PRE-PROCESSING OF HOLOSCOPIC 3D IMAGE FOR AUTOSTEREOSCOPIC 3D DISPLAYS

Size: px
Start display at page:

Download "PRE-PROCESSING OF HOLOSCOPIC 3D IMAGE FOR AUTOSTEREOSCOPIC 3D DISPLAYS"

Transcription

1 PRE-PROCESSING OF HOLOSCOPIC 3D IMAGE FOR AUTOSTEREOSCOPIC 3D DISPLAYS M.R Swash, A. Aggoun, O. Abdulfatah, B. Li, J. C. Fernández, E. Alazawi and E. Tsekleves School of Engineering and Design, Brunel University London, UK ABSTRACT Holoscopic 3D imaging also known as Integral imaging is an attractive technique for creating full color 3D optical models that exist in space independently of the viewer. The constructed 3D scene exhibits continuous parallax throughout the viewing zone. In order to achieve depth control, robust and real-time, a single aperture holoscopic 3D imaging camera is used for recording holoscopic 3D image using a regularly spaced array of microlens arrays, which view the scene at a slightly different angle to its neighbor. However, the main problem is that the microlens array introduces a dark borders in the recorded image and this causes errors at playback on the holoscopic 3D Display. This paper proposes a reference based pre-processing of holoscopic 3D image for autostereoscopic holoscopic 3D displays. The proposed method takes advantages of microlens as reference point to detect amount of introduced dark borders and reduce/remove them from the holoscopic 3D image. representation of the original object space, to scale and in full color. A flat panel display for example one using LCD technology is used to reproduce the captured intensity modulated image and a microlens array re-integrates the captured rays to replay the original scene in full color and with continuous parallax in all directions. The constructed 3D scene can be viewed by more than one person and independently of the viewer s position. Index Terms Holoscopic image, Integral image, 3D, Lens array, Microlens array, 3D Display, Viewpoint, autostereoscopic 1. INTRODUCTION Holoscopic three dimensional (H3D) imaging [1] also known as Integral imaging [2] is attractive for the scientific community, entertainment and display industry to open a new market. 3D images can be applied in broadcasting, communications and many other areas [2][3]. There are many technologies developed for the 3D imaging system such as stereoscopic, multiview 3D however holoscopic 3D imaging as a spatial imaging method is a strong candidate for next generation 3D visualization systems [3] because it is a simpler approach for recording and replay true 3D images. Holoscopic 3D imaging is first proposed by Lippmann [4] in 1908 as a very promising method for capturing and reproducing three-dimensional image [5]-[8]. This technique uses the principle of Fly s eye and hence allows natural viewing of objects. Unlike the Stereo [9][10] or multiview [11] imaging, holoscopic 3D imaging technique creates physical duplicates of light field, so it s a true 3D imaging technique. Compared with Holographic Imaging [12], it uses incoherent radiation and forms an image that is a sampled Fig 1. (a) Recording and (b) replaying in holoscopic 3D imaging system /13/$31.00 c 2013 Crown

2 Holoscopic 3D imaging is based on concurrent capture of many different views of 3D scene by using a Microlens array shown in Fig 1(a). Under each micro-lens, there are certain pixels to depict different view point. On the reconstruction stage shown in Fig 1(b), an appropriate microlens array is placed on top of the LCD display equipment to reproduce the 3D scene [13]. As camera sensor s RGB pixel pitch is extremely small and microlens border introduce large dark borders in the recorded holoscopic 3D image if it is counted in pixel and this dark borders introduce errors to the constructed 3D scene in space. In 2006, A. Aggoun [14] proposed a pre-processing filter based on Hough Transform to correct geometric distortions caused during the capture of 3D image and in very recently, S. Lee et al [15] proposed a portable 3D camera based on integral imaging and they have proposed and applied Fourierholographic stereogram on viewpoint sub-image to generate elemental images which are later stitched to form the final image. In this paper, we propose a new method for pre-processing of holoscopic 3D image that eliminates the dark borders introduced during the capture of 3D image caused by the microlens array. The proposed method uses the microlens array information for detecting amount of dark borders in the holoscopic 3D image and then it uses the microlens array information grid as a reference point to eliminate unwanted dark borders without altering or removing the important visual information in elemental images. It is successfully demonstrated on a single aperture holoscopic 3D camera developed at Brunel University and The principle can also be transferred or applied to other holoscopic 3D cameras or light field 3D camera as it uses the microlens information which is generated by capturing a white background to eliminated dark borders in the holoscopic 3D image. 2. THE PROPOSED PRE-PROCESSING METHOD A holoscopic 3D image is represented entirely by a planar intensity distribution and each microlens views the scene at a slightly different angle to its neighbour however the problem is that the microlens arrays introduce dark borders in recorded holoscopic 3D images. Such distortions are scaling errors which cause noises dark moiré effect on the playback. The lens correction algorithm is applied to correct nonlinear distortions to ensure the 3D images are distortion free and in this paper, lens correction algorithm is not going to be discussed because the paper s main focus is on pre-processing filter, which filters out the unwanted dark borders of holoscopic 3D image before replaying on the 3D display. The block diagram of proposed method is presented in Fig 2. The process is rather simple and fast compare to any other visual data processing because once the camera is setup, a simple histogram filtering algorithm generates microlens grid from a holoscopic 3D image of white background as shown in Fig 3 and then on the capture of holoscopic 3D image, the proposed method uses the calibrated microlens grid information to eliminate the dark borders of the 3D image. Fig 2. Block diagram of proposed method (a) Holoscopic 3D image of White background (b) MLA Grid Fig 3. Generated calibrated grid holoscopic 3D image of a white background (Zoomed in) Once the calibration grid is generated (Fig 4.a), dark borders of the input holoscopic 3D image (Fig 4.b) are eliminated based on the calibrated grid information and a new holoscopic 3D image is formed from stitched elemental images. The calibration grid enables one to accurately

3 eliminate dark borders without effecting visual information. Fig 5 (b) shows eliminated dark borders of holoscopic 3D image. The proposed method does not remove the lens array border completely instead it refines enough the dark borders to reduce dark moiré and also this is because; removing the borders completely will also eliminate 3D visual details of elemental images, which should be avoided. (a) The resulting holoscopic 3D image after applying the proposed method (a) Generated calibrated microlens grid (b) The eliminated dark borders Fig 5. The resulting images after applying the proposed method (b) Original image before applying the proposed method Fig 4. Generated calibrated grid and original holoscopic 3D image As shown in Fig 4, The first step is generating the calibration grid from a white background of holoscopic 3D image (Fig 4.a) and then this information is used to detect and eliminate dark borders introduced by the microlens array in the holoscopic 3D image (Fig 4.b). Fig.5 (b) shows the resulting holoscopic 3D image after the proposed method is applied. Fig 5 (a) shows he eliminated dark borders from the input holoscopic 3D image shown in Fig.4 (b). The proposed method pursues a dynamic calibration approach and the calibration must be fulfilled for every holoscopic 3D camera setup because the dark border noise could various as the camera setup changes. The process is a self-tuning method, which is valid for all type of holoscopic 3D cameras. (a) Original image with thicker (b) resulting image with finer microlens border microlens border Fig 6. Direction comparison of original image with the resulting image after applying the processed image

4 As seen in Fig 6, the resulting holoscopic 3D image after applying the proposed method has refined microlens array borders. In order to test the proposed method, viewpoints of the original image [Fig.4 (b)] and the resulting image [Fig. 5(a)] are extracted and compared in Fig 7. Viewpoints of the original image have running dark line in the first and last viewpoints [Fig.7 (a)] whereas this dark moiré is removed in the image s viewpoints [Fig. 7(b)] of the resulting image. Viewpoint 1 Viewpoint 3 (a) Super resolution image of original image [Fig.4 (b)] Viewpoint 5 Viewpoint 7 Viewpoint 9 Viewpoint 11 Viewpoint 13 (a) Viewpoints of Original image [Fig 4.(b)] (b) Viewpoints of new resulting image [Fig 5.(a)] Fig 7. Viewpoints of the original and the resulting image The test image has low 3D resolution (69 46 microlensimages) so the viewpoint images are very low resolution and hard to see detailed information except running dark line. Further experiment is carried out on the original and resulting image using super resolution algorithm [16], which is applied on both original and resulting and its results are compared in Fig 8. As seen in the Fig 8 (b), super resolution of the proposed method is very clear compared to super resolution of the original image [Fig 8. (a)]. This proves the proposed method eliminate the dark borders without effecting spatial information. (b) super resolution image of resulting image [Fig. 5 (a)] Fig 8. Super resolution of both original and resulting image 3. CONCLUSION In this paper, we have proposed and implemented a preprocessing filter, which eliminates dark borders introduced during the capture of holoscopic 3D image by the microlens. The proposed method has a single step calibration process that is done by capturing a white background which is used to generate a calibration grid and to learn the level of the dark borders introduced by the microlens array. Later the information is used for eliminating the noise from holoscopic 3D images. Such noise should be removed otherwise it introduces dark moiré in the constructed 3D scene. The experimental result is promising as it does not remove any visual information and it measure and eliminate dark borders based on the3d camera s microlens information. As a result the method is valid for any holoscopic 3D cameras or light field cameras. In addition, it is computationally efficient and fast therefore it can be implemented on camera in real time for filtering out dark borders of final image(s). 4. ACKNOWLEDGEMENT This work has been supported by European Commission under Grant FP7-ICT (3DVIVANT). The authors wish to express their gratitude and thanks for the support given throughout the project.

5 5. REFERENCES [1] A. Aggoun, E. Tsekleves, M. R. Swash, D. Zarpalas, A. Dimou, P. Daras, P. Nunes, and L. D. Soares, Immersive 3D Holoscopic Video System, MultiMedia, IEEE, vol. 20, no. 1, pp , [2] F. Okano, 3D TV with integral imaging, Proc. of SPIE, 6983, 69830N, (2008). [3] L. Onural, Television in 3-D: What are the Prospects, Proc. IEEE, 95, (2007). [4] G. Lippmann, La photographie integrale, Acad. Sci., Paris, C. R. 146, (1908). [5] A. Aggoun, 3D Holoscopic Video Content Capture, Manipulation and Display Technologies, Information Optics (WIO), (2010) [6] A. Aggoun, 3D Holoscopic Imaging Technology for Real-Time Volume Processing and Display, High- Quality Visual Experience Signals and Communication Technology, , DOI: / _18, (2010). [7] N. Davies, et. al., Three-dimensional imaging systems: A new development, Applied Optics, 27, 4520, (1988). [8] M. Martínez-Corral and B. Javidi, Formation of real, orthoscopic integral images by smart pixel mapping, Opt. Express, 13, , (2005). [9] H. Jorke and M. Fritz, Stereo projection using interference filters, Proc. of SPIE, 6055, (2006). [10] L. Zhang and W. J. Tam, Stereoscopic Image Generation Based on Depth Images for 3D TV, IEEE Transaction on Broadcasting, 51, , (2005) [11] J.-Y. Son and B. Javidi, Three-Dimensional Imaging Methods Based on Multiview Images, J. Disp. Technol., vol. 1, no. 1, pp , Sep [12] C. Slinger, C. Cameron, and M. Stanley, Computergenerated holography as a generic display technology, IEEE Computer, 38, (2005) [13] P. Papageorgas, S. Athineos, N. Sgouros, N. Theofanous, 3D capturing devices based on the Principles of Integral Photography, T.E.I of Piraeus & University of Paisley, 1st International Scientific Conf. era, Sept ,Tripoli, [14] A. Aggoun, Pre-Processing of Integral Images for 3-D Displays, J. Disp. Technol., vol. 2, no. 4, pp , Dec [15] S. Lee, S. Hong, Y. Kim, and H. Lim, Hologram synthesis of three-dimensional real objects using portable integral imaging camera, Opt. Express, vol. 21, no. 20, pp , [16] O. Abdul Fatah, P. M. P. Lanigan, a. Aggoun, M. R. Swash, E. Alazawi, B. Li, J. C. Fernandez, D. Chen, and E. Tsekleves, Three-dimensional integral image reconstruction based on viewpoint interpolation, 2013 IEEE Int. Symp. Broadband Multimed. Syst. Broadcast., pp. 1 4, Jun

Enhanced Still 3D Integral Images Rendering Based on Multiprocessor Ray Tracing System

Enhanced Still 3D Integral Images Rendering Based on Multiprocessor Ray Tracing System Journal of Image and Graphics, Volume 2, No.2, December 2014 Enhanced Still 3D Integral Images Rendering Based on Multiprocessor Ray Tracing System M. G. Eljdid Computer Sciences Department, Faculty of

More information

Enhanced Techniques 3D Integral Images Video Computer Generated

Enhanced Techniques 3D Integral Images Video Computer Generated Enhanced Techniques 3D Integral Images Video Computer Generated M. G. Eljdid, A. Aggoun, O. H. Youssef Computer Sciences Department, Faculty of Information Technology, Tripoli University, P.O.Box: 13086,

More information

Rectification of distorted elemental image array using four markers in three-dimensional integral imaging

Rectification of distorted elemental image array using four markers in three-dimensional integral imaging Rectification of distorted elemental image array using four markers in three-dimensional integral imaging Hyeonah Jeong 1 and Hoon Yoo 2 * 1 Department of Computer Science, SangMyung University, Korea.

More information

Depth extraction from unidirectional integral image using a modified multi-baseline technique

Depth extraction from unidirectional integral image using a modified multi-baseline technique Depth extraction from unidirectional integral image using a modified multi-baseline technique ChunHong Wu a, Amar Aggoun a, Malcolm McCormick a, S.Y. Kung b a Faculty of Computing Sciences and Engineering,

More information

Enhanced Reconstruction of 3D Shape and Texture from. Integral Photography Images

Enhanced Reconstruction of 3D Shape and Texture from. Integral Photography Images Enhanced Reconstruction of 3D Shape and Texture from Integral Photography Images G. Passalis, N. Sgouros, S. Athineos and T. Theoharis Department of Informatics and Telecommunications, University of Athens,

More information

Post-Production of Holoscopic 3D Image Obaidullah Abdul Fatah

Post-Production of Holoscopic 3D Image Obaidullah Abdul Fatah By Obaidullah Abdul Fatah A thesis submitted for the degree of Doctor of Philosophy in Electronic & Computer Engineering College of Engineering, Design and Physical Sciences Brunel University January 2015

More information

Curved Projection Integral Imaging Using an Additional Large-Aperture Convex Lens for Viewing Angle Improvement

Curved Projection Integral Imaging Using an Additional Large-Aperture Convex Lens for Viewing Angle Improvement Curved Projection Integral Imaging Using an Additional Large-Aperture Convex Lens for Viewing Angle Improvement Joobong Hyun, Dong-Choon Hwang, Dong-Ha Shin, Byung-Goo Lee, and Eun-Soo Kim In this paper,

More information

Three-dimensional integral imaging for orthoscopic real image reconstruction

Three-dimensional integral imaging for orthoscopic real image reconstruction Three-dimensional integral imaging for orthoscopic real image reconstruction Jae-Young Jang, Se-Hee Park, Sungdo Cha, and Seung-Ho Shin* Department of Physics, Kangwon National University, 2-71 Republic

More information

Rectification of elemental image set and extraction of lens lattice by projective image transformation in integral imaging

Rectification of elemental image set and extraction of lens lattice by projective image transformation in integral imaging Rectification of elemental image set and extraction of lens lattice by projective image transformation in integral imaging Keehoon Hong, 1 Jisoo Hong, 1 Jae-Hyun Jung, 1 Jae-Hyeung Park, 2,* and Byoungho

More information

Real-time Integral Photography Holographic Pyramid using a Game Engine

Real-time Integral Photography Holographic Pyramid using a Game Engine Real-time Integral Photography Holographic Pyramid using a Game Engine Shohei Anraku, Toshiaki Yamanouchi and Kazuhisa Yanaka Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi-shi, Kanagawa-ken,

More information

Extended Fractional View Integral Photography Using Slanted Orthogonal Lenticular Lenses

Extended Fractional View Integral Photography Using Slanted Orthogonal Lenticular Lenses Proceedings of the 2 nd World Congress on Electrical Engineering and Computer Systems and Science (EECSS'16) Budapest, Hungary August 16 17, 2016 Paper No. MHCI 112 DOI: 10.11159/mhci16.112 Extended Fractional

More information

Vision-Based 3D Fingertip Interface for Spatial Interaction in 3D Integral Imaging System

Vision-Based 3D Fingertip Interface for Spatial Interaction in 3D Integral Imaging System International Conference on Complex, Intelligent and Software Intensive Systems Vision-Based 3D Fingertip Interface for Spatial Interaction in 3D Integral Imaging System Nam-Woo Kim, Dong-Hak Shin, Dong-Jin

More information

Grid Reconstruction and Skew Angle Estimation in Integral Images Produced using Circular Microlenses

Grid Reconstruction and Skew Angle Estimation in Integral Images Produced using Circular Microlenses Grid Reconstruction and Skew Angle Estimation in Integral Images Produced using Circular Microlenses E T Koufogiannis 1 N P Sgouros 1 M T Ntasi 1 M S Sangriotis 1 1 Department of Informatics and Telecommunications

More information

3D live Immerse Video Audio interactive 2nd Newsletter. October Project Information. Consortium. Contents. Contact. Page 1.

3D live Immerse Video Audio interactive 2nd Newsletter. October Project Information. Consortium. Contents. Contact. Page 1. Consortium Project Information 3D live Immerse Video Audio interactive multimedia 2nd Newsletter Brunel Univesrity Centre for Research & Technology / Hellas Informatics & Telematics Istitute Institut für

More information

Technologies of Digital Holographic Display

Technologies of Digital Holographic Display Technologies of Digital Holographic Display Joonku Hahn Kyungpook National University Outline: 1. Classification of digital holographic display 2. Data capacity, View volume and Resolution 3. Holographic

More information

Holoscopic 3D Image Depth Estimation and Segmentation Techniques Eman F. M. Alazawi

Holoscopic 3D Image Depth Estimation and Segmentation Techniques Eman F. M. Alazawi Holoscopic 3D Image Depth Estimation and Segmentation Techniques by Eman F. M. Alazawi A thesis submitted for the degree of Doctor of Philosophy in Department of Electronic & Computer Engineering Collage

More information

Reconstruction of three-dimensional occluded object using optical flow and triangular mesh reconstruction in integral imaging

Reconstruction of three-dimensional occluded object using optical flow and triangular mesh reconstruction in integral imaging Reconstruction of three-dimensional occluded object using optical flow and triangular mesh reconstruction in integral imaging Jae-Hyun Jung, 1 Keehoon Hong, 1 Gilbae Park, 1 Indeok Chung, 1 Jae-Hyeung

More information

A Fast Image Multiplexing Method Robust to Viewer s Position and Lens Misalignment in Lenticular 3D Displays

A Fast Image Multiplexing Method Robust to Viewer s Position and Lens Misalignment in Lenticular 3D Displays A Fast Image Multiplexing Method Robust to Viewer s Position and Lens Misalignment in Lenticular D Displays Yun-Gu Lee and Jong Beom Ra Department of Electrical Engineering and Computer Science Korea Advanced

More information

Three dimensional Binocular Holographic Display Using Liquid Crystal Shutter

Three dimensional Binocular Holographic Display Using Liquid Crystal Shutter Journal of the Optical Society of Korea Vol. 15, No. 4, December 211, pp. 345-351 DOI: http://dx.doi.org/1.387/josk.211.15.4.345 Three dimensional Binocular Holographic Display Using iquid Crystal Shutter

More information

Crosstalk in multiview 3-D images

Crosstalk in multiview 3-D images Invited Paper Crosstalk in multiview 3-D images * Jung-Young Son, 1 Beom-Ryeol Lee, 2 Min-Chul Park, and 2 Thibault Leportier Dept. of Biomedical Engineering, Konyang University, Nonsan, Chungnam, 320-711,

More information

Shading of a computer-generated hologram by zone plate modulation

Shading of a computer-generated hologram by zone plate modulation Shading of a computer-generated hologram by zone plate modulation Takayuki Kurihara * and Yasuhiro Takaki Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei,Tokyo

More information

New Method of Microimages Generation for 3D Display. Nicolò Incardona *, Seokmin Hong, Manuel Martínez-Corral

New Method of Microimages Generation for 3D Display. Nicolò Incardona *, Seokmin Hong, Manuel Martínez-Corral sensors Article New Method of Microimages Generation for 3D Display Nicolò Incardona *, Seokmin Hong, Manuel Martínez-Corral and Genaro Saavedra Department of Optics, University of Valencia, 46100 Burjassot,

More information

A SXGA 3D Display Processor with Reduced Rendering Data and Enhanced Precision

A SXGA 3D Display Processor with Reduced Rendering Data and Enhanced Precision A SXGA 3D Display Processor with Reduced Rendering Data and Enhanced Precision Seok-Hoon Kim KAIST, Daejeon, Republic of Korea I. INTRODUCTION Recently, there has been tremendous progress in 3D graphics

More information

Near Real-Time 3D Reconstruction from InIm Video Stream

Near Real-Time 3D Reconstruction from InIm Video Stream Near Real-Time 3D Reconstruction from InIm Video Stream D. Chaikalis, G. Passalis, N. Sgouros, D. Maroulis, and T. Theoharis Department of Informatics and Telecommunications, University of Athens, Ilisia

More information

CODING OF 3D HOLOSCOPIC IMAGE BY USING SPATIAL CORRELATION OF RENDERED VIEW IMAGES. Deyang Liu, Ping An, Chao Yang, Ran Ma, Liquan Shen

CODING OF 3D HOLOSCOPIC IMAGE BY USING SPATIAL CORRELATION OF RENDERED VIEW IMAGES. Deyang Liu, Ping An, Chao Yang, Ran Ma, Liquan Shen CODING OF 3D OLOSCOPIC IMAGE BY USING SPATIAL CORRELATION OF RENDERED IEW IMAGES Deyang Liu, Ping An, Chao Yang, Ran Ma, Liquan Shen School of Communication and Information Engineering, Shanghai University,

More information

Invited Paper. Nukui-Kitamachi, Koganei, Tokyo, , Japan ABSTRACT 1. INTRODUCTION

Invited Paper. Nukui-Kitamachi, Koganei, Tokyo, , Japan ABSTRACT 1. INTRODUCTION Invited Paper Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction K. Wakunami* a, R. Oi a, T. Senoh a, H. Sasaki a, Y. Ichihashi a, K. Yamamoto

More information

3.3 Implementation of a Lenticular 3D Display

3.3 Implementation of a Lenticular 3D Display 56 Chapter 3 integral imaging can be understood as the number of different pixel data within a certain viewing angle. The angular resolution is determined by the number of pixels on the flat-panel display

More information

Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array

Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array Yunhee Kim, Gilbae Park, Jae-Hyun Jung, Joohwan Kim, and Byoungho

More information

WATERMARKING FOR LIGHT FIELD RENDERING 1

WATERMARKING FOR LIGHT FIELD RENDERING 1 ATERMARKING FOR LIGHT FIELD RENDERING 1 Alper Koz, Cevahir Çığla and A. Aydın Alatan Department of Electrical and Electronics Engineering, METU Balgat, 06531, Ankara, TURKEY. e-mail: koz@metu.edu.tr, cevahir@eee.metu.edu.tr,

More information

Digital holographic display with two-dimensional and threedimensional convertible feature by high speed switchable diffuser

Digital holographic display with two-dimensional and threedimensional convertible feature by high speed switchable diffuser https://doi.org/10.2352/issn.2470-1173.2017.5.sd&a-366 2017, Society for Imaging Science and Technology Digital holographic display with two-dimensional and threedimensional convertible feature by high

More information

Reduced Dual-Mode Mobile 3D Display Using Crosstalk

Reduced Dual-Mode Mobile 3D Display Using Crosstalk Reduced Dual-Mode Mobile 3D Display Using Crosstalk Priti Khaire, Student (BE), Computer Science and Engineering Department, Shri Sant Gadge Baba College of Engineering and Technology, Bhusawal, North

More information

Planar pattern for automatic camera calibration

Planar pattern for automatic camera calibration Planar pattern for automatic camera calibration Beiwei Zhang Y. F. Li City University of Hong Kong Department of Manufacturing Engineering and Engineering Management Kowloon, Hong Kong Fu-Chao Wu Institute

More information

Computational Photography

Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2010 Today Light fields Introduction Light fields Signal processing analysis Light field cameras Application Introduction Pinhole camera

More information

3D Autostereoscopic Display Image Generation Framework using Direct Light Field Rendering

3D Autostereoscopic Display Image Generation Framework using Direct Light Field Rendering 3D Autostereoscopic Display Image Generation Framework using Direct Light Field Rendering Young Ju Jeong, Yang Ho Cho, Hyoseok Hwang, Hyun Sung Chang, Dongkyung Nam, and C. -C Jay Kuo; Samsung Advanced

More information

FAST MOTION ESTIMATION WITH DUAL SEARCH WINDOW FOR STEREO 3D VIDEO ENCODING

FAST MOTION ESTIMATION WITH DUAL SEARCH WINDOW FOR STEREO 3D VIDEO ENCODING FAST MOTION ESTIMATION WITH DUAL SEARCH WINDOW FOR STEREO 3D VIDEO ENCODING 1 Michal Joachimiak, 2 Kemal Ugur 1 Dept. of Signal Processing, Tampere University of Technology, Tampere, Finland 2 Jani Lainema,

More information

DIGITAL COMPUTATIONAL IMAGING Yaroslavsky L. P.

DIGITAL COMPUTATIONAL IMAGING Yaroslavsky L. P. DIGITAL COMPUTATIONAL IMAGING Yaroslavsy L. P. School of Electrical Engineering, Department of Physical Electronics, Faculty of Engineering, Tel Aviv University, Israel Introduction Imaging has always

More information

Pattern Feature Detection for Camera Calibration Using Circular Sample

Pattern Feature Detection for Camera Calibration Using Circular Sample Pattern Feature Detection for Camera Calibration Using Circular Sample Dong-Won Shin and Yo-Sung Ho (&) Gwangju Institute of Science and Technology (GIST), 13 Cheomdan-gwagiro, Buk-gu, Gwangju 500-71,

More information

LED holographic imaging by spatial-domain diffraction computation of. textured models

LED holographic imaging by spatial-domain diffraction computation of. textured models LED holographic imaging by spatial-domain diffraction computation of textured models Ding-Chen Chen, Xiao-Ning Pang, Yi-Cong Ding, Yi-Gui Chen, and Jian-Wen Dong* School of Physics and Engineering, and

More information

Head Tracking Three-Dimensional Integral Imaging Display Using Smart Pseudoscopic-to-Orthoscopic Conversion

Head Tracking Three-Dimensional Integral Imaging Display Using Smart Pseudoscopic-to-Orthoscopic Conversion 542 JOURNAL OF DISPLAY TECHNOLOGY, VOL. 12, NO. 6, JUNE 2016 Head Tracking Three-Dimensional Integral Imaging Display Using Smart Pseudoscopic-to-Orthoscopic Conversion Xin Shen, Manuel Martinez Corral,

More information

Inline Computational Imaging: Single Sensor Technology for Simultaneous 2D/3D High Definition Inline Inspection

Inline Computational Imaging: Single Sensor Technology for Simultaneous 2D/3D High Definition Inline Inspection Inline Computational Imaging: Single Sensor Technology for Simultaneous 2D/3D High Definition Inline Inspection Svorad Štolc et al. svorad.stolc@ait.ac.at AIT Austrian Institute of Technology GmbH Center

More information

Stereo Image Rectification for Simple Panoramic Image Generation

Stereo Image Rectification for Simple Panoramic Image Generation Stereo Image Rectification for Simple Panoramic Image Generation Yun-Suk Kang and Yo-Sung Ho Gwangju Institute of Science and Technology (GIST) 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 Korea Email:{yunsuk,

More information

Three-dimensional directional display and pickup

Three-dimensional directional display and pickup Three-dimensional directional display and pickup Joonku Hahn NCRCAPAS School of Electrical Engineering Seoul National University CONTENTS I. Introduction II. Three-dimensional directional display 2.1 Uniform

More information

Devices displaying 3D image. RNDr. Róbert Bohdal, PhD.

Devices displaying 3D image. RNDr. Róbert Bohdal, PhD. Devices displaying 3D image RNDr. Róbert Bohdal, PhD. 1 Types of devices displaying 3D image Stereoscopic Re-imaging Volumetric Autostereoscopic Holograms mounted displays, optical head-worn displays Pseudo

More information

Perceptual Quality Improvement of Stereoscopic Images

Perceptual Quality Improvement of Stereoscopic Images Perceptual Quality Improvement of Stereoscopic Images Jong In Gil and Manbae Kim Dept. of Computer and Communications Engineering Kangwon National University Chunchon, Republic of Korea, 200-701 E-mail:

More information

Flexible Calibration of a Portable Structured Light System through Surface Plane

Flexible Calibration of a Portable Structured Light System through Surface Plane Vol. 34, No. 11 ACTA AUTOMATICA SINICA November, 2008 Flexible Calibration of a Portable Structured Light System through Surface Plane GAO Wei 1 WANG Liang 1 HU Zhan-Yi 1 Abstract For a portable structured

More information

Frequency domain depth filtering of integral imaging

Frequency domain depth filtering of integral imaging Frequency domain depth filtering of integral imaging Jae-Hyeung Park * and Kyeong-Min Jeong School of Electrical & Computer Engineering, Chungbuk National University, 410 SungBong-Ro, Heungduk-Gu, Cheongju-Si,

More information

Efficient Viewer-Centric Depth Adjustment Based on Virtual Fronto-Parallel Planar Projection in Stereo 3D Images

Efficient Viewer-Centric Depth Adjustment Based on Virtual Fronto-Parallel Planar Projection in Stereo 3D Images 326 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 2, FEBRUARY 2014 Efficient Viewer-Centric Depth Adjustment Based on Virtual Fronto-Parallel Planar Projection in Stereo 3D Images Hanje Park, Hoonjae Lee,

More information

Viewer for an Integral 3D imaging system

Viewer for an Integral 3D imaging system Author: Advisor: Dr. Artur Carnicer Gonzalez Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain*. Abstract: In this work, we study a technique called Integral imaging. This

More information

A Survey of Light Source Detection Methods

A Survey of Light Source Detection Methods A Survey of Light Source Detection Methods Nathan Funk University of Alberta Mini-Project for CMPUT 603 November 30, 2003 Abstract This paper provides an overview of the most prominent techniques for light

More information

Adaptive Zoom Distance Measuring System of Camera Based on the Ranging of Binocular Vision

Adaptive Zoom Distance Measuring System of Camera Based on the Ranging of Binocular Vision Adaptive Zoom Distance Measuring System of Camera Based on the Ranging of Binocular Vision Zhiyan Zhang 1, Wei Qian 1, Lei Pan 1 & Yanjun Li 1 1 University of Shanghai for Science and Technology, China

More information

3D image reconstruction with controllable spatial filtering based on correlation of multiple periodic functions in computational integral imaging

3D image reconstruction with controllable spatial filtering based on correlation of multiple periodic functions in computational integral imaging 3D image reconstruction with controllable spatial filtering based on correlation of multiple periodic functions in computational integral imaging Jae-Young Jang 1, Myungjin Cho 2, *, and Eun-Soo Kim 1

More information

F..\ Compression of IP Images for Autostereoscopic 3D Imaging Applications

F..\ Compression of IP Images for Autostereoscopic 3D Imaging Applications Compression of IP Images for Autostereoscopic 3D Imaging Applications N.P.Sgouros', A.G.Andreou', MSSangriotis', P.G.Papageorgas2, D.M.Maroulis', N.G.Theofanous' 1. Dep. of Informatics and Telecommunications,

More information

This paper is part of the following report: UNCLASSIFIED

This paper is part of the following report: UNCLASSIFIED UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11846 TITLE: Stream Cipher Based on Pseudo-Random Number Generation Using Optical Affine Transformation DISTRIBUTION: Approved

More information

Effect of fundamental depth resolution and cardboard effect to perceived depth resolution on multi-view display

Effect of fundamental depth resolution and cardboard effect to perceived depth resolution on multi-view display Effect of fundamental depth resolution and cardboard effect to perceived depth resolution on multi-view display Jae-Hyun Jung, 1 Jiwoon Yeom, 1 Jisoo Hong, 1 Keehoon Hong, 1 Sung-Wook Min, 2,* and Byoungho

More information

Real-time Generation and Presentation of View-dependent Binocular Stereo Images Using a Sequence of Omnidirectional Images

Real-time Generation and Presentation of View-dependent Binocular Stereo Images Using a Sequence of Omnidirectional Images Real-time Generation and Presentation of View-dependent Binocular Stereo Images Using a Sequence of Omnidirectional Images Abstract This paper presents a new method to generate and present arbitrarily

More information

Mobile 3D Display Technology to Realize Natural 3D Images

Mobile 3D Display Technology to Realize Natural 3D Images 3D Display 3D Image Mobile Device Special Articles on User Interface Research New Interface Design of Mobile Phones 1. Introduction Nowadays, as a new method of cinematic expression continuing from the

More information

A New Data Format for Multiview Video

A New Data Format for Multiview Video A New Data Format for Multiview Video MEHRDAD PANAHPOUR TEHRANI 1 AKIO ISHIKAWA 1 MASASHIRO KAWAKITA 1 NAOMI INOUE 1 TOSHIAKI FUJII 2 This paper proposes a new data forma that can be used for multiview

More information

Fast Response Fresnel Liquid Crystal Lens for 2D/3D Autostereoscopic Display

Fast Response Fresnel Liquid Crystal Lens for 2D/3D Autostereoscopic Display Invited Paper Fast Response Fresnel Liquid Crystal Lens for 2D/3D Autostereoscopic Display Yi-Pai Huang* b, Chih-Wei Chen a, Yi-Ching Huang a a Department of Photonics & Institute of Electro-Optical Engineering,

More information

Prospective Novel 3D Display Technology Development

Prospective Novel 3D Display Technology Development 1 Prospective Novel 3D Display Technology Development Yasuhiro Takaki Institute of Engineering Tokyo University of Agriculture and Technology TUAT 2 Tokyo University of Agriculture and Technology http://www.tuat.ac.jp

More information

Wide-viewing integral imaging system using polarizers and light barriers array

Wide-viewing integral imaging system using polarizers and light barriers array Yuan et al. Journal of the European Optical Society-Rapid Publications (2017) 13:25 DOI 10.1186/s41476-017-0052-x Journal of the European Optical Society-Rapid Publications RESEARCH Open Access Wide-viewing

More information

Department of Photonics, NCTU, Hsinchu 300, Taiwan. Applied Electromagnetic Res. Inst., NICT, Koganei, Tokyo, Japan

Department of Photonics, NCTU, Hsinchu 300, Taiwan. Applied Electromagnetic Res. Inst., NICT, Koganei, Tokyo, Japan A Calibrating Method for Projected-Type Auto-Stereoscopic 3D Display System with DDHOE Ping-Yen Chou 1, Ryutaro Oi 2, Koki Wakunami 2, Kenji Yamamoto 2, Yasuyuki Ichihashi 2, Makoto Okui 2, Jackin Boaz

More information

Video Communication Ecosystems. Research Challenges for Immersive. over Future Internet. Converged Networks & Services (CONES) Research Group

Video Communication Ecosystems. Research Challenges for Immersive. over Future Internet. Converged Networks & Services (CONES) Research Group Research Challenges for Immersive Video Communication Ecosystems over Future Internet Tasos Dagiuklas, Ph.D., SMIEEE Assistant Professor Converged Networks & Services (CONES) Research Group Hellenic Open

More information

3DSA

3DSA Proceedings of the International Conference on 3D Systems and Applications 3DSA 2010 www.3dsa.org/ i International Conference on 3D Systems and Applications General Academy Center, Tokyo, Japan, May 19-21,

More information

Natural Viewing 3D Display

Natural Viewing 3D Display We will introduce a new category of Collaboration Projects, which will highlight DoCoMo s joint research activities with universities and other companies. DoCoMo carries out R&D to build up mobile communication,

More information

FEATURE. Measurement of Static Convergence and Accommodation Responses to Images of Integral Photography

FEATURE. Measurement of Static Convergence and Accommodation Responses to Images of Integral Photography Measurement of Static onvergence and ccommodation Responses to Images of Integral Photography Hitoshi HIUR, Kazuteru KOMINE, Jun RI and Tomoyuki MISHIN Integral photography is a method to display 3 optical

More information

Intermediate view synthesis considering occluded and ambiguously referenced image regions 1. Carnegie Mellon University, Pittsburgh, PA 15213

Intermediate view synthesis considering occluded and ambiguously referenced image regions 1. Carnegie Mellon University, Pittsburgh, PA 15213 1 Intermediate view synthesis considering occluded and ambiguously referenced image regions 1 Jeffrey S. McVeigh *, M. W. Siegel ** and Angel G. Jordan * * Department of Electrical and Computer Engineering

More information

Department of Game Mobile Contents, Keimyung University, Daemyung3-Dong Nam-Gu, Daegu , Korea

Department of Game Mobile Contents, Keimyung University, Daemyung3-Dong Nam-Gu, Daegu , Korea Image quality enhancement of computational integral imaging reconstruction for partially occluded objects using binary weighting mask on occlusion areas Joon-Jae Lee, 1 Byung-Gook Lee, 2 and Hoon Yoo 3,

More information

FLY THROUGH VIEW VIDEO GENERATION OF SOCCER SCENE

FLY THROUGH VIEW VIDEO GENERATION OF SOCCER SCENE FLY THROUGH VIEW VIDEO GENERATION OF SOCCER SCENE Naho INAMOTO and Hideo SAITO Keio University, Yokohama, Japan {nahotty,saito}@ozawa.ics.keio.ac.jp Abstract Recently there has been great deal of interest

More information

MULTIDIMENSIONAL OPTICAL SENSING, IMAGING, AND VISUALIZATION SYSTEMS (MOSIS)

MULTIDIMENSIONAL OPTICAL SENSING, IMAGING, AND VISUALIZATION SYSTEMS (MOSIS) MULTIDIMENSIONAL OPTICAL SENSING, IMAGING, AND VISUALIZATION SYSTEMS (MOSIS) Prof. Bahram Javidi* Board of Trustees Distinguished Professor *University of Connecticut Bahram.Javidi@uconn.edu Overview of

More information

A Novel Filling Disocclusion Method Based on Background Extraction. in Depth-Image-Based-Rendering

A Novel Filling Disocclusion Method Based on Background Extraction. in Depth-Image-Based-Rendering A Novel Filling Disocclusion Method Based on Background Extraction in Depth-Image-Based-Rendering Zhenguo Lu,Yuesheng Zhu,Jian Chen ShenZhen Graduate School,Peking University,China Email:zglu@sz.pku.edu.cn,zhuys@pkusz.edu.cn

More information

MEASUREMENT OF PERCEIVED SPATIAL RESOLUTION IN 3D LIGHT-FIELD DISPLAYS

MEASUREMENT OF PERCEIVED SPATIAL RESOLUTION IN 3D LIGHT-FIELD DISPLAYS MEASUREMENT OF PERCEIVED SPATIAL RESOLUTION IN 3D LIGHT-FIELD DISPLAYS Péter Tamás Kovács 1, 2, Kristóf Lackner 1, 2, Attila Barsi 1, Ákos Balázs 1, Atanas Boev 2, Robert Bregović 2, Atanas Gotchev 2 1

More information

Extracting Sound Information from High-speed Video Using Three-dimensional Shape Measurement Method

Extracting Sound Information from High-speed Video Using Three-dimensional Shape Measurement Method Extracting Sound Information from High-speed Video Using Three-dimensional Shape Measurement Method Yusei Yamanaka, Kohei Yatabe, Ayumi Nakamura, Yusuke Ikeda and Yasuhiro Oikawa Department of Intermedia

More information

Computational Photography: Real Time Plenoptic Rendering

Computational Photography: Real Time Plenoptic Rendering Computational Photography: Real Time Plenoptic Rendering Andrew Lumsdaine, Georgi Chunev Indiana University Todor Georgiev Adobe Systems Who was at the Keynote Yesterday? 2 Overview Plenoptic cameras Rendering

More information

Dynamic three-dimensional sensing for specular surface with monoscopic fringe reflectometry

Dynamic three-dimensional sensing for specular surface with monoscopic fringe reflectometry Dynamic three-dimensional sensing for specular surface with monoscopic fringe reflectometry Lei Huang,* Chi Seng Ng, and Anand Krishna Asundi School of Mechanical and Aerospace Engineering, Nanyang Technological

More information

Fourier, Fresnel and Image CGHs of three-dimensional objects observed from many different projections

Fourier, Fresnel and Image CGHs of three-dimensional objects observed from many different projections Fourier, Fresnel and Image CGHs of three-dimensional objects observed from many different projections David Abookasis and Joseph Rosen Ben-Gurion University of the Negev Department of Electrical and Computer

More information

View Generation for Free Viewpoint Video System

View Generation for Free Viewpoint Video System View Generation for Free Viewpoint Video System Gangyi JIANG 1, Liangzhong FAN 2, Mei YU 1, Feng Shao 1 1 Faculty of Information Science and Engineering, Ningbo University, Ningbo, 315211, China 2 Ningbo

More information

DEPTH AND ANGULAR RESOLUTION IN PLENOPTIC CAMERAS. M. Damghanian, R. Olsson, M. Sjöström

DEPTH AND ANGULAR RESOLUTION IN PLENOPTIC CAMERAS. M. Damghanian, R. Olsson, M. Sjöström This material is published in the open archive of Mid Sweden University DIVA http://miun.diva-portal.org to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein

More information

Camera Based Automatic Calibration for the Varrier System

Camera Based Automatic Calibration for the Varrier System Camera Based Automatic Calibration for the Varrier System Jinghua Ge, Dan Sandin, Tom Peterka, Todd Margolis, Tom DeFanti Electronic Visualization Laboratory University of Illinois at Chicago jinghua@evl.uic.edu

More information

HEVC-based 3D holoscopic video coding using self-similarity compensated prediction

HEVC-based 3D holoscopic video coding using self-similarity compensated prediction Manuscript 1 HEVC-based 3D holoscopic video coding using self-similarity compensated prediction Caroline Conti *, Luís Ducla Soares, and Paulo Nunes Instituto Universitário de Lisboa (ISCTE IUL), Instituto

More information

http://www.diva-portal.org This is the published version of a paper presented at 2018 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), Stockholm Helsinki Stockholm,

More information

Multi-projector-type immersive light field display

Multi-projector-type immersive light field display Multi-projector-type immersive light field display Qing Zhong ( é) 1, Beishi Chen (í ì) 1, Haifeng Li (Ó ô) 1, Xu Liu ( Ê) 1, Jun Xia ( ) 2, Baoping Wang ( ) 2, and Haisong Xu (Å Ø) 1 1 State Key Laboratory

More information

Digital Holographic Display System with Large Screen Based on Viewing Window Movement for 3D Video Service

Digital Holographic Display System with Large Screen Based on Viewing Window Movement for 3D Video Service Digital Holographic Display System with Large Screen Based on Viewing Window Movement for 3D Video Service Minsik Park, Byung Gyu Chae, Hyun-Eui Kim, Joonku Hahn, Hwi Kim, Cheong Hee Park, Kyungae Moon,

More information

Reprint. from the Journal. of the SID

Reprint. from the Journal. of the SID A 23-in. full-panel-resolution autostereoscopic LCD with a novel directional backlight system Akinori Hayashi (SID Member) Tomohiro Kometani Akira Sakai (SID Member) Hiroshi Ito Abstract An autostereoscopic

More information

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful.

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful. Project 4 Results Representation SIFT and HoG are popular and successful. Data Hugely varying results from hard mining. Learning Non-linear classifier usually better. Zachary, Hung-I, Paul, Emanuel Project

More information

Miniaturized Camera Systems for Microfactories

Miniaturized Camera Systems for Microfactories Miniaturized Camera Systems for Microfactories Timo Prusi, Petri Rokka, and Reijo Tuokko Tampere University of Technology, Department of Production Engineering, Korkeakoulunkatu 6, 33720 Tampere, Finland

More information

A New H.264-Based Rate Control Algorithm for Stereoscopic Video Coding

A New H.264-Based Rate Control Algorithm for Stereoscopic Video Coding A New H.264-Based ate Control Algorithm for Stereoscopic Video Coding Yi Liao, Wencheng Yang, and Gangyi Jiang International Science Index, Computer and Information Engineering waset.org/publication/161

More information

Non-Linear Masking based Contrast Enhancement via Illumination Estimation

Non-Linear Masking based Contrast Enhancement via Illumination Estimation https://doi.org/10.2352/issn.2470-1173.2018.13.ipas-389 2018, Society for Imaging Science and Technology Non-Linear Masking based Contrast Enhancement via Illumination Estimation Soonyoung Hong, Minsub

More information

Depth-fused display with improved viewing characteristics

Depth-fused display with improved viewing characteristics Depth-fused display with improved viewing characteristics Soon-Gi Park, Jae-Hyun Jung, Youngmo Jeong, and Byoungho Lee* School of Electrical Engineering, Seoul National University, Gwanak-gu Gwanakro 1,

More information

A Liver Surgery Simulator Using Full HD Autostereoscopic Displays

A Liver Surgery Simulator Using Full HD Autostereoscopic Displays ITE Trans. on MTA Vol. 6, No. 1, pp. 11-17 (2018) Copyright 2018 by ITE Transactions on Media Technology and Applications (MTA) A Liver Surgery Simulator Using Full HD Autostereoscopic Displays Hideki

More information

Augmented Reality: Easy on the Eyes 26 OPTICS & PHOTONICS NEWS FEBRUARY 2015

Augmented Reality: Easy on the Eyes 26 OPTICS & PHOTONICS NEWS FEBRUARY 2015 Augmented Reality: 26 OPTICS & PHOTONICS NEWS FEBRUARY 2015 Easy on the Eyes Hong Hua and Bahram Javidi Artist s interpretation of augmented-reality view, applied to the Pyramide du Louvre, Paris, France.

More information

Head Mounted Display for Mixed Reality using Holographic Optical Elements

Head Mounted Display for Mixed Reality using Holographic Optical Elements Mem. Fac. Eng., Osaka City Univ., Vol. 40, pp. 1-6 (1999) Head Mounted Display for Mixed Reality using Holographic Optical Elements Takahisa ANDO*, Toshiaki MATSUMOTO**, Hideya Takahashi*** and Eiji SHIMIZU****

More information

A High Quality/Low Computational Cost Technique for Block Matching Motion Estimation

A High Quality/Low Computational Cost Technique for Block Matching Motion Estimation A High Quality/Low Computational Cost Technique for Block Matching Motion Estimation S. López, G.M. Callicó, J.F. López and R. Sarmiento Research Institute for Applied Microelectronics (IUMA) Department

More information

DEPTH ESTIMATION USING STEREO FISH-EYE LENSES

DEPTH ESTIMATION USING STEREO FISH-EYE LENSES DEPTH ESTMATON USNG STEREO FSH-EYE LENSES Shishir Shah and J. K. Aggamal Computer and Vision Research Center Department of Electrical and Computer Engineering, ENS 520 The University of Texas At Austin

More information

QUALITY MEASUREMENTS OF 3D LIGHT-FIELD DISPLAYS

QUALITY MEASUREMENTS OF 3D LIGHT-FIELD DISPLAYS Video Processing and Quality Metrics for Consumer Electronics, VPQM 2014, Chandler, Arizona, USA, Jan. 2014, 6 pages. QUALITY MEASUREMENTS OF 3D LIGHT-FIELD DISPLAYS Péter Tamás Kovács 1, 2, Atanas Boev

More information

Modeling Light. Michal Havlik : Computational Photography Alexei Efros, CMU, Fall 2007

Modeling Light. Michal Havlik : Computational Photography Alexei Efros, CMU, Fall 2007 Modeling Light Michal Havlik 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 The Plenoptic Function Figure by Leonard McMillan Q: What is the set of all things that we can ever see? A: The

More information

Robot localization method based on visual features and their geometric relationship

Robot localization method based on visual features and their geometric relationship , pp.46-50 http://dx.doi.org/10.14257/astl.2015.85.11 Robot localization method based on visual features and their geometric relationship Sangyun Lee 1, Changkyung Eem 2, and Hyunki Hong 3 1 Department

More information

AN O(N 2 LOG(N)) PER PLANE FAST DISCRETE FOCAL STACK TRANSFORM

AN O(N 2 LOG(N)) PER PLANE FAST DISCRETE FOCAL STACK TRANSFORM AN O(N 2 LOG(N)) PER PLANE FAST DISCRETE FOCAL STACK TRANSFORM Fernando Pérez Nava +, Jonás Philipp Lüke + Departamento de Estadística, Investigación Operativa y Computación Departamento de Física Fundamental

More information

DEPTH, STEREO AND FOCUS WITH LIGHT-FIELD CAMERAS

DEPTH, STEREO AND FOCUS WITH LIGHT-FIELD CAMERAS DEPTH, STEREO AND FOCUS WITH LIGHT-FIELD CAMERAS CINEC 2014 Frederik Zilly, Head of Group Computational Imaging & Algorithms Moving Picture Technologies Department, Fraunhofer IIS Fraunhofer, Frederik

More information

Self-calibration Three Dimensional Light Field Display Based on Scalable Multi-LCDs

Self-calibration Three Dimensional Light Field Display Based on Scalable Multi-LCDs Self-calibration Three Dimensional Light Field Display Based on Scalable Multi-LCDs Yifan Peng, 1 Haifeng Li, 1,* Rui Wang, 2 Qing Zhong, 1 Xiang Han, 2 Zisheng Cao, 1 and Xu Liu 1 1 State Key Laboratory

More information

Miniature faking. In close-up photo, the depth of field is limited.

Miniature faking. In close-up photo, the depth of field is limited. Miniature faking In close-up photo, the depth of field is limited. http://en.wikipedia.org/wiki/file:jodhpur_tilt_shift.jpg Miniature faking Miniature faking http://en.wikipedia.org/wiki/file:oregon_state_beavers_tilt-shift_miniature_greg_keene.jpg

More information