Geometric VLAD for Large Scale Image Search. Zixuan Wang 1, Wei Di 2, Anurag Bhardwaj 2, Vignesh Jagadesh 2, Robinson Piramuthu 2

Size: px
Start display at page:

Download "Geometric VLAD for Large Scale Image Search. Zixuan Wang 1, Wei Di 2, Anurag Bhardwaj 2, Vignesh Jagadesh 2, Robinson Piramuthu 2"

Transcription

1 Geometric VLAD for Large Scale Image Search Zixuan Wang 1, Wei Di 2, Anurag Bhardwaj 2, Vignesh Jagadesh 2, Robinson Piramuthu 2 1 2

2 Our Goal 1) Robust to various imaging conditions 2) Small memory footprint 3) Speed (<1s per query) 2

3 Issues with matching images (1/2) Photometric Invariance Brightness Exposure 3

4 Issues with matching images (2/2) Geometric Invariance Rotation Translation Scale 4

5 State-of-the-art: Bag-of-Words (BoW) BoW Computation Image Inventory Keypoint Detection Descriptor Computation Codebook Construction BoW Encoding Image Inventory Bag-of-Words Slide evolved from Fei-Fei Li s Bag-of-Words Image Encoding (size = 200k) Inverted Indices 5

6 Issues with BOW Matching v Weak Matching Schema o for a small visual dictionary: too many false matches o for a large visual dictionary: many true matches are missed v Hard to find vocabulary size trade-offs v Large inverted index size 6

7 Recent approaches for very large scale indexing BoW Computation Image Inventory Keypoint Detection Descriptor Computation Codebook Construction Bag-of-Words Vector Encoding Image Inventory Bag-of-Words Vector Compression (size = 128) Nearest Neighbor Search 7

8 VLAD: Vector of Locally Aggregated Descriptors c i x l l For a given image assign each descriptor to closest center c i accumulate (sum) descriptors per cell v i := v i + (x - c i ) Residual (x - c i ) adds useful information l VLAD (dimension D = k x d) typical k = Dimension VLAD has better performance than 65k BoW! 8

9 Issue with VLAD c i r x c i r x VLAD: v i := v i + (x - c i ) VLAD: r + r + r + r = 4*r VLAD: r + r + r + r = 4*r VLAD fails to capture geometry information 9

10 gvlad: Incorporating Geometry in VLAD x x c i r Bin 1 c i r Bin 2 gvlad: Take 2 angle bins - [-30,120), [ ) v i := v i + (x - c i ) per angle bin gvlad: (2*r, 2*r) Bin 1: r + r Bin 2: r + r gvlad: (4*r, 0) Bin 1: r + r + r + r Bin 2: 0 Angle binning captures different geometry of configurations! 10

11 Power of Keypoint Angle Features map Angle Bin (8) 0.15 Angle Bin (18) 0.24 Angle Bin (36) 0.26 Angle Bin (72) 0.27 GIST (544) 0.35 BoW (20,000) 0.45 Retrieval performance using only angle histogram Only 72-D Angle Bin performs well! 11

12 Datasets & Vocabularies Oxford 5K 5062 / 55 queries Paris 6K 6412 / 60 queries Holidays 1491 / 500 queries q Large Scale Distractors Flickr 100K, Flickr 1M q Vocabulary k-means clustering on SURF descriptors with k = 256 on Paris dataset Rotated Holidays 12

13 Dataset: Holiday & Oxford Holiday example queries Oxford example queries 13

14 Example Distractors Flickr 14

15 gvlad: Keypoint Detection & Descriptor Extraction feature descriptor angle 15

16 gvlad: Learning Angle Membership Rotate Holiday, 4 Bins Oxford, 4 Bins map map Offset Offset 16

17 gvlad: Learning Angle Membership Von-Mises Distribution Holiday SURF (8,233,763 key points) 17

18 gvlad: Vocabulary Adaptation Adapt existing codebooks with incremental dataset Alleviate the need of frequent large-scale codebook training U - Initial data set D New data set u initial codebook k 1 u adapted codebook k 2 k 3 18

19 gvlad: Compute Descriptors Inter-norm ~17.7% Rotated Holiday Dataset 19

20 gvlad: PCA whitening Whitened gvlad: Rotated Holiday Dataset 16.6% Lower Dim 20

21 gvlad: PCA whitening Dimension reduction on the original gvlad using PCA From 65,536 à 128 dimensions, the map decreases only about 1%. 21

22 Experiment: Full size gvlad on Holiday & Oxford map performance % 7.1% - Full size gvlad descriptors - Compared with state-of-the-art results - SURF detector & SURF descriptor are used - Best performances are in bold 22

23 Experiment: Low-dim gvlad on Holiday & Oxford map performance % 15.2% - Low dimensional descriptors - K=128 k w =128 - Comparison with state-of-the-art - Best performances are in bold. 23

24 Experiment: on Large Scale Dataset Avg ~ 12.5% Avg ~ 16.3% - Large Scale Data with 100k/1M distractors - Comparison with state-of-the-art - Best performances are in bold. 24

25 Take Home Message 0.8 gvlad VLAD VLAD+SSR Bow Improved Fisher Ours - gvlad MutltiVoc+VLAD 25

26 Thank You 26

27 BACKUP

28 Speed and Memory Speed ~750ms per query Memory 0.5KB per image for 128-D features. 0.5GB for 1M images. 500GB for 1B images. 28

29 Comparison with CNN-Based Approaches Neural Codes MOP-CNN Neural Codes for Image Retrieval, A Babenko1, A. Slesarev, A. Chigorin, and V. Lempitsky, arxiv, April gvlad Multi-scale Orderless Pooling of Deep Convolutional Activation Features, Yunchao Gong1, Liwei Wang2, Ruiqi Guo2, and Svetlana Lazebnik, arxiv, March

arxiv: v1 [cs.cv] 15 Mar 2014

arxiv: v1 [cs.cv] 15 Mar 2014 Geometric VLAD for Large Scale Image Search Zixuan Wang, Wei Di, Anurag Bhardwaj, Vignesh Jagadeesh, Robinson Piramuthu Dept.of Electrical Engineering, Stanford University, CA 94305 ebay Research Labs,

More information

Large scale object/scene recognition

Large scale object/scene recognition Large scale object/scene recognition Image dataset: > 1 million images query Image search system ranked image list Each image described by approximately 2000 descriptors 2 10 9 descriptors to index! Database

More information

arxiv: v1 [cs.cv] 24 Apr 2015

arxiv: v1 [cs.cv] 24 Apr 2015 Object Level Deep Feature Pooling for Compact Image Representation arxiv:1504.06591v1 [cs.cv] 24 Apr 2015 Konda Reddy Mopuri and R. Venkatesh Babu Video Analytics Lab, SERC, Indian Institute of Science,

More information

Mixtures of Gaussians and Advanced Feature Encoding

Mixtures of Gaussians and Advanced Feature Encoding Mixtures of Gaussians and Advanced Feature Encoding Computer Vision Ali Borji UWM Many slides from James Hayes, Derek Hoiem, Florent Perronnin, and Hervé Why do good recognition systems go bad? E.g. Why

More information

DeepIndex for Accurate and Efficient Image Retrieval

DeepIndex for Accurate and Efficient Image Retrieval DeepIndex for Accurate and Efficient Image Retrieval Yu Liu, Yanming Guo, Song Wu, Michael S. Lew Media Lab, Leiden Institute of Advance Computer Science Outline Motivation Proposed Approach Results Conclusions

More information

Compressed local descriptors for fast image and video search in large databases

Compressed local descriptors for fast image and video search in large databases Compressed local descriptors for fast image and video search in large databases Matthijs Douze2 joint work with Hervé Jégou1, Cordelia Schmid2 and Patrick Pérez3 1: INRIA Rennes, TEXMEX team, France 2:

More information

IMAGE RETRIEVAL USING VLAD WITH MULTIPLE FEATURES

IMAGE RETRIEVAL USING VLAD WITH MULTIPLE FEATURES IMAGE RETRIEVAL USING VLAD WITH MULTIPLE FEATURES Pin-Syuan Huang, Jing-Yi Tsai, Yu-Fang Wang, and Chun-Yi Tsai Department of Computer Science and Information Engineering, National Taitung University,

More information

arxiv: v1 [cs.mm] 3 May 2016

arxiv: v1 [cs.mm] 3 May 2016 Bloom Filters and Compact Hash Codes for Efficient and Distributed Image Retrieval Andrea Salvi, Simone Ercoli, Marco Bertini and Alberto Del Bimbo Media Integration and Communication Center, Università

More information

Efficient Representation of Local Geometry for Large Scale Object Retrieval

Efficient Representation of Local Geometry for Large Scale Object Retrieval Efficient Representation of Local Geometry for Large Scale Object Retrieval Michal Perďoch Ondřej Chum and Jiří Matas Center for Machine Perception Czech Technical University in Prague IEEE Computer Society

More information

TWO-STAGE POOLING OF DEEP CONVOLUTIONAL FEATURES FOR IMAGE RETRIEVAL. Tiancheng Zhi, Ling-Yu Duan, Yitong Wang, Tiejun Huang

TWO-STAGE POOLING OF DEEP CONVOLUTIONAL FEATURES FOR IMAGE RETRIEVAL. Tiancheng Zhi, Ling-Yu Duan, Yitong Wang, Tiejun Huang TWO-STAGE POOLING OF DEEP CONVOLUTIONAL FEATURES FOR IMAGE RETRIEVAL Tiancheng Zhi, Ling-Yu Duan, Yitong Wang, Tiejun Huang Institute of Digital Media, School of EE&CS, Peking University, Beijing, 100871,

More information

arxiv: v1 [cs.cv] 26 Oct 2015

arxiv: v1 [cs.cv] 26 Oct 2015 Aggregating Deep Convolutional Features for Image Retrieval Artem Babenko Yandex Moscow Institute of Physics and Technology artem.babenko@phystech.edu Victor Lempitsky Skolkovo Institute of Science and

More information

Large-scale visual recognition Efficient matching

Large-scale visual recognition Efficient matching Large-scale visual recognition Efficient matching Florent Perronnin, XRCE Hervé Jégou, INRIA CVPR tutorial June 16, 2012 Outline!! Preliminary!! Locality Sensitive Hashing: the two modes!! Hashing!! Embedding!!

More information

Oriented pooling for dense and non-dense rotation-invariant features

Oriented pooling for dense and non-dense rotation-invariant features ZHAO, JÉGOU, GRAVIER: ORIENTED POOLING 1 Oriented pooling for dense and non-dense rotation-invariant features Wan-Lei Zhao 1 http://www.cs.cityu.edu.hk/~wzhao2 Hervé Jégou 1 http://people.rennes.inria.fr/herve.jegou

More information

GATED SQUARE-ROOT POOLING FOR IMAGE INSTANCE RETRIEVAL

GATED SQUARE-ROOT POOLING FOR IMAGE INSTANCE RETRIEVAL GATED SQUARE-ROOT POOLING FOR IMAGE INSTANCE RETRIEVAL Ziqian Chen 1, Jie Lin 2, Vijay Chandrasekhar 2,3, Ling-Yu Duan 1 Peking University, China 1 I 2 R, Singapore 2 NTU, Singapore 3 ABSTRACT Recently

More information

IMPROVING VLAD: HIERARCHICAL CODING AND A REFINED LOCAL COORDINATE SYSTEM. Christian Eggert, Stefan Romberg, Rainer Lienhart

IMPROVING VLAD: HIERARCHICAL CODING AND A REFINED LOCAL COORDINATE SYSTEM. Christian Eggert, Stefan Romberg, Rainer Lienhart IMPROVING VLAD: HIERARCHICAL CODING AND A REFINED LOCAL COORDINATE SYSTEM Christian Eggert, Stefan Romberg, Rainer Lienhart Multimedia Computing and Computer Vision Lab University of Augsburg ABSTRACT

More information

Bloom Filters and Compact Hash Codes for Efficient and Distributed Image Retrieval

Bloom Filters and Compact Hash Codes for Efficient and Distributed Image Retrieval 2016 IEEE International Symposium on Multimedia Bloom Filters and Compact Hash Codes for Efficient and Distributed Image Retrieval Andrea Salvi, Simone Ercoli, Marco Bertini and Alberto Del Bimbo MICC

More information

Large-scale Image Search and location recognition Geometric Min-Hashing. Jonathan Bidwell

Large-scale Image Search and location recognition Geometric Min-Hashing. Jonathan Bidwell Large-scale Image Search and location recognition Geometric Min-Hashing Jonathan Bidwell Nov 3rd 2009 UNC Chapel Hill Large scale + Location Short story... Finding similar photos See: Microsoft PhotoSynth

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 16: Bag-of-words models Object Bag of words Announcements Project 3: Eigenfaces due Wednesday, November 11 at 11:59pm solo project Final project presentations:

More information

Bag of Words Models. CS4670 / 5670: Computer Vision Noah Snavely. Bag-of-words models 11/26/2013

Bag of Words Models. CS4670 / 5670: Computer Vision Noah Snavely. Bag-of-words models 11/26/2013 CS4670 / 5670: Computer Vision Noah Snavely Bag-of-words models Object Bag of words Bag of Words Models Adapted from slides by Rob Fergus and Svetlana Lazebnik 1 Object Bag of words Origin 1: Texture Recognition

More information

Large-scale visual recognition The bag-of-words representation

Large-scale visual recognition The bag-of-words representation Large-scale visual recognition The bag-of-words representation Florent Perronnin, XRCE Hervé Jégou, INRIA CVPR tutorial June 16, 2012 Outline Bag-of-words Large or small vocabularies? Extensions for instance-level

More information

Mobile visual search. Research Online. University of Wollongong. Huiguang Sun University of Wollongong. Recommended Citation

Mobile visual search. Research Online. University of Wollongong. Huiguang Sun University of Wollongong. Recommended Citation University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2013 Mobile visual search Huiguang Sun University of Wollongong Recommended

More information

Evaluation of GIST descriptors for web scale image search

Evaluation of GIST descriptors for web scale image search Evaluation of GIST descriptors for web scale image search Matthijs Douze Hervé Jégou, Harsimrat Sandhawalia, Laurent Amsaleg and Cordelia Schmid INRIA Grenoble, France July 9, 2009 Evaluation of GIST for

More information

arxiv: v4 [cs.cv] 1 Feb 2018

arxiv: v4 [cs.cv] 1 Feb 2018 Noname manuscript No. (will be inserted by the editor) Indexing of the CNN Features for the Large Scale Image Search Ruoyu Liu Shikui Wei Yao Zhao Yi Yang Received: date / Accepted: date arxiv:1508.00217v4

More information

Using Machine Learning for Classification of Cancer Cells

Using Machine Learning for Classification of Cancer Cells Using Machine Learning for Classification of Cancer Cells Camille Biscarrat University of California, Berkeley I Introduction Cell screening is a commonly used technique in the development of new drugs.

More information

Pattern Spotting in Historical Document Image

Pattern Spotting in Historical Document Image Pattern Spotting in historical document images Sovann EN, Caroline Petitjean, Stéphane Nicolas, Frédéric Jurie, Laurent Heutte LITIS, University of Rouen, France 1 Outline Introduction Commons Pipeline

More information

Multiple VLAD encoding of CNNs for image classification

Multiple VLAD encoding of CNNs for image classification Multiple VLAD encoding of CNNs for image classification Qing Li, Qiang Peng, Chuan Yan 1 arxiv:1707.00058v1 [cs.cv] 30 Jun 2017 Abstract Despite the effectiveness of convolutional neural networks (CNNs)

More information

Tensor Decomposition of Dense SIFT Descriptors in Object Recognition

Tensor Decomposition of Dense SIFT Descriptors in Object Recognition Tensor Decomposition of Dense SIFT Descriptors in Object Recognition Tan Vo 1 and Dat Tran 1 and Wanli Ma 1 1- Faculty of Education, Science, Technology and Mathematics University of Canberra, Australia

More information

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011 Previously Part-based and local feature models for generic object recognition Wed, April 20 UT-Austin Discriminative classifiers Boosting Nearest neighbors Support vector machines Useful for object recognition

More information

Learning Visual Semantics: Models, Massive Computation, and Innovative Applications

Learning Visual Semantics: Models, Massive Computation, and Innovative Applications Learning Visual Semantics: Models, Massive Computation, and Innovative Applications Part II: Visual Features and Representations Liangliang Cao, IBM Watson Research Center Evolvement of Visual Features

More information

Dynamic Match Kernel with Deep Convolutional Features for Image Retrieval

Dynamic Match Kernel with Deep Convolutional Features for Image Retrieval IEEE TRANSACTIONS ON IMAGE PROCESSING Match Kernel with Deep Convolutional Features for Image Retrieval Jufeng Yang, Jie Liang, Hui Shen, Kai Wang, Paul L. Rosin, Ming-Hsuan Yang Abstract For image retrieval

More information

ON AGGREGATION OF LOCAL BINARY DESCRIPTORS. Syed Husain and Miroslaw Bober

ON AGGREGATION OF LOCAL BINARY DESCRIPTORS. Syed Husain and Miroslaw Bober ON AGGREGATION OF LOCAL BINARY DESCRIPTORS Syed Husain and Miroslaw Bober Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH, UK. sh0057, m.bober@surrey.ac.uk ABSTRACT

More information

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Beyond bags of features: Adding spatial information Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Adding spatial information Forming vocabularies from pairs of nearby features doublets

More information

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking Feature descriptors Alain Pagani Prof. Didier Stricker Computer Vision: Object and People Tracking 1 Overview Previous lectures: Feature extraction Today: Gradiant/edge Points (Kanade-Tomasi + Harris)

More information

arxiv: v1 [cs.cv] 1 Feb 2017

arxiv: v1 [cs.cv] 1 Feb 2017 Siamese Network of Deep Fisher-Vector Descriptors for Image Retrieval arxiv:702.00338v [cs.cv] Feb 207 Abstract Eng-Jon Ong, Sameed Husain and Miroslaw Bober University of Surrey Guildford, UK This paper

More information

arxiv: v2 [cs.cv] 30 Jul 2016

arxiv: v2 [cs.cv] 30 Jul 2016 arxiv:1512.04065v2 [cs.cv] 30 Jul 2016 Cross-dimensional Weighting for Aggregated Deep Convolutional Features Yannis Kalantidis, Clayton Mellina and Simon Osindero Computer Vision and Machine Learning

More information

Neural Codes for Image Retrieval. David Stutz July 22, /48 1/48

Neural Codes for Image Retrieval. David Stutz July 22, /48 1/48 Neural Codes for Image Retrieval David Stutz July 22, 2015 David Stutz July 22, 2015 0/48 1/48 Table of Contents 1 Introduction 2 Image Retrieval Bag of Visual Words Vector of Locally Aggregated Descriptors

More information

Recognize Complex Events from Static Images by Fusing Deep Channels Supplementary Materials

Recognize Complex Events from Static Images by Fusing Deep Channels Supplementary Materials Recognize Complex Events from Static Images by Fusing Deep Channels Supplementary Materials Yuanjun Xiong 1 Kai Zhu 1 Dahua Lin 1 Xiaoou Tang 1,2 1 Department of Information Engineering, The Chinese University

More information

Compact Global Descriptors for Visual Search

Compact Global Descriptors for Visual Search Compact Global Descriptors for Visual Search Vijay Chandrasekhar 1, Jie Lin 1, Olivier Morère 1,2,3, Antoine Veillard 2,3, Hanlin Goh 1,3 1 Institute for Infocomm Research, Singapore 2 Université Pierre

More information

Fuzzy based Multiple Dictionary Bag of Words for Image Classification

Fuzzy based Multiple Dictionary Bag of Words for Image Classification Available online at www.sciencedirect.com Procedia Engineering 38 (2012 ) 2196 2206 International Conference on Modeling Optimisation and Computing Fuzzy based Multiple Dictionary Bag of Words for Image

More information

Recognition. Topics that we will try to cover:

Recognition. Topics that we will try to cover: Recognition Topics that we will try to cover: Indexing for fast retrieval (we still owe this one) Object classification (we did this one already) Neural Networks Object class detection Hough-voting techniques

More information

Performance Evaluation of SIFT and Convolutional Neural Network for Image Retrieval

Performance Evaluation of SIFT and Convolutional Neural Network for Image Retrieval Performance Evaluation of SIFT and Convolutional Neural Network for Image Retrieval Varsha Devi Sachdeva 1, Junaid Baber 2, Maheen Bakhtyar 2, Ihsan Ullah 2, Waheed Noor 2, Abdul Basit 2 1 Department of

More information

Scene Recognition using Bag-of-Words

Scene Recognition using Bag-of-Words Scene Recognition using Bag-of-Words Sarthak Ahuja B.Tech Computer Science Indraprastha Institute of Information Technology Okhla, Delhi 110020 Email: sarthak12088@iiitd.ac.in Anchita Goel B.Tech Computer

More information

Supervised learning. y = f(x) function

Supervised learning. y = f(x) function Supervised learning y = f(x) output prediction function Image feature Training: given a training set of labeled examples {(x 1,y 1 ),, (x N,y N )}, estimate the prediction function f by minimizing the

More information

Local Features and Bag of Words Models

Local Features and Bag of Words Models 10/14/11 Local Features and Bag of Words Models Computer Vision CS 143, Brown James Hays Slides from Svetlana Lazebnik, Derek Hoiem, Antonio Torralba, David Lowe, Fei Fei Li and others Computer Engineering

More information

Patch Descriptors. CSE 455 Linda Shapiro

Patch Descriptors. CSE 455 Linda Shapiro Patch Descriptors CSE 455 Linda Shapiro How can we find corresponding points? How can we find correspondences? How do we describe an image patch? How do we describe an image patch? Patches with similar

More information

Evaluation and comparison of interest points/regions

Evaluation and comparison of interest points/regions Introduction Evaluation and comparison of interest points/regions Quantitative evaluation of interest point/region detectors points / regions at the same relative location and area Repeatability rate :

More information

2D Image Processing Feature Descriptors

2D Image Processing Feature Descriptors 2D Image Processing Feature Descriptors Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Overview

More information

Efficient Object Instance Search Using Fuzzy Objects Matching

Efficient Object Instance Search Using Fuzzy Objects Matching Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) Efficient Object Instance Search Using Fuzzy Objects Matching Tan Yu, 1 Yuwei Wu, 1,2 Sreyasee Bhattacharjee, 1 Junsong

More information

Object Recognition. Computer Vision. Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce

Object Recognition. Computer Vision. Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce Object Recognition Computer Vision Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce How many visual object categories are there? Biederman 1987 ANIMALS PLANTS OBJECTS

More information

Histograms of Sparse Codes for Object Detection

Histograms of Sparse Codes for Object Detection Histograms of Sparse Codes for Object Detection Xiaofeng Ren (Amazon), Deva Ramanan (UC Irvine) Presented by Hossein Azizpour What does the paper do? (learning) a new representation local histograms of

More information

Computer vision: models, learning and inference. Chapter 13 Image preprocessing and feature extraction

Computer vision: models, learning and inference. Chapter 13 Image preprocessing and feature extraction Computer vision: models, learning and inference Chapter 13 Image preprocessing and feature extraction Preprocessing The goal of pre-processing is to try to reduce unwanted variation in image due to lighting,

More information

CLASSIFICATION Experiments

CLASSIFICATION Experiments CLASSIFICATION Experiments January 27,2015 CS3710: Visual Recognition Bhavin Modi Bag of features Object Bag of words 1. Extract features 2. Learn visual vocabulary Bag of features: outline 3. Quantize

More information

Compact Deep Invariant Descriptors for Video Retrieval

Compact Deep Invariant Descriptors for Video Retrieval Compact Deep Invariant Descriptors for Video Retrieval Yihang Lou 1,2, Yan Bai 1,2, Jie Lin 4, Shiqi Wang 3,5, Jie Chen 2,5, Vijay Chandrasekhar 3,5, Lingyu Duan 2,5, Tiejun Huang 2,5, Alex Chichung Kot

More information

A Comparison of SIFT, PCA-SIFT and SURF

A Comparison of SIFT, PCA-SIFT and SURF A Comparison of SIFT, PCA-SIFT and SURF Luo Juan Computer Graphics Lab, Chonbuk National University, Jeonju 561-756, South Korea qiuhehappy@hotmail.com Oubong Gwun Computer Graphics Lab, Chonbuk National

More information

Multi-Scale Orderless Pooling of Deep Convolutional Activation Features

Multi-Scale Orderless Pooling of Deep Convolutional Activation Features Multi-Scale Orderless Pooling of Deep Convolutional Activation Features Yunchao Gong, Liwei Wang 2, Ruiqi Guo 2, and Svetlana Lazebnik 2 University of North Carolina at Chapel Hill yunchao@cs.unc.edu 2

More information

Visual words. Map high-dimensional descriptors to tokens/words by quantizing the feature space.

Visual words. Map high-dimensional descriptors to tokens/words by quantizing the feature space. Visual words Map high-dimensional descriptors to tokens/words by quantizing the feature space. Quantize via clustering; cluster centers are the visual words Word #2 Descriptor feature space Assign word

More information

LOCAL AND GLOBAL DESCRIPTORS FOR PLACE RECOGNITION IN ROBOTICS

LOCAL AND GLOBAL DESCRIPTORS FOR PLACE RECOGNITION IN ROBOTICS 8th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING - 19-21 April 2012, Tallinn, Estonia LOCAL AND GLOBAL DESCRIPTORS FOR PLACE RECOGNITION IN ROBOTICS Shvarts, D. & Tamre, M. Abstract: The

More information

Negative evidences and co-occurrences in image retrieval: the benefit of PCA and whitening

Negative evidences and co-occurrences in image retrieval: the benefit of PCA and whitening Negative evidences and co-occurrences in image retrieval: the benefit of PCA and whitening Hervé Jégou, Ondrej Chum To cite this version: Hervé Jégou, Ondrej Chum. Negative evidences and co-occurrences

More information

By Suren Manvelyan,

By Suren Manvelyan, By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan,

More information

Early burst detection for memory-efficient image retrieval

Early burst detection for memory-efficient image retrieval Early burst detection for memory-efficient image retrieval Miaojing Shi Peking University Yannis Avrithis University of Athens, NTUA Hervé Jégou Inria Abstract Recent works show that image comparison based

More information

A practical guide to CNNs and Fisher Vectors for image instance retrieval

A practical guide to CNNs and Fisher Vectors for image instance retrieval A practical guide to CNNs and Fisher Vectors for image instance retrieval Vijay Chandrasekhar,1, Jie Lin,1, Olivier Morère,1,2 Hanlin Goh 1, Antoine Veillard 2 1 Institute for Infocomm Research (A*STAR),

More information

Introduction to object recognition. Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others

Introduction to object recognition. Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others Introduction to object recognition Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others Overview Basic recognition tasks A statistical learning approach Traditional or shallow recognition

More information

Beyond bags of Features

Beyond bags of Features Beyond bags of Features Spatial Pyramid Matching for Recognizing Natural Scene Categories Camille Schreck, Romain Vavassori Ensimag December 14, 2012 Schreck, Vavassori (Ensimag) Beyond bags of Features

More information

Descriptors for CV. Introduc)on:

Descriptors for CV. Introduc)on: Descriptors for CV Content 2014 1.Introduction 2.Histograms 3.HOG 4.LBP 5.Haar Wavelets 6.Video based descriptor 7.How to compare descriptors 8.BoW paradigm 1 2 1 2 Color RGB histogram Introduc)on: Image

More information

Efficient Indexing of Billion-Scale datasets of deep descriptors

Efficient Indexing of Billion-Scale datasets of deep descriptors Efficient Indexing of Billion-Scale datasets of deep descriptors Artem Babenko Yandex Moscow Institute of Physics and Technology artem.babenko@phystech.edu Victor Lempitsky Skolkovo Institute of Science

More information

Hamming embedding and weak geometric consistency for large scale image search

Hamming embedding and weak geometric consistency for large scale image search Hamming embedding and weak geometric consistency for large scale image search Herve Jegou, Matthijs Douze, and Cordelia Schmid INRIA Grenoble, LEAR, LJK firstname.lastname@inria.fr Abstract. This paper

More information

Lecture 24: Image Retrieval: Part II. Visual Computing Systems CMU , Fall 2013

Lecture 24: Image Retrieval: Part II. Visual Computing Systems CMU , Fall 2013 Lecture 24: Image Retrieval: Part II Visual Computing Systems Review: K-D tree Spatial partitioning hierarchy K = dimensionality of space (below: K = 2) 3 2 1 3 3 4 2 Counts of points in leaf nodes Nearest

More information

Aggregated Deep Feature from Activation Clusters for Particular Object Retrieval

Aggregated Deep Feature from Activation Clusters for Particular Object Retrieval Aggregated Deep Feature from Activation Clusters for Particular Object Retrieval Zhenfang Chen Zhanghui Kuang The University of Hong Kong Hong Kong zfchen@cs.hku.hk Sense Time Hong Kong kuangzhanghui@sensetime.com

More information

Revisiting the VLAD image representation

Revisiting the VLAD image representation Revisiting the VLAD image representation Jonathan Delhumeau, Philippe-Henri Gosselin, Hervé Jégou, Patrick Pérez To cite this version: Jonathan Delhumeau, Philippe-Henri Gosselin, Hervé Jégou, Patrick

More information

SIFT - scale-invariant feature transform Konrad Schindler

SIFT - scale-invariant feature transform Konrad Schindler SIFT - scale-invariant feature transform Konrad Schindler Institute of Geodesy and Photogrammetry Invariant interest points Goal match points between images with very different scale, orientation, projective

More information

Beyond Bags of features Spatial information & Shape models

Beyond Bags of features Spatial information & Shape models Beyond Bags of features Spatial information & Shape models Jana Kosecka Many slides adapted from S. Lazebnik, FeiFei Li, Rob Fergus, and Antonio Torralba Detection, recognition (so far )! Bags of features

More information

Indexing local features and instance recognition May 16 th, 2017

Indexing local features and instance recognition May 16 th, 2017 Indexing local features and instance recognition May 16 th, 2017 Yong Jae Lee UC Davis Announcements PS2 due next Monday 11:59 am 2 Recap: Features and filters Transforming and describing images; textures,

More information

Announcements. Recognition. Recognition. Recognition. Recognition. Homework 3 is due May 18, 11:59 PM Reading: Computer Vision I CSE 152 Lecture 14

Announcements. Recognition. Recognition. Recognition. Recognition. Homework 3 is due May 18, 11:59 PM Reading: Computer Vision I CSE 152 Lecture 14 Announcements Computer Vision I CSE 152 Lecture 14 Homework 3 is due May 18, 11:59 PM Reading: Chapter 15: Learning to Classify Chapter 16: Classifying Images Chapter 17: Detecting Objects in Images Given

More information

Shape Context Matching For Efficient OCR

Shape Context Matching For Efficient OCR Matching For Efficient OCR May 14, 2012 Matching For Efficient OCR Table of contents 1 Motivation Background 2 What is a? Matching s Simliarity Measure 3 Matching s via Pyramid Matching Matching For Efficient

More information

Feature Fusion for Image Retrieval using Image Processing #1 Shreyas Deshmukh, #2 Prof. (Dr.) Amol Potgantwar

Feature Fusion for Image Retrieval using Image Processing #1 Shreyas Deshmukh, #2 Prof. (Dr.) Amol Potgantwar ISSN 2395-1621 Feature Fusion for Image Retrieval using Image Processing #1 Shreyas Deshmukh, #2 Prof. (Dr.) Amol Potgantwar 1 d.shreyas38@gmail.com #1 Student, Computer Dept., SITRC, Nashik. #2 H.O.D,

More information

CONTENT based image retrieval has received a sustained attention over the last decade, leading to

CONTENT based image retrieval has received a sustained attention over the last decade, leading to PARTICULAR OBJECT RETRIEVAL WITH INTEGRAL MAX-POOLING OF CNN ACTIVATIONS Giorgos Tolias Center for Machine Perception FEE CTU Prague Ronan Sicre Irisa Rennes Hervé Jégou Facebook AI Research ABSTRACT arxiv:1511.05879v2

More information

CS 4495 Computer Vision Classification 3: Bag of Words. Aaron Bobick School of Interactive Computing

CS 4495 Computer Vision Classification 3: Bag of Words. Aaron Bobick School of Interactive Computing CS 4495 Computer Vision Classification 3: Bag of Words Aaron Bobick School of Interactive Computing Administrivia PS 6 is out. Due Tues Nov 25th, 11:55pm. One more assignment after that Mea culpa This

More information

Basic Problem Addressed. The Approach I: Training. Main Idea. The Approach II: Testing. Why a set of vocabularies?

Basic Problem Addressed. The Approach I: Training. Main Idea. The Approach II: Testing. Why a set of vocabularies? Visual Categorization With Bags of Keypoints. ECCV,. G. Csurka, C. Bray, C. Dance, and L. Fan. Shilpa Gulati //7 Basic Problem Addressed Find a method for Generic Visual Categorization Visual Categorization:

More information

Lecture 12 Recognition

Lecture 12 Recognition Institute of Informatics Institute of Neuroinformatics Lecture 12 Recognition Davide Scaramuzza 1 Lab exercise today replaced by Deep Learning Tutorial Room ETH HG E 1.1 from 13:15 to 15:00 Optional lab

More information

Patch Descriptors. EE/CSE 576 Linda Shapiro

Patch Descriptors. EE/CSE 576 Linda Shapiro Patch Descriptors EE/CSE 576 Linda Shapiro 1 How can we find corresponding points? How can we find correspondences? How do we describe an image patch? How do we describe an image patch? Patches with similar

More information

Advanced Techniques for Mobile Robotics Bag-of-Words Models & Appearance-Based Mapping

Advanced Techniques for Mobile Robotics Bag-of-Words Models & Appearance-Based Mapping Advanced Techniques for Mobile Robotics Bag-of-Words Models & Appearance-Based Mapping Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Motivation: Analogy to Documents O f a l l t h e s e

More information

Semantic Pooling for Image Categorization using Multiple Kernel Learning

Semantic Pooling for Image Categorization using Multiple Kernel Learning Semantic Pooling for Image Categorization using Multiple Kernel Learning Thibaut Durand (1,2), Nicolas Thome (1), Matthieu Cord (1), David Picard (2) (1) Sorbonne Universités, UPMC Univ Paris 06, UMR 7606,

More information

VK Multimedia Information Systems

VK Multimedia Information Systems VK Multimedia Information Systems Mathias Lux, mlux@itec.uni-klu.ac.at Dienstags, 16.oo Uhr This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Agenda Evaluations

More information

Three things everyone should know to improve object retrieval. Relja Arandjelović and Andrew Zisserman (CVPR 2012)

Three things everyone should know to improve object retrieval. Relja Arandjelović and Andrew Zisserman (CVPR 2012) Three things everyone should know to improve object retrieval Relja Arandjelović and Andrew Zisserman (CVPR 2012) University of Oxford 2 nd April 2012 Large scale object retrieval Find all instances of

More information

Introduction. Introduction. Related Research. SIFT method. SIFT method. Distinctive Image Features from Scale-Invariant. Scale.

Introduction. Introduction. Related Research. SIFT method. SIFT method. Distinctive Image Features from Scale-Invariant. Scale. Distinctive Image Features from Scale-Invariant Keypoints David G. Lowe presented by, Sudheendra Invariance Intensity Scale Rotation Affine View point Introduction Introduction SIFT (Scale Invariant Feature

More information

Computer Vision I - Appearance-based Matching and Projective Geometry

Computer Vision I - Appearance-based Matching and Projective Geometry Computer Vision I - Appearance-based Matching and Projective Geometry Carsten Rother 01/11/2016 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation

More information

Compressing Deep Neural Networks for Recognizing Places

Compressing Deep Neural Networks for Recognizing Places Compressing Deep Neural Networks for Recognizing Places by Soham Saha, Girish Varma, C V Jawahar in 4th Asian Conference on Pattern Recognition (ACPR-2017) Nanjing, China Report No: IIIT/TR/2017/-1 Centre

More information

Feature descriptors and matching

Feature descriptors and matching Feature descriptors and matching Detections at multiple scales Invariance of MOPS Intensity Scale Rotation Color and Lighting Out-of-plane rotation Out-of-plane rotation Better representation than color:

More information

Aggregating Descriptors with Local Gaussian Metrics

Aggregating Descriptors with Local Gaussian Metrics Aggregating Descriptors with Local Gaussian Metrics Hideki Nakayama Grad. School of Information Science and Technology The University of Tokyo Tokyo, JAPAN nakayama@ci.i.u-tokyo.ac.jp Abstract Recently,

More information

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town Recap: Smoothing with a Gaussian Computer Vision Computer Science Tripos Part II Dr Christopher Town Recall: parameter σ is the scale / width / spread of the Gaussian kernel, and controls the amount of

More information

on learned visual embedding patrick pérez Allegro Workshop Inria Rhônes-Alpes 22 July 2015

on learned visual embedding patrick pérez Allegro Workshop Inria Rhônes-Alpes 22 July 2015 on learned visual embedding patrick pérez Allegro Workshop Inria Rhônes-Alpes 22 July 2015 Vector visual representation Fixed-size image representation High-dim (100 100,000) Generic, unsupervised: BoW,

More information

Indexing local features and instance recognition May 14 th, 2015

Indexing local features and instance recognition May 14 th, 2015 Indexing local features and instance recognition May 14 th, 2015 Yong Jae Lee UC Davis Announcements PS2 due Saturday 11:59 am 2 We can approximate the Laplacian with a difference of Gaussians; more efficient

More information

Computer Vision. Exercise Session 10 Image Categorization

Computer Vision. Exercise Session 10 Image Categorization Computer Vision Exercise Session 10 Image Categorization Object Categorization Task Description Given a small number of training images of a category, recognize a-priori unknown instances of that category

More information

Deep Aggregation of Local 3D Geometric Features for 3D Model Retrieval

Deep Aggregation of Local 3D Geometric Features for 3D Model Retrieval FURUYA AND OHBUCHI: DEEP AGGREGATION OF LOCAL 3D FEATURES 1 Deep Aggregation of Local 3D Geometric Features for 3D Model Retrieval Takahiko Furuya 1 takahikof AT yamanashi.ac.jp Ryutarou Ohbuchi 1 ohbuchi

More information

CS 231A Computer Vision (Fall 2011) Problem Set 4

CS 231A Computer Vision (Fall 2011) Problem Set 4 CS 231A Computer Vision (Fall 2011) Problem Set 4 Due: Nov. 30 th, 2011 (9:30am) 1 Part-based models for Object Recognition (50 points) One approach to object recognition is to use a deformable part-based

More information

Compact video description for copy detection with precise temporal alignment

Compact video description for copy detection with precise temporal alignment Compact video description for copy detection with precise temporal alignment Matthijs Douze 1, Hervé Jégou 2, Cordelia Schmid 1, and Patrick Pérez 3 1 INRIA Grenoble, France 2 INRIA Rennes, France 3 Technicolor

More information

D5.3: Visual Search Tools Report Version B

D5.3: Visual Search Tools Report Version B Project ref. no. Project acronym Start date of project (duration) BRIDGET 2013-11-01 (36 months) Document due Date: 2016-07-31 Actual date of delivery 2016-07-31 Leader of this document Miroslaw Bober

More information

Light-Weight Spatial Distribution Embedding of Adjacent Features for Image Search

Light-Weight Spatial Distribution Embedding of Adjacent Features for Image Search Light-Weight Spatial Distribution Embedding of Adjacent Features for Image Search Yan Zhang 1,2, Yao Zhao 1,2, Shikui Wei 3( ), and Zhenfeng Zhu 1,2 1 Institute of Information Science, Beijing Jiaotong

More information

CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples

CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples Filip Radenović Giorgos Tolias Ondřej Chum CMP, Faculty of Electrical Engineering, Czech Technical University in Prague

More information

Residual Enhanced Visual Vectors for On-Device Image Matching

Residual Enhanced Visual Vectors for On-Device Image Matching Residual Enhanced Visual Vectors for On-Device Image Matching David Chen, Sam Tsai, Vijay Chandrasekhar, Gabriel Takacs, Huizhong Chen, Ramakrishna Vedantham, Radek Grzeszczuk, Bernd Girod Department of

More information