Uninformed Search Complexity. Informed Search. Search Revisited. Day 2/3 of Search

Size: px
Start display at page:

Download "Uninformed Search Complexity. Informed Search. Search Revisited. Day 2/3 of Search"

Transcription

1 Informed Search ay 2/3 of Search hap. 4, Ruel & Norvig FS IFS US PFS MEM FS IS Uninformed Search omplexity N = Total number of tate = verage number of ucceor (branching factor) L = Length for tart to goal with mallet number of tep Q = verage ize of the priority queue Lmax = Length of longet path from to any tate lgorithm readth Firt Search i- irection. FS Uniform ot Search Path heck FS Memorizing FS Iterative eepening omplete, If cot > 0 Optimal, If all tran. have ame cot, If all tran. have ame cot, If cot > 0 N N, If all tran. have ame cot Time O(Min(N, L )) O(Min(N,2 L/2 )) O(log(Q)* /ε )) O( Lmax ) O(Min(N, Lmax )) O( L ) Space O(Min(N, L )) O(Min(N,2 L/2 )) O(Min(N, /ε )) O(L max ) O(Min(N, Lmax )) O(L) Material in part from Search Reviited State ready to be expanded (the fringe ) tate expanded o far f() f() f() F E Example: g() =0 g() =5 f() f() f() F E.Store a value f() at each tate 2.hooe the tate with lowet f to expand next 3.Inert it ucceor If f(.) i choen carefully, we will eventually find the lowet-cot equence US (Uniform ot Search): f() = g() = total cot of current hortet path from to Store tate awaiting expanion in a priority queue for efficient retrieval of minimum f Optimal Guaranteed to find lowet cot equence, but

2 Problem: No guidance a to how far any given tate i from the goal Solution: eign a function h(.) that give u an etimate of the ditance between a tate and the goal Our bet gue i that i cloer to than o maybe it i a more promiing tate to expand h() = 3 h() = 6 h() = 0 Heuritic Function h(.) i a heuritic function for the earch problem h() = etimate of the cot of the hortet path from to h(.) cannot be computed olely from the tate and tranition in the current problem If we could, we would already know the optimal path! h(.) i baed on external knowledge about the problem informed earch Quetion:. Typical example of h? 2. How to ue h? 3. What are deirable/neceary propertie of h? Heuritic Function Example X x The traight-line ditance i lower from than from o maybe ha a better chance to be on the bet path Heuritic Function Example X X How could we define h()? h() = Linear-geometric ditance to 2

3 Firt ttempt: Greedy et Firt Search Simplet ue of heuritic function: lway elect the node with mallet h(.) for expanion (i.e., f() = h()) Initialize PQ Inert with value h() in PQ While (PQ not empty and no goal tate i in PQ) Pop the tate with the minimum value of h from PQ For all in ucc() If i not already in PQ and ha not already been viited Inert in PQ with value h( ) Problem 2 2 h = 4 h = 3 h = 2 h = h = 0 What olution do we find in thi cae? 4 Greedy earch clearly not optimal, even though the heuritic function i non-tupid Trying to Fix the Problem g() = 0 g() = 5 f() = g() + h() = 3 h() = 3 h() = 6 f() = g() + h() = g() i the cot from to only h() etimate the cot from to Key inight: g() + h() etimate the total cot of the cheapet path from to going through * algorithm an * Fix the Problem? h = 4 h = 3 h = 2 h = h = 0 {(,4)} {(,5)} (f() = h() + g() = 3 + g() + cot(, ) = ) {(,5) (,)} (f() = h() + g() = + g() + cot(, ) = ) {(,5)} (f() = h() + g() = + g() + cot(, ) = ) {(,6)} 3

4 an * Fix the Problem? h = 4 h = 3 h = 2 h = h = 0 i placed in the queue with {(,4)} backpointer {,} {(,5)} (f() = h() + g() = 3 + g() + cot(, ) = ) {(,5) (,)} lower value of f() i found (f() = h() + g() = + g() + cot(, ) = + with 2 + backpointer 4) {,,} {(,5)} (f() = h() + g() = + g() + cot(, ) = ) {(,6)} * Termination ondition h = 8 S Queue: h = 3 {(,4) (,8)} h = h = 2 {(,4) (,8)} {(,4) (,8)} h = G {(,8) (G,0)} Stop when i popped from the queue! G h = 8 S h = * Termination ondition h = 2 h = h = 3 Queue: {(,4) (,8)} {(,4) (,8)} {(,4) (,8)} {(,8) (G,0)} We have encountered G before we have a chance to viit the branch going through. The problem i that at each tep we ue only an etimate of the path cot to the goal Stop when i popped from the queue! h = Reviiting State h = 8 /2 tate that wa already in the queue i re-viited. How i it priority updated? h = 3 h = 8 h = 4

5 h = Reviiting State h = 8 /2 tate that had been already expanded i re-viited. (areful: Thi i a different example.) h = 3 h = 2 h = Pop tate with lowet f() in queue If = return SUESS Ele expand : For all in ucc (): f = g( ) + h( ) = g() + cot(, ) + h( ) If ( not een before OR previouly expanded with f( ) > f OR in PQ with with f( ) > f ) Promote/Inert with new value f in PQ previou( ) Ele * lgorithm (inide loop) Ignore (becaue it ha been viited and it current path cot f( ) i till the lowet path cot from to ) Under what ondition i * Optimal? h = 6 h = 3 {(,6)} {(,3) (,8)} Final path: {, } with cot = 3 Problem: h(.) i a poor etimate of path cot to the goal tate dmiible Heuritic efine h*() = the true minimal cot to the goal from h i admiible if h() <= h*() for all tate In word: n admiible heuritic never overetimate the cot to the goal. Optimitic etimate of cot to goal. * i guaranteed to find the optimal path if h i admiible 5

6 X X x onitent (Monotonic) Heuritic h() h( ) ot(, ) h() <= h( ) + cot(, ) onitent (Monotonic) Heuritic h() ot(, ) Sort of triangular inequality implie that path cot alway increae + need to expand node only once h( ) h() <= h( ) + cot(, ) Pop tate with lowet f() in queue If = return SUESS Ele expand : For all in ucc (): f = g( ) + h( ) = g() + cot(, ) + h( ) If ( not een before OR previouly expanded with f( ) > f OR in PQ with with f( ) > f ) Promote/Inert with new value f in PQ previou( ) Ele Ignore (becaue it ha been viited and it current path cot f( ) i till the lowet path cot from to ) If h i conitent 8 h() Example 5 3 h()? For the navigation problem: The length of the hortet path i at leat the ditance between and Euclidean ditance i an admiible heuritic What about the puzzle? 6

7 h () = h 2 () = = 8 h = miplaced tile h 2 = Manhattan ditance omparing Heuritic Iterative eepening * with heuritic h * with heuritic h 2 L = 4 tep L = 8 tep 6,300 Overetimate * performance becaue of the tendency of IS to expand tate repeatedly Number of tate expanded doe not include log() time acce to queue L = 2 tep 3.6 x Example from Ruell&Norvig omparing Heuritic h () = h 2 () = = 8 h 2 i larger than h and, at ame time, * eem to be more efficient with h 2. I there a connection between thee two obervation? h 2 dominate h if h 2 () >= h () for all For any two heuritic h 2 and h : If h 2 dominate h then * i more efficient (expand fewer tate) with h 2 Limitation omputation: In the wort cae, we may have to explore all the tate O(N) The good new: * i optimally efficient For a given h(.), no other optimal algorithm will expand fewer node The bad new: Storage i alo potentially exponential O(N) Intuition: ince h <= h*, a larger h i a better approximation of the true path cot

8 I* (Iterative eepening *) Same idea a Iterative eepening FS except ue f() to control depth of earch intead of the number of tranition Example, auming integer cot:. Run FS, topping at tate uch that f() > 0 Stop if goal reached 2. Run FS, topping at tate uch that f() > Stop if goal reached 3. Run FS, topping at tate uch that f() > 2 Stop if goal reached..keep going by increaing the limit on f by every time omplete (auming we ue loop-avoiding FS) Optimal More expenive in computation cot than * Memory order L a in FS Summary Informed earch and heuritic Firt attempt: et-firt Greedy earch * algorithm Optimality ondition on heuritic function ompletene Limitation, pace complexity iue Extenion Nil Nilon. Problem Solving Method in rtificial Intelligence. McGraw Hill (9) Judea Pearl. Heuritic: Intelligent Search Strategie for omputer Problem Solving (984) hapter 3&4 Ruel & Norvig 8

Lecture 14: Minimum Spanning Tree I

Lecture 14: Minimum Spanning Tree I COMPSCI 0: Deign and Analyi of Algorithm October 4, 07 Lecture 4: Minimum Spanning Tree I Lecturer: Rong Ge Scribe: Fred Zhang Overview Thi lecture we finih our dicuion of the hortet path problem and introduce

More information

A Linear Interpolation-Based Algorithm for Path Planning and Replanning on Girds *

A Linear Interpolation-Based Algorithm for Path Planning and Replanning on Girds * Advance in Linear Algebra & Matrix Theory, 2012, 2, 20-24 http://dx.doi.org/10.4236/alamt.2012.22003 Publihed Online June 2012 (http://www.scirp.org/journal/alamt) A Linear Interpolation-Baed Algorithm

More information

Delaunay Triangulation: Incremental Construction

Delaunay Triangulation: Incremental Construction Chapter 6 Delaunay Triangulation: Incremental Contruction In the lat lecture, we have learned about the Lawon ip algorithm that compute a Delaunay triangulation of a given n-point et P R 2 with O(n 2 )

More information

1 The secretary problem

1 The secretary problem Thi i new material: if you ee error, pleae email jtyu at tanford dot edu 1 The ecretary problem We will tart by analyzing the expected runtime of an algorithm, a you will be expected to do on your homework.

More information

Localized Minimum Spanning Tree Based Multicast Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Sensor Networks

Localized Minimum Spanning Tree Based Multicast Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Sensor Networks Localized Minimum Spanning Tree Baed Multicat Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Senor Network Hanne Frey Univerity of Paderborn D-3398 Paderborn hanne.frey@uni-paderborn.de

More information

Bottom Up parsing. Bottom-up parsing. Steps in a shift-reduce parse. 1. s. 2. np. john. john. john. walks. walks.

Bottom Up parsing. Bottom-up parsing. Steps in a shift-reduce parse. 1. s. 2. np. john. john. john. walks. walks. Paring Technologie Outline Paring Technologie Outline Bottom Up paring Paring Technologie Paring Technologie Bottom-up paring Step in a hift-reduce pare top-down: try to grow a tree down from a category

More information

Routing Definition 4.1

Routing Definition 4.1 4 Routing So far, we have only looked at network without dealing with the iue of how to end information in them from one node to another The problem of ending information in a network i known a routing

More information

Shortest Paths Problem. CS 362, Lecture 20. Today s Outline. Negative Weights

Shortest Paths Problem. CS 362, Lecture 20. Today s Outline. Negative Weights Shortet Path Problem CS 6, Lecture Jared Saia Univerity of New Mexico Another intereting problem for graph i that of finding hortet path Aume we are given a weighted directed graph G = (V, E) with two

More information

Contents. shortest paths. Notation. Shortest path problem. Applications. Algorithms and Networks 2010/2011. In the entire course:

Contents. shortest paths. Notation. Shortest path problem. Applications. Algorithms and Networks 2010/2011. In the entire course: Content Shortet path Algorithm and Network 21/211 The hortet path problem: Statement Verion Application Algorithm (for ingle ource p problem) Reminder: relaxation, Dijktra, Variant of Dijktra, Bellman-Ford,

More information

Algorithmic Discrete Mathematics 4. Exercise Sheet

Algorithmic Discrete Mathematics 4. Exercise Sheet Algorithmic Dicrete Mathematic. Exercie Sheet Department of Mathematic SS 0 PD Dr. Ulf Lorenz 0. and. May 0 Dipl.-Math. David Meffert Verion of May, 0 Groupwork Exercie G (Shortet path I) (a) Calculate

More information

Today s Outline. CS 561, Lecture 23. Negative Weights. Shortest Paths Problem. The presence of a negative cycle might mean that there is

Today s Outline. CS 561, Lecture 23. Negative Weights. Shortest Paths Problem. The presence of a negative cycle might mean that there is Today Outline CS 56, Lecture Jared Saia Univerity of New Mexico The path that can be trodden i not the enduring and unchanging Path. The name that can be named i not the enduring and unchanging Name. -

More information

Generic Traverse. CS 362, Lecture 19. DFS and BFS. Today s Outline

Generic Traverse. CS 362, Lecture 19. DFS and BFS. Today s Outline Generic Travere CS 62, Lecture 9 Jared Saia Univerity of New Mexico Travere(){ put (nil,) in bag; while (the bag i not empty){ take ome edge (p,v) from the bag if (v i unmarked) mark v; parent(v) = p;

More information

Stochastic Search and Graph Techniques for MCM Path Planning Christine D. Piatko, Christopher P. Diehl, Paul McNamee, Cheryl Resch and I-Jeng Wang

Stochastic Search and Graph Techniques for MCM Path Planning Christine D. Piatko, Christopher P. Diehl, Paul McNamee, Cheryl Resch and I-Jeng Wang Stochatic Search and Graph Technique for MCM Path Planning Chritine D. Piatko, Chritopher P. Diehl, Paul McNamee, Cheryl Rech and I-Jeng Wang The John Hopkin Univerity Applied Phyic Laboratory, Laurel,

More information

Lecture 14: March 9, 2015

Lecture 14: March 9, 2015 324: tate-space, F, F, Uninformed earch. pring 2015 Lecture 14: March 9, 2015 Lecturer: K.R. howdhary : Professor of (VF) isclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

Chapter S:II (continued)

Chapter S:II (continued) Chapter S:II (continued) II. Baic Search Algorithm Sytematic Search Graph Theory Baic State Space Search Depth-Firt Search Backtracking Breadth-Firt Search Uniform-Cot Search AND-OR Graph Baic Depth-Firt

More information

Midterm 2 March 10, 2014 Name: NetID: # Total Score

Midterm 2 March 10, 2014 Name: NetID: # Total Score CS 3 : Algorithm and Model of Computation, Spring 0 Midterm March 0, 0 Name: NetID: # 3 Total Score Max 0 0 0 0 Grader Don t panic! Pleae print your name and your NetID in the boxe above. Thi i a cloed-book,

More information

Hassan Ghaziri AUB, OSB Beirut, Lebanon Key words Competitive self-organizing maps, Meta-heuristics, Vehicle routing problem,

Hassan Ghaziri AUB, OSB Beirut, Lebanon Key words Competitive self-organizing maps, Meta-heuristics, Vehicle routing problem, COMPETITIVE PROBABIISTIC SEF-ORGANIZING MAPS FOR ROUTING PROBEMS Haan Ghaziri AUB, OSB Beirut, ebanon ghaziri@aub.edu.lb Abtract In thi paper, we have applied the concept of the elf-organizing map (SOM)

More information

Homework 4 Due Thursday Oct 7. CLRS 12-4 (number of binary trees) CLRS (rb insert implementation)

Homework 4 Due Thursday Oct 7. CLRS 12-4 (number of binary trees) CLRS (rb insert implementation) Homework 4 Due Thurday Oct 7 CLRS 12-4 (number of binary tree) CLRS 13.3-6 (rb inert imlementation) 1 Chater 13: Red-Black Tree A red-black tree i a node-colored BST. Each node i colored either black or

More information

A Practical Model for Minimizing Waiting Time in a Transit Network

A Practical Model for Minimizing Waiting Time in a Transit Network A Practical Model for Minimizing Waiting Time in a Tranit Network Leila Dianat, MASc, Department of Civil Engineering, Sharif Univerity of Technology, Tehran, Iran Youef Shafahi, Ph.D. Aociate Profeor,

More information

Lecture Outline. Global flow analysis. Global Optimization. Global constant propagation. Liveness analysis. Local Optimization. Global Optimization

Lecture Outline. Global flow analysis. Global Optimization. Global constant propagation. Liveness analysis. Local Optimization. Global Optimization Lecture Outline Global flow analyi Global Optimization Global contant propagation Livene analyi Adapted from Lecture by Prof. Alex Aiken and George Necula (UCB) CS781(Praad) L27OP 1 CS781(Praad) L27OP

More information

DAROS: Distributed User-Server Assignment And Replication For Online Social Networking Applications

DAROS: Distributed User-Server Assignment And Replication For Online Social Networking Applications DAROS: Ditributed Uer-Server Aignment And Replication For Online Social Networking Application Thuan Duong-Ba School of EECS Oregon State Univerity Corvalli, OR 97330, USA Email: duongba@eec.oregontate.edu

More information

Advanced Encryption Standard and Modes of Operation

Advanced Encryption Standard and Modes of Operation Advanced Encryption Standard and Mode of Operation G. Bertoni L. Breveglieri Foundation of Cryptography - AES pp. 1 / 50 AES Advanced Encryption Standard (AES) i a ymmetric cryptographic algorithm AES

More information

mywbut.com Informed Search Strategies-I

mywbut.com Informed Search Strategies-I Informed Search Strategies-I 1 3.1 Introduction We have outlined the different types of search strategies. In the earlier chapter we have looked at different blind search strategies. Uninformed search

More information

A SIMPLE IMPERATIVE LANGUAGE THE STORE FUNCTION NON-TERMINATING COMMANDS

A SIMPLE IMPERATIVE LANGUAGE THE STORE FUNCTION NON-TERMINATING COMMANDS A SIMPLE IMPERATIVE LANGUAGE Eventually we will preent the emantic of a full-blown language, with declaration, type and looping. However, there are many complication, o we will build up lowly. Our firt

More information

Evolution of Non-Deterministic Incremental Algorithms. Hugues Juille. Volen Center for Complex Systems. Brandeis University. Waltham, MA

Evolution of Non-Deterministic Incremental Algorithms. Hugues Juille. Volen Center for Complex Systems. Brandeis University. Waltham, MA Evolution of Non-Determinitic Incremental Algorithm a a New Approach for Search in State Space Hugue Juille Computer Science Department Volen Center for Complex Sytem Brandei Univerity Waltham, MA 02254-9110

More information

See chapter 8 in the textbook. Dr Muhammad Al Salamah, Industrial Engineering, KFUPM

See chapter 8 in the textbook. Dr Muhammad Al Salamah, Industrial Engineering, KFUPM Goal programming Objective of the topic: Indentify indutrial baed ituation where two or more objective function are required. Write a multi objective function model dla a goal LP Ue weighting um and preemptive

More information

Brief Announcement: Distributed 3/2-Approximation of the Diameter

Brief Announcement: Distributed 3/2-Approximation of the Diameter Brief Announcement: Ditributed /2-Approximation of the Diameter Preliminary verion of a brief announcement to appear at DISC 14 Stephan Holzer MIT holzer@mit.edu David Peleg Weizmann Intitute david.peleg@weizmann.ac.il

More information

Algorithms for Data Structures: Uninformed Search. Phillip Smith 19/11/2013

Algorithms for Data Structures: Uninformed Search. Phillip Smith 19/11/2013 lgorithms for Data Structures: Uninformed Search Phillip Smith 19/11/2013 Representations for Reasoning We know (at least) two models of a world: model of the static states of the world model of the effects

More information

1/19/2010. Usually for static, deterministic environment

1/19/2010. Usually for static, deterministic environment To download the discussion slides, go to http://april.eecs.umich.edu/courses/eecs492_w10/wiki/index.php/iscussion_lides eterministic, tochastic and trategic nvironment eterministic ompletely predictable

More information

Planning of scooping position and approach path for loading operation by wheel loader

Planning of scooping position and approach path for loading operation by wheel loader 22 nd International Sympoium on Automation and Robotic in Contruction ISARC 25 - September 11-14, 25, Ferrara (Italy) 1 Planning of cooping poition and approach path for loading operation by wheel loader

More information

Lecture 17: Shortest Paths

Lecture 17: Shortest Paths Lecture 7: Shortet Path CSE 373: Data Structure and Algorithm CSE 373 9 WI - KASEY CHAMPION Adminitrivia How to Ace the Technical Interview Seion today! - 6-8pm - Sieg 34 No BS CS Career Talk Thurday -

More information

Drawing Lines in 2 Dimensions

Drawing Lines in 2 Dimensions Drawing Line in 2 Dimenion Drawing a traight line (or an arc) between two end point when one i limited to dicrete pixel require a bit of thought. Conider the following line uperimpoed on a 2 dimenional

More information

CS 467/567: Divide and Conquer on the PRAM

CS 467/567: Divide and Conquer on the PRAM CS 467/567: Divide and Conquer on the PRAM Stefan D. Bruda Winter 2017 BINARY SEARCH Problem: Given a equence S 1..n orted in nondecreaing order and a value x, find the ubcript k uch that S i x If n proceor

More information

Topics. Lecture 37: Global Optimization. Issues. A Simple Example: Copy Propagation X := 3 B > 0 Y := 0 X := 4 Y := Z + W A := 2 * 3X

Topics. Lecture 37: Global Optimization. Issues. A Simple Example: Copy Propagation X := 3 B > 0 Y := 0 X := 4 Y := Z + W A := 2 * 3X Lecture 37: Global Optimization [Adapted from note by R. Bodik and G. Necula] Topic Global optimization refer to program optimization that encompa multiple baic block in a function. (I have ued the term

More information

arxiv: v1 [cs.ds] 27 Feb 2018

arxiv: v1 [cs.ds] 27 Feb 2018 Incremental Strong Connectivity and 2-Connectivity in Directed Graph Louka Georgiadi 1, Giueppe F. Italiano 2, and Niko Parotidi 2 arxiv:1802.10189v1 [c.ds] 27 Feb 2018 1 Univerity of Ioannina, Greece.

More information

Shortest Paths with Single-Point Visibility Constraint

Shortest Paths with Single-Point Visibility Constraint Shortet Path with Single-Point Viibility Contraint Ramtin Khoravi Mohammad Ghodi Department of Computer Engineering Sharif Univerity of Technology Abtract Thi paper tudie the problem of finding a hortet

More information

xy-monotone path existence queries in a rectilinear environment

xy-monotone path existence queries in a rectilinear environment CCCG 2012, Charlottetown, P.E.I., Augut 8 10, 2012 xy-monotone path exitence querie in a rectilinear environment Gregory Bint Anil Mahehwari Michiel Smid Abtract Given a planar environment coniting of

More information

An Approximate Algorithm for Solving Oracular POMDPs

An Approximate Algorithm for Solving Oracular POMDPs An Approximate Algorithm for Solving Oracular POMDP Nichola Armtrong-Crew Robotic Intitute Carnegie Mellon Univerity Pittburgh, PA 15213 narmtro@c.cmu.edu Manuela Veloo Computer Science Department Carnegie

More information

Uninformed Search. Models To Be Studied in CS 540. Chapter Search Example: Route Finding

Uninformed Search. Models To Be Studied in CS 540. Chapter Search Example: Route Finding Models To e tudied in 50 Uninformed earch hapter 3. 3. tate-based Models Model task as a graph of all possible states l alled a state-space graph state captures all the relevant information about the past

More information

Markov Random Fields in Image Segmentation

Markov Random Fields in Image Segmentation Preented at SSIP 2011, Szeged, Hungary Markov Random Field in Image Segmentation Zoltan Kato Image Proceing & Computer Graphic Dept. Univerity of Szeged Hungary Zoltan Kato: Markov Random Field in Image

More information

Minimum congestion spanning trees in bipartite and random graphs

Minimum congestion spanning trees in bipartite and random graphs Minimum congetion panning tree in bipartite and random graph M.I. Otrovkii Department of Mathematic and Computer Science St. John Univerity 8000 Utopia Parkway Queen, NY 11439, USA e-mail: otrovm@tjohn.edu

More information

AVL Tree. The height of the BST be as small as possible

AVL Tree. The height of the BST be as small as possible 1 AVL Tree re and Algorithm The height of the BST be a mall a poible The firt balanced BST. Alo called height-balanced tree. Introduced by Adel on-vel kii and Landi in 1962. BST with the following condition:

More information

USING ARTIFICIAL NEURAL NETWORKS TO APPROXIMATE A DISCRETE EVENT STOCHASTIC SIMULATION MODEL

USING ARTIFICIAL NEURAL NETWORKS TO APPROXIMATE A DISCRETE EVENT STOCHASTIC SIMULATION MODEL USING ARTIFICIAL NEURAL NETWORKS TO APPROXIMATE A DISCRETE EVENT STOCHASTIC SIMULATION MODEL Robert A. Kilmer Department of Sytem Engineering Unite State Military Acaemy Wet Point, NY 1996 Alice E. Smith

More information

Cutting Stock by Iterated Matching. Andreas Fritsch, Oliver Vornberger. University of Osnabruck. D Osnabruck.

Cutting Stock by Iterated Matching. Andreas Fritsch, Oliver Vornberger. University of Osnabruck. D Osnabruck. Cutting Stock by Iterated Matching Andrea Fritch, Oliver Vornberger Univerity of Onabruck Dept of Math/Computer Science D-4909 Onabruck andy@informatikuni-onabrueckde Abtract The combinatorial optimization

More information

CORRECTNESS ISSUES AND LOOP INVARIANTS

CORRECTNESS ISSUES AND LOOP INVARIANTS The next everal lecture 2 Study algorithm for earching and orting array. Invetigate their complexity how much time and pace they take Formalize the notion of average-cae and wort-cae complexity CORRECTNESS

More information

CS201: Data Structures and Algorithms. Assignment 2. Version 1d

CS201: Data Structures and Algorithms. Assignment 2. Version 1d CS201: Data Structure and Algorithm Aignment 2 Introduction Verion 1d You will compare the performance of green binary earch tree veru red-black tree by reading in a corpu of text, toring the word and

More information

Interface Tracking in Eulerian and MMALE Calculations

Interface Tracking in Eulerian and MMALE Calculations Interface Tracking in Eulerian and MMALE Calculation Gabi Luttwak Rafael P.O.Box 2250, Haifa 31021,Irael Interface Tracking in Eulerian and MMALE Calculation 3D Volume of Fluid (VOF) baed recontruction

More information

Optimal Multi-Robot Path Planning on Graphs: Complete Algorithms and Effective Heuristics

Optimal Multi-Robot Path Planning on Graphs: Complete Algorithms and Effective Heuristics Optimal Multi-Robot Path Planning on Graph: Complete Algorithm and Effective Heuritic Jingjin Yu Steven M. LaValle Abtract arxiv:507.0390v [c.ro] Jul 05 We tudy the problem of optimal multi-robot path

More information

Uninformed Search. Day 1 & 2 of Search. Russel & Norvig Chap. 3. Material in part from

Uninformed Search. Day 1 & 2 of Search. Russel & Norvig Chap. 3. Material in part from Uninformed Day & 2 of Russel & Norvig Chap. 3 Material in part from http://www.cs.cmu.edu/~awm/tutorials Examples of problems? The Oak Tree Informed versus Uninformed Heuristic versus Blind A Problem a

More information

Quadrilaterals. Learning Objectives. Pre-Activity

Quadrilaterals. Learning Objectives. Pre-Activity Section 3.4 Pre-Activity Preparation Quadrilateral Intereting geometric hape and pattern are all around u when we tart looking for them. Examine a row of fencing or the tiling deign at the wimming pool.

More information

Universität Augsburg. Institut für Informatik. Approximating Optimal Visual Sensor Placement. E. Hörster, R. Lienhart.

Universität Augsburg. Institut für Informatik. Approximating Optimal Visual Sensor Placement. E. Hörster, R. Lienhart. Univerität Augburg à ÊÇÅÍÆ ËÀǼ Approximating Optimal Viual Senor Placement E. Hörter, R. Lienhart Report 2006-01 Januar 2006 Intitut für Informatik D-86135 Augburg Copyright c E. Hörter, R. Lienhart Intitut

More information

Touring a Sequence of Polygons

Touring a Sequence of Polygons Touring a Sequence of Polygon Mohe Dror (1) Alon Efrat (1) Anna Lubiw (2) Joe Mitchell (3) (1) Univerity of Arizona (2) Univerity of Waterloo (3) Stony Brook Univerity Problem: Given a equence of k polygon

More information

Refining SIRAP with a Dedicated Resource Ceiling for Self-Blocking

Refining SIRAP with a Dedicated Resource Ceiling for Self-Blocking Refining SIRAP with a Dedicated Reource Ceiling for Self-Blocking Mori Behnam, Thoma Nolte Mälardalen Real-Time Reearch Centre P.O. Box 883, SE-721 23 Väterå, Sweden {mori.behnam,thoma.nolte}@mdh.e ABSTRACT

More information

Competitive Online Searching for a Ray in the Plane

Competitive Online Searching for a Ray in the Plane Competitive Online Searching for a Ray in the Plane Andrea Eubeler, Rudolf Fleicher 1, Tom Kamphan, Rolf Klein, Elmar Langetepe, and Gerhard Trippen 3 1 Fudan Univerity, Shanghai Key Laboratory of Intelligent

More information

Maneuverable Relays to Improve Energy Efficiency in Sensor Networks

Maneuverable Relays to Improve Energy Efficiency in Sensor Networks Maneuverable Relay to Improve Energy Efficiency in Senor Network Stephan Eidenbenz, Luka Kroc, Jame P. Smith CCS-5, MS M997; Lo Alamo National Laboratory; Lo Alamo, NM 87545. Email: {eidenben, kroc, jpmith}@lanl.gov

More information

Distributed Partial Information Management (DPIM) Schemes for Survivable Networks - Part II

Distributed Partial Information Management (DPIM) Schemes for Survivable Networks - Part II IEEE INFOCO 2002 1 Ditributed Partial Information anagement (DPI) Scheme for Survivable Network - Part II Dahai Xu Chunming Qiao Department of Computer Science and Engineering State Univerity of New York

More information

Key Terms - MinMin, MaxMin, Sufferage, Task Scheduling, Standard Deviation, Load Balancing.

Key Terms - MinMin, MaxMin, Sufferage, Task Scheduling, Standard Deviation, Load Balancing. Volume 3, Iue 11, November 2013 ISSN: 2277 128X International Journal of Advanced Reearch in Computer Science and Software Engineering Reearch Paper Available online at: www.ijarce.com Tak Aignment in

More information

Today s Outline. CS 362, Lecture 19. DFS and BFS. Generic Traverse. BFS and DFS Wrapup Shortest Paths. Jared Saia University of New Mexico

Today s Outline. CS 362, Lecture 19. DFS and BFS. Generic Traverse. BFS and DFS Wrapup Shortest Paths. Jared Saia University of New Mexico Today Outline CS 362, Lecture 9 Jared Saia Univerity of New Mexico BFS and DFS Wrapup Shortet Path Generic Travere DFS and BFS Travere(){ put (nil,) in bag; while (the bag i not empty){ take ome edge (p,v)

More information

CERIAS Tech Report EFFICIENT PARALLEL ALGORITHMS FOR PLANAR st-graphs. by Mikhail J. Atallah, Danny Z. Chen, and Ovidiu Daescu

CERIAS Tech Report EFFICIENT PARALLEL ALGORITHMS FOR PLANAR st-graphs. by Mikhail J. Atallah, Danny Z. Chen, and Ovidiu Daescu CERIAS Tech Report 2003-15 EFFICIENT PARALLEL ALGORITHMS FOR PLANAR t-graphs by Mikhail J. Atallah, Danny Z. Chen, and Ovidiu Daecu Center for Education and Reearch in Information Aurance and Security,

More information

Problem solving and search

Problem solving and search Problem solving and search hapter 3 hapter 3 1 Outline Problem-solving agents Problem types Problem formulation Example problems asic search algorithms hapter 3 3 Example: omania On holiday in omania;

More information

VLSI Design 9. Datapath Design

VLSI Design 9. Datapath Design VLSI Deign 9. Datapath Deign 9. Datapath Deign Lat module: Adder circuit Simple adder Fat addition Thi module omparator Shifter Multi-input Adder Multiplier omparator detector: A = 1 detector: A = 11 111

More information

else end while End References

else end while End References 621-630. [RM89] [SK76] Roenfeld, A. and Melter, R. A., Digital geometry, The Mathematical Intelligencer, vol. 11, No. 3, 1989, pp. 69-72. Sklanky, J. and Kibler, D. F., A theory of nonuniformly digitized

More information

Shortest Paths. Dijkstra's algorithm implementation negative weights. Google maps. Shortest paths in a weighted digraph. Shortest path versions

Shortest Paths. Dijkstra's algorithm implementation negative weights. Google maps. Shortest paths in a weighted digraph. Shortest path versions Google map Shortet Path Dijktra' algorithm implementation negatie eight Reference: Algorithm in Jaa, Chapter http://.c.princeton.edu/alg/p Algorithm in Jaa, th Edition Robert Sedgeick and Kein Wayne Copyright

More information

Towards an Efficient Optimal Trajectory Planner for Multiple Mobile Robots

Towards an Efficient Optimal Trajectory Planner for Multiple Mobile Robots Toward an Efficient Optimal Trajectory Planner for Multiple Mobile Robot Jaon Thoma, Alan Blair, Nick Barne Department of Computer Science and Software Engineering The Univerity of Melbourne, Victoria,

More information

Power Aware Location Aided Routing in Mobile Ad-hoc Networks

Power Aware Location Aided Routing in Mobile Ad-hoc Networks International Journal of Scientific and Reearch Publication, Volume, Iue 1, December 01 1 Power Aware Location Aided Routing in Mobile Ad-hoc Network Anamika Computer Science, Inderprataha Engineering

More information

Diffraction I Version 1.0 : March 12, 2019

Diffraction I Version 1.0 : March 12, 2019 Diffraction I Interference an Diffraction of Light Through Slit: The Jut Give Me The Formulae Verion! Steve Smith March 12, 2019 Content 1 Introuction 3 1.1 Huygen Principle.............................................

More information

Graphs: Finding shortest paths

Graphs: Finding shortest paths /0/01 Graph: Finding hortet path Tecniche di Programmazione Summary Definition Floyd-Warhall algorithm Bellman-Ford-Moore algorithm Dijktra algorithm 1 /0/01 Definition Graph: Finding hortet path Definition:

More information

Reminders. Problem solving and search. Problem-solving agents. Outline. Assignment 0 due 5pm today

Reminders. Problem solving and search. Problem-solving agents. Outline. Assignment 0 due 5pm today ssignment 0 due 5pm today eminders Problem solving and search ssignment 1 posted, due 2/9 ection 105 will move to 9-10am starting next week hapter 3 hapter 3 1 hapter 3 2 Outline Problem-solving agents

More information

A study on turbo decoding iterative algorithms

A study on turbo decoding iterative algorithms Buletinul Ştiinţific al Univerităţii "Politehnica" din Timişoara Seria ELECTRONICĂ şi TELECOMUNICAŢII TRANSACTIONS on ELECTRONICS and COMMUNICATIONS Tom 49(63, Facicola 2, 2004 A tudy on turbo decoding

More information

MAT 155: Describing, Exploring, and Comparing Data Page 1 of NotesCh2-3.doc

MAT 155: Describing, Exploring, and Comparing Data Page 1 of NotesCh2-3.doc MAT 155: Decribing, Exploring, and Comparing Data Page 1 of 8 001-oteCh-3.doc ote for Chapter Summarizing and Graphing Data Chapter 3 Decribing, Exploring, and Comparing Data Frequency Ditribution, Graphic

More information

Karen L. Collins. Wesleyan University. Middletown, CT and. Mark Hovey MIT. Cambridge, MA Abstract

Karen L. Collins. Wesleyan University. Middletown, CT and. Mark Hovey MIT. Cambridge, MA Abstract Mot Graph are Edge-Cordial Karen L. Collin Dept. of Mathematic Weleyan Univerity Middletown, CT 6457 and Mark Hovey Dept. of Mathematic MIT Cambridge, MA 239 Abtract We extend the definition of edge-cordial

More information

Shortest Path Routing in Arbitrary Networks

Shortest Path Routing in Arbitrary Networks Journal of Algorithm, Vol 31(1), 1999 Shortet Path Routing in Arbitrary Network Friedhelm Meyer auf der Heide and Berthold Vöcking Department of Mathematic and Computer Science and Heinz Nixdorf Intitute,

More information

CS 331: Artificial Intelligence Uninformed Search. Real World Search Problems

CS 331: Artificial Intelligence Uninformed Search. Real World Search Problems S 331: rtificial Intelligence Uninformed Search 1 Real World Search Problems 2 1 Simpler Search Problems 3 ssumptions bout Our Environment Fully Observable Deterministic Sequential Static Discrete Single-agent

More information

Minimum Energy Reliable Paths Using Unreliable Wireless Links

Minimum Energy Reliable Paths Using Unreliable Wireless Links Minimum Energy Reliable Path Uing Unreliable Wirele Link Qunfeng Dong Department of Computer Science Univerity of Wiconin-Madion Madion, Wiconin 53706 qunfeng@c.wic.edu Micah Adler Department of Computer

More information

CS 331: Artificial Intelligence Uninformed Search. Real World Search Problems

CS 331: Artificial Intelligence Uninformed Search. Real World Search Problems S 331: rtificial Intelligence Uninformed Search 1 Real World Search Problems 2 1 Simpler Search Problems 3 Static Observable Discrete Deterministic Single-agent ssumptions bout Our Environment 4 2 Search

More information

Polygon Side Lengths NAME DATE TIME

Polygon Side Lengths NAME DATE TIME Home Link 5- Polygon Side Length Find any miing coordinate. Plot and label the point on the coordinate grid. Draw the polygon by connecting the point. y a. Rectangle ABCD A: (, ) B: (-, ) The length of

More information

Lecture 18 Graph-Based Algorithms. CSE373: Design and Analysis of Algorithms

Lecture 18 Graph-Based Algorithms. CSE373: Design and Analysis of Algorithms Lecture 18 Graph-Baed Algorithm CSE: Deign and Anali of Algorithm Shortet Path Problem Modeling problem a graph problem: Road map i a weighted graph: vertice = citie edge = road egment between citie edge

More information

Problem solving and search

Problem solving and search Problem solving and search hapter 3 hapter 3 1 Outline Problem-solving agents Problem types Problem formulation Example problems asic search algorithms hapter 3 2 estricted form of general agent: Problem-solving

More information

3D SMAP Algorithm. April 11, 2012

3D SMAP Algorithm. April 11, 2012 3D SMAP Algorithm April 11, 2012 Baed on the original SMAP paper [1]. Thi report extend the tructure of MSRF into 3D. The prior ditribution i modified to atify the MRF property. In addition, an iterative

More information

An Intro to LP and the Simplex Algorithm. Primal Simplex

An Intro to LP and the Simplex Algorithm. Primal Simplex An Intro to LP and the Simplex Algorithm Primal Simplex Linear programming i contrained minimization of a linear objective over a olution pace defined by linear contraint: min cx Ax b l x u A i an m n

More information

A Novel Feature Line Segment Approach for Pattern Classification

A Novel Feature Line Segment Approach for Pattern Classification 12th International Conference on Information Fuion Seattle, WA, USA, July 6-9, 2009 A Novel Feature Line Segment Approach for Pattern Claification Yi Yang Intitute of Integrated Automation Xi an Jiaotong

More information

Heuristic (Informed) Search

Heuristic (Informed) Search Heuristic (Informed) Search (Where we try to choose smartly) R&N: Chap. 4, Sect. 4.1 3 1 Recall that the ordering of FRINGE defines the search strategy Search Algorithm #2 SEARCH#2 1. INSERT(initial-node,FRINGE)

More information

Problem Solving as State Space Search. Assignments

Problem Solving as State Space Search. Assignments Problem olving as tate pace earch rian. Williams 6.0- ept th, 00 lides adapted from: 6.0 Tomas Lozano Perez, Russell and Norvig IM rian Williams, Fall 0 ssignments Remember: Problem et #: Java warm up

More information

CS 151. Graph Algorithms. Wednesday, November 28, 12

CS 151. Graph Algorithms. Wednesday, November 28, 12 CS 151 Graph Algorithm 1 Unweighted Shortet Path Problem input: a graph G=(V,E) and a tart vertex goal: determine the length of the hortet path from to every vertex in V (and while you re at it, compute

More information

Laboratory Exercise 6

Laboratory Exercise 6 Laboratory Exercie 6 Adder, Subtractor, and Multiplier The purpoe of thi exercie i to examine arithmetic circuit that add, ubtract, and multiply number. Each type of circuit will be implemented in two

More information

Touring a Sequence of Polygons

Touring a Sequence of Polygons Touring a Sequence of Polygon Mohe Dror (1) Alon Efrat (1) Anna Lubiw (2) Joe Mitchell (3) (1) Univerity of Arizona (2) Univerity of Waterloo (3) Stony Brook Univerity Problem: Given a equence of k polygon

More information

Lecture overview. Knowledge-based systems in Bioinformatics, 1MB602, Goal based agents. Search terminology. Specifying a search problem

Lecture overview. Knowledge-based systems in Bioinformatics, 1MB602, Goal based agents. Search terminology. Specifying a search problem Lecture overview Knowledge-based systems in ioinformatics, 1M602, 2006 Lecture 6: earch oal based agents earch terminology pecifying a search problem earch considerations Uninformed search euristic methods

More information

The Data Locality of Work Stealing

The Data Locality of Work Stealing The Data Locality of Work Stealing Umut A. Acar School of Computer Science Carnegie Mellon Univerity umut@c.cmu.edu Guy E. Blelloch School of Computer Science Carnegie Mellon Univerity guyb@c.cmu.edu Robert

More information

3-D Visualization of a Gene Regulatory Network: Stochastic Search for Layouts

3-D Visualization of a Gene Regulatory Network: Stochastic Search for Layouts 3-D Viualization of a Gene Regulatory Network: Stochatic Search for Layout Naoki Hooyama Department of Electronic Engineering, Univerity of Tokyo, Japan hooyama@iba.k.u-tokyo.ac.jp Abtract- In recent year,

More information

Operational Semantics Class notes for a lecture given by Mooly Sagiv Tel Aviv University 24/5/2007 By Roy Ganor and Uri Juhasz

Operational Semantics Class notes for a lecture given by Mooly Sagiv Tel Aviv University 24/5/2007 By Roy Ganor and Uri Juhasz Operational emantic Page Operational emantic Cla note for a lecture given by Mooly agiv Tel Aviv Univerity 4/5/7 By Roy Ganor and Uri Juhaz Reference emantic with Application, H. Nielon and F. Nielon,

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

Outline. Problem solving and search. Problem-solving agents. Example: Romania. Example: Romania. Problem types. Problem-solving agents.

Outline. Problem solving and search. Problem-solving agents. Example: Romania. Example: Romania. Problem types. Problem-solving agents. Outline Problem-solving agents Problem solving and search hapter 3 Problem types Problem formulation Example problems asic search algorithms hapter 3 1 hapter 3 3 estricted form of general agent: Problem-solving

More information

Greedy but Safe Replanning under Kinodynamic Constraints

Greedy but Safe Replanning under Kinodynamic Constraints Intl. Conf. on Robotic and Automation, IEEE pre, Rome, Italy, p. 704 710, 2007 Greedy but Safe Replanning under Kinodynamic Contraint Kota E. Bekri Lydia E. Kavraki Abtract We conider motion planning problem

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

Algorithms. Algorithms 4.4 S HORTEST P ATHS. APIs shortest-paths properties. Dijkstra's algorithm edge-weighted DAGs negative weights

Algorithms. Algorithms 4.4 S HORTEST P ATHS. APIs shortest-paths properties. Dijkstra's algorithm edge-weighted DAGs negative weights Algorithm Shortet path in an edge-weighted digraph R OBERT S EDGEWICK K EVIN W AYNE Given an edge-weighted digraph, find the hortet path from to t. edge-weighted digraph ->. ->. ->7.7 ->7.28 7->.28 ->.2

More information

Exploring Simple Grid Polygons

Exploring Simple Grid Polygons Exploring Simple Grid Polygon Chritian Icking 1, Tom Kamphan 2, Rolf Klein 2, and Elmar Langetepe 2 1 Univerity of Hagen, Praktiche Informatik VI, 58084 Hagen, Germany. 2 Univerity of Bonn, Computer Science

More information

Outline. Solving problems by searching. Prologue. Example: Romania. Uninformed search

Outline. Solving problems by searching. Prologue. Example: Romania. Uninformed search Outline olving problems by searching Uninformed search lides from ussell & Norvig book, revised by ndrea oli Problem-solving agents Problem types Problem formulation Example problems asic search algorithms

More information

Solving problems by searching

Solving problems by searching olving problems by searching Uninformed search lides from ussell & Norvig book, revised by ndrea oli Problem-solving agents Problem types Problem formulation Example problems asic search algorithms Outline

More information

Nearly Constant Approximation for Data Aggregation Scheduling in Wireless Sensor Networks

Nearly Constant Approximation for Data Aggregation Scheduling in Wireless Sensor Networks Nearly Contant Approximation for Data Aggregation Scheduling in Wirele Senor Network Scott C.-H. Huang, Peng-Jun Wan, Chinh T. Vu, Yinghu Li and France Yao Computer Science Department, City Univerity of

More information

Informed Search. CS 486/686 University of Waterloo May 10. cs486/686 Lecture Slides 2005 (c) K. Larson and P. Poupart

Informed Search. CS 486/686 University of Waterloo May 10. cs486/686 Lecture Slides 2005 (c) K. Larson and P. Poupart Informed Search CS 486/686 University of Waterloo May 0 Outline Using knowledge Heuristics Best-first search Greedy best-first search A* search Other variations of A* Back to heuristics 2 Recall from last

More information