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2 Amount of bending depends on: - angle of incidence - refractive index of medium Recap: Refraction λ 1 (n 2 > n 1 ) Snell s Law: When light passes from one transparent medium to another, the rays will be

More information

Visualization of Gauss-Bonnet Theorem

Visualization of Gauss-Bonnet Theorem Visualizatio of Gauss-Boet Theorem Yoichi Maeda maeda@keyaki.cc.u-tokai.ac.jp Departmet of Mathematics Tokai Uiversity Japa Abstract: The sum of exteral agles of a polygo is always costat, π. There are

More information

Lecture 24 EM waves Geometrical optics

Lecture 24 EM waves Geometrical optics Physics 2102 Jonathan Dowling Lecture 24 EM waves Geometrical optics EM spherical waves The intensity of a wave is power per unit area. If one has a source that emits isotropically (equally in all directions)

More information