Triangulation Based Volume Calculation Andrew Y.T Kudowor and George Taylor Department of Geomatics University of Newcastle

Size: px
Start display at page:

Download "Triangulation Based Volume Calculation Andrew Y.T Kudowor and George Taylor Department of Geomatics University of Newcastle"

Transcription

1 Triangulation Based Volume Calculation Andrew Y.T Kudowor and George Taylor Department of Geomatics University of Newcastle ABSTRACT Delaunay triangulation is a commonly used method for generating surface models which have many uses, including height interpolation and volumetric analysis. This method can be adapted to accurate volume estimation using borehole data. This paper compares volume estimation of three different techniques which use triangulated surfaces for volume calculation. Some of the problems in using Delaunay triangulation for volume calculation are identified and modifications are suggested to adapt it for more accurate volume estimation. A routine for automated volume estimation from borehole data, which incorporates some of these techniques, has been developed. 1. INTRODUCTION Results of volumetric analysis estimated from borehole data are a major input in many mining operations. Traditional programs have been based on the application of the end-area or prismoidal methods to some form of gridding technique. Triangulation methods have been chosen as a powerful alternative to these methods in most current programs for volume calculation. Techniques for volume calculation are utilised in different commercial programs with the user unaware of the underlying principles used. This can lead to inappropriate application of these techniques. The methods for the generation of triangulated surfaces are introduced, and the available techniques for manipulating these surfaces for accurate volume estimation are presented. 2. TRIANGULATION AND VOLUME CALCULATION. TRIANGULATION Triangulating a set of N points in the plane indicates joining them by non intersecting straight line segments so that every region internal to the convex hull is a triangle (Preparata et al. 1985). The basic concept of any triangulation procedure is to attempt to produce a unique set of triangles that are as equilateral as possible and with minimum side lengths. There are several methods available for triangulating the same set of points. Delaunay triangulation (DT) has been the dominating method for its ability to divide the surface into optimal triangles according to some useful criterion associated with it: EMPTY INTERNAL CIRCLE CRITERIA - Given a triangle T defined by points P1, P2, P3 of a DT of a set of points P, no other point of P is internal to the circle defined by P1, P2, P3. This property defines the concept of constructing a Delaunay triangulation. MAX-MIN CRITERIA:- The minimum of all the angles in the triangulation is maximised. That is given four points forming a quadrilateral, the diagonal which divides it into two triangles is optimal in the way that maximises the lesser of the internal angles, this guarantees the best possible triangle shape for the set of points. This is the Lawson criterion (Lawson 1972). These criteria has been utilised in several algorithms for Delaunay triangulation. Complete details of such algorithms are given by (Defloriani et al. 1992), (Watson 1992) and (Jian-Ming et al. 1990). The method implemented in the routine used here is similar to the incremental insertion algorithm, meaning that data points are added one at a time into an existing triangulation. It was proposed by Lee and Schachter (1980), who suggests an iterative technique to triangulate a set of points inside a rectangular region. This was improved by Macedonio et al. (1991) by triangulating a set of points inside any convex region. This algorithm was chosen because of the ease and simplicity of adapting its data structure to volumes. For further readings on these features consult Macedonio et al. (1991).

2 VOLUME CALCULATION To illustrate the volume calculation concept from triangulated surfaces, consider a set of points of borehole locations. These points can be divided into triangles by connecting the data points as the vertices of these triangles. The volume calculation is then reduced to finding the volume under each prism formed using formula [1]. volume = 1 / 2[ x1 ( y2 y3) + x2( y3 y1 ) + x3( y1 y2_ ]( z1 + z2 + z3) / 3 [1] Where, (x1, y1), (x2, y2) and (x3, y3) are the planar co-ordinates of the triangle vertices and z1, z2 and z3 are the corresponding elevation with respect to sea level or thickness between geological horizon. (Fig. 2b). The advantages of triangulation have been reported in the literature. These include: Deriving the triangles from the data points, that is nodes of the triangle honour the observed 3D locations, the resulting surface then include the observed points, hence eliminating the need for smoothing and interpolation. The observed density of information is maintained; Point x y z Ro small triangles occur where the point density is high and correspondingly large triangles where the density is low. It has the ability to represent discontinuity in the extent surface, and an irregular edge is enhanced. These are good features for volume applications. However, for accurate volume estimates there is a need to pay special attention to the manipulation of the z (height) values. In most DT algorithms, common Table1: x, y, and z point co-ordinates occurrences such as two points being coincident and three points of a potential triangle are co-linear are handled by rejecting (dropping) the points. This is an undesirable feature for DT application to volume estimation. The plausible alternative to be considered in volume applications is to shift the points co-ordinates to maintain its z value influence in the volume estimation. Figure1 illustrates the effect on volume estimates of rejecting and the extent of shifting the coordinates, due to the occurrences mentioned above. Let us assume that for handling only whole numbers, the point Ro coincides with point 1 (Table1) hence as indicated above has to be dropped in the course of the triangulation. Figure 1 shows the volume computed for the original position of Ro (a), when it was dropped (b) and when it was shifted with various approximations (c). This indicates that as far as the z value of the point remains significant, small shifts improves volume accuracy than dropping the point. See table1 for the co-ordinates of the points used for accessing the influence of point rejection and shifting on volume estimates. 2 a 3 2 b 3 c 2 3 Ro R s 1 4 Va= R e 1 4 Vb= Vc= Rs=120.01, Vc= Rs=120.10, 54,10 Vc= Rs=121.00, a.triangulated surface with original position of coincident point Ro with volume estimate b.triangulated surface with the coincident point dropped,and volume estimated c.triangulated surface with shifted coincident point with volumes for various approximations. Fig. 1. Effect of point shifting and dropping on volume estimates

3 3. TECHNIQUES FOR MANIPULATING TRIANGULATED SURFACES FOR VOLUMES Having a set of N irregular distributed points P(xi,yi) as borehole locations with values of Zi as elevation or thickness of the layer between geological horizons, Delaunay triangulation can be used for volume reconstruction to estimate the volume between a surface and a datum or between two surfaces. To illustrate the volume estimation between triangulated surfaces, assume two triangulated surfaces using Delaunay criteria. The following available techniques can be used to manipulate the triangulated surface for volumes: Simple prisms With the nodes of the triangles being the elevation or thickness points, the simple prism method takes a triangle from one triangulated surface model, finds the elevation difference and calculates the volume for the vertical prism formed (Fig. 2b). Fig. 2 a. Triangulated surface for generating simple prisms. b. Simple vertical prism. c. Isopachytes. d. Complex vertical prisms This method is accurately utilised when the boundaries of the triangulated surfaces are identical and the difference between volume from each triangulated surface to the same datum taken as the net volume. Cut and fill estimates cannot be identified. Isopachytes Where the boundaries of the triangulated surface are not identical, the isopachyte method can give accurate estimates when surface elevation does not change rapidly. This method involves determining the difference between the elevation values at every point location in the two surfaces, and generate a triangulated surface from the resultant points. The estimated cut and fill volume between the two surfaces is the volume between the generated surface and the zero datum (Fig 2c.) Complex Prisms This method gives more precise results (see investigation results) and is generally accepted to be highly accurate relative to the data points. The method takes into consideration the effect of every point in both surfaces (Fig.2d). Complex prisms involve projecting a triangle from one surface, and each triangle it overlaps is taken and the intersection polygon calculated. The polygon is then broken down into triangles to form vertical prisms for which the volume is individually calculated. However, this method is a trade off between accuracy and time. Though it is generally accepted as the ultimate method for volume estimate, very few programs have implemented it, because of the amount of processing required to find overlapping triangles and the cost of computer resource required, see Hall and Watts (1991) for further reading.

4 4. INVESTIGATION METHODOLOGY AND RESULTS To investigate volume estimation using the methods described above, a reference model in the form of trapezoidal prism (Fig.3) of area 1200 units 2 was built, of which the top and bottom consists of nine points. The actual volume was determined to a zero datum by decomposition to be 11,000 units 3, units 3 and units 3 for the top, bottom and between the two surfaces respectively. Fig.3 Reference Model Additional points for both the top and bottom of the model were created (not interpolated) on the surface, which consists of 9/9, 15/15, 20/20, 24/24, 35/35, 43/42, 49/48, 55/54, 61/60, 69/68, 81/81 points. Each of the surface models was triangulated and subsequently, volumes were estimated from the planar triangulated surfaces for each point density using the three techniques. The percentage error of each point density for each surface model was calculated for each technique used (Table 2) and a bar chart of point density against percentage error was drawn (Fig.4) from which conclusions were made. RESULTS The Simple Prisms and Isopachytes techniques, exhibited approximately the same influence on the accuracy of volume estimates for each point density (PD), for both Top and Bottom surface models (Fig 4a and b). Though the percentage error was small, especially for the top model, the obvious expectation is that an increase in PD which increases the number of triangles hence closer approximation of the true surface, should yield reduction in the % error of estimation or increase accuracy. The two techniques which were used in estimating volume to a zero datum, gave a more accurate result for the relatively rugged top surface model, with increase in PD limiting the error to less than 0.8%. However there were undulating effect which is more of an overestimation. The Bottom model on the other hand exhibited some undulation with greater underestimation between PD 9 and 35, where no points are dropped during the triangulation stage. Beyond PD 35 the estimates appears consistently overestimated below an error of 1%, where points are dropped for each point densification during triangulation. For volume estimates between the two surface models using Isopachytes and complex prisms, the two techniques differ in the resultant volume estimates (Fig 4c). Relative to the actual difference of the volume estimates between the top and bottom models, the complex prism method gives a more precise estimate, as it consistently gives estimates equal to the actual difference. However, as it stands, the two estimates show similar undulating effect with the Isopachytes technique giving more accurate estimates at PD 15, 35, 49, 61 and 69, and the Complex Prism at PD 20, 24, 43, 55, and 81 with difference between the errors insignificantly small.

5 Table2: Percentage error in volume estimates Top Volume Point Density % Error of Estimation Simple Prism Isopachytes Bottom Volume Point Density % Error of Estimation Simple Prism Isopachytes Top-Bottom Volume Point Density % Error of Estimation Isopachytes Complex prism

6 a % Error of Top Volume Estimation Program A (Simple prism) % error of estimation Program B (Isopachytes) % error of estimation % Error No of Points -0.6 b. % Error % Error of Bottom Volume Estimation No of Points Program A (Simple prism) % Error of estimation Program B (Isopachytes) % Error of Estimation c. % Error % Error of Top-Bottom Volume Estimation No of points Program A (Isopachytes) % Error of estimation Program B (Complex prism) % Error of Estimation Fig.4 Percentage error in volume estimation a. of Top surface. b. of bottom surface. c. between the two surfaces.

7 CONCLUSION This paper described the various techniques for manipulating triangulated surfaces for volumes. For accurate volume estimates, an illustration of some of the drawbacks for adapting DT to volume application which includes point rejection as a result of common occurrences such as coincident points and three points of a potential triangle being co-linear are presented, alongside modification such as point shifting in DT for adaptation to accurate volume estimates. As points are shifted by approximation to the next decimal place, volume estimates approaches the true value than when they are dropped (Fig. 1). The difference techniques for triangulation based volume estimation were investigated and the results discussed. The complex prism method has proven the most precise of the three for volume calculation between surfaces. Relative to the actual difference of the volume estimates between the top and bottom models, the complex prism method gives a more precise estimates, as it consistently gives estimates equal to the actual difference. For accuracy of volume estimates between surfaces the isopachyte method has proven competitive. the two programs show similar undulating effect with program A (Isopachytes) giving more accurate estimates at PD 15, 35, 49, 61 and 69, and program B (complex prisms) at PD 20, 24, 43, 55, and 81 with difference between the errors insignificantly small. REFERENCES De Floriani L., and Puppo E., An on-line algorithm for Delaunay triangulation. Graphic models and image processing, Vol.54, No.3, pp Hall & Watts Systems, Volume Techniques. Documentation, Department of Geomatics, University of Newcastle. Jian-Ming Z., Ke-ran S., Ke-ding Z., and Qiong-hua Z., Computing constraint triangulation and Delaunay triangulation: A new algorithm. IEEE transactions on magnetics, Vol. 26, No.2. Joseph O Rourke Computational Geometry in C. Cambridge University press, p346. Lee D.T., and Schacter B.T., Two algorithms for constructing a Delaunay triangulation. International journal of computer and information science, Vol. 9, No. 3, pp Macedonio G., and Pareschi M.T., An algorithm for triangulation of arbitrarily distributed points: Applications to volume estimate and terrain fitting. Computers and geosciences, Vol.17, No.7, pp Preparata F.P., and Shamos M.I., Computational Geometry - An introduction. Springer-verlag New York Inc., p391 Watson D.F., Contouring: A guide to the analysis and display of spatial data. Pergamon Press, pp321.

Outline of the presentation

Outline of the presentation Surface Reconstruction Petra Surynková Charles University in Prague Faculty of Mathematics and Physics petra.surynkova@mff.cuni.cz Outline of the presentation My work up to now Surfaces of Building Practice

More information

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams in the Plane Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams As important as convex hulls Captures the neighborhood (proximity) information of geometric objects

More information

THE METHODS OF TRIANGULATION

THE METHODS OF TRIANGULATION THE METHODS OF TRIANGULATION Abstract M. Varshosaz, Assistant Professor, Faculty of Geodesy & Geomatics Eng., K.N. Toosi University of Technology K.N. Toosi University of Technology, Vali_Asr St, Tehran,

More information

Robot Motion Planning Using Generalised Voronoi Diagrams

Robot Motion Planning Using Generalised Voronoi Diagrams Robot Motion Planning Using Generalised Voronoi Diagrams MILOŠ ŠEDA, VÁCLAV PICH Institute of Automation and Computer Science Brno University of Technology Technická 2, 616 69 Brno CZECH REPUBLIC Abstract:

More information

Mathematics Curriculum

Mathematics Curriculum 6 G R A D E Mathematics Curriculum GRADE 6 5 Table of Contents 1... 1 Topic A: Area of Triangles, Quadrilaterals, and Polygons (6.G.A.1)... 11 Lesson 1: The Area of Parallelograms Through Rectangle Facts...

More information

Surface Mesh Generation

Surface Mesh Generation Surface Mesh Generation J.-F. Remacle Université catholique de Louvain September 22, 2011 0 3D Model For the description of the mesh generation process, let us consider the CAD model of a propeller presented

More information

Computational Geometry

Computational Geometry Lecture 12: Lecture 12: Motivation: Terrains by interpolation To build a model of the terrain surface, we can start with a number of sample points where we know the height. Lecture 12: Motivation: Terrains

More information

REPRESENTING EXTRATED EDGES FROM IMAGES BY USING CONSTRAINED DELAUNAY TRIANGULATION

REPRESENTING EXTRATED EDGES FROM IMAGES BY USING CONSTRAINED DELAUNAY TRIANGULATION REPRESENTING EXTRATED EDGES FROM IMAGES BY USING CONSTRAINED DELAUNAY TRIANGULATION Simena Dinas Escuela de Ingeniería de Sistemas y Computación, Universidad del Valle simena.dinas@correounivalle.edu.co

More information

Anoka Hennepin K-12 Curriculum plan

Anoka Hennepin K-12 Curriculum plan Anoka Hennepin K-12 Curriculum plan Department: Elementary Math Unit Title: Packages and Polygons (Blue Book, Geo and Measurement) Triangles and Beyond (Blue Book, Geo and Measurement) Everyday Math: Volume

More information

Preferred directions for resolving the non-uniqueness of Delaunay triangulations

Preferred directions for resolving the non-uniqueness of Delaunay triangulations Preferred directions for resolving the non-uniqueness of Delaunay triangulations Christopher Dyken and Michael S. Floater Abstract: This note proposes a simple rule to determine a unique triangulation

More information

6 Mathematics Curriculum

6 Mathematics Curriculum New York State Common Core 6 Mathematics Curriculum GRADE GRADE 6 MODULE 5 Table of Contents 1 Area, Surface Area, and Volume Problems... 3 Topic A: Area of Triangles, Quadrilaterals, and Polygons (6.G.A.1)...

More information

Cambridge Essentials Mathematics Core 9 GM1.1 Answers. 1 a

Cambridge Essentials Mathematics Core 9 GM1.1 Answers. 1 a GM1.1 Answers 1 a b 2 Shape Name Regular Irregular Convex Concave A Decagon B Octagon C Pentagon D Quadrilateral E Heptagon F Hexagon G Quadrilateral H Triangle I Triangle J Hexagon Original Material Cambridge

More information

Triangulation and Convex Hull. 8th November 2018

Triangulation and Convex Hull. 8th November 2018 Triangulation and Convex Hull 8th November 2018 Agenda 1. Triangulation. No book, the slides are the curriculum 2. Finding the convex hull. Textbook, 8.6.2 2 Triangulation and terrain models Here we have

More information

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees Geometry Vocabulary acute angle-an angle measuring less than 90 degrees angle-the turn or bend between two intersecting lines, line segments, rays, or planes angle bisector-an angle bisector is a ray that

More information

Voronoi Diagram. Xiao-Ming Fu

Voronoi Diagram. Xiao-Ming Fu Voronoi Diagram Xiao-Ming Fu Outlines Introduction Post Office Problem Voronoi Diagram Duality: Delaunay triangulation Centroidal Voronoi tessellations (CVT) Definition Applications Algorithms Outlines

More information

CS 532: 3D Computer Vision 14 th Set of Notes

CS 532: 3D Computer Vision 14 th Set of Notes 1 CS 532: 3D Computer Vision 14 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Triangulating

More information

Module 5 Key Concepts

Module 5 Key Concepts Module 5 Key Concepts 1. You need to be able to find the area of rectangles, parallelograms, and triangles using their formulas. 4 in. 8 cm 6 cm 5 cm 4 cm 5 cm 9 in. 12 cm rectangle 2 sets of parallel

More information

6. Concluding Remarks

6. Concluding Remarks [8] K. J. Supowit, The relative neighborhood graph with an application to minimum spanning trees, Tech. Rept., Department of Computer Science, University of Illinois, Urbana-Champaign, August 1980, also

More information

Computational Geometry

Computational Geometry Computational Geometry 600.658 Convexity A set S is convex if for any two points p, q S the line segment pq S. S p S q Not convex Convex? Convexity A set S is convex if it is the intersection of (possibly

More information

Grade 6 Mathematics Item Specifications Florida Standards Assessments

Grade 6 Mathematics Item Specifications Florida Standards Assessments Content Standard MAFS.6.G Geometry MAFS.6.G.1 Solve real-world and mathematical problems involving area, surface area, and volume. Assessment Limits Calculator s Context A shape is shown. MAFS.6.G.1.1

More information

The Geometry of Carpentry and Joinery

The Geometry of Carpentry and Joinery The Geometry of Carpentry and Joinery Pat Morin and Jason Morrison School of Computer Science, Carleton University, 115 Colonel By Drive Ottawa, Ontario, CANADA K1S 5B6 Abstract In this paper we propose

More information

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 angle An angle is formed by two rays with a common end point. Houghton Mifflin Co. 3 Grade 5 Unit

More information

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 High-Dimensional Computational Geometry Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 Outline 3-D vector geometry High-D hyperplane intersections Convex hull & its extension to 3

More information

Section A Solids Grade E

Section A Solids Grade E Name: Teacher Assessment Section A Solids Grade E 1. Write down the name of each of these 3-D shapes, (i) (ii) (iii) Answer (i)... (ii)... (iii)... (Total 3 marks) 2. (a) On the isometric grid complete

More information

Standard 1 Students will expand number sense to include integers and perform operations with whole numbers, simple fractions, and decimals.

Standard 1 Students will expand number sense to include integers and perform operations with whole numbers, simple fractions, and decimals. Stretch Standard 1 Students will expand number sense to include integers and perform operations with whole numbers, simple fractions, and decimals. Objective 1: Represent whole numbers and decimals from

More information

Appendix 14C: TIMSS 2015 Eighth Grade Mathematics Item Descriptions Developed During the TIMSS 2015 Benchmarking

Appendix 14C: TIMSS 2015 Eighth Grade Mathematics Item Descriptions Developed During the TIMSS 2015 Benchmarking Appendix 14C: TIMSS 2015 Eighth Grade Mathematics Item Descriptions Developed During the TIMSS 2015 Benchmarking Items at Low International Benchmark (400) Number M04_01 M07_01 Recognizes a 7-digit number

More information

Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here)

Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here) Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here) Voronoi Diagram & Delaunay Triangualtion Algorithms Divide-&-Conquer Plane Sweep Lifting

More information

Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry.

Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry. Geometry Introduction: We live in a world of shapes and figures. Objects around us have length, width and height. They also occupy space. On the job, many times people make decision about what they know

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Constrained Delaunay Triangulations (CDT)

Constrained Delaunay Triangulations (CDT) Constrained Delaunay Triangulations (CDT) Recall: Definition 1 (Constrained triangulation). A triangulation with prespecified edges or breaklines between nodes. Motivation: Geological faults in oil recovery

More information

Lecture 11 Combinatorial Planning: In the Plane

Lecture 11 Combinatorial Planning: In the Plane CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University Lecture 11 Combinatorial Planning: In the Plane Instructor: Jingjin Yu Outline Convex shapes, revisited Combinatorial planning

More information

This strand involves properties of the physical world that can be measured, the units used to measure them and the process of measurement.

This strand involves properties of the physical world that can be measured, the units used to measure them and the process of measurement. ICAS MATHEMATICS ASSESSMENT FRAMEWORK ICAS Mathematics assesses mathematical skills in a range of contexts. The content of the papers is divided into the strands of: and, and, and, and, and and. The content

More information

CAD & Computational Geometry Course plan

CAD & Computational Geometry Course plan Course plan Introduction Segment-Segment intersections Polygon Triangulation Intro to Voronoï Diagrams & Geometric Search Sweeping algorithm for Voronoï Diagrams 1 Voronoi Diagrams Voronoi Diagrams or

More information

DIGITAL TERRAIN MODELS

DIGITAL TERRAIN MODELS DIGITAL TERRAIN MODELS 1 Digital Terrain Models Dr. Mohsen Mostafa Hassan Badawy Remote Sensing Center GENERAL: A Digital Terrain Models (DTM) is defined as the digital representation of the spatial distribution

More information

DATA MODELS IN GIS. Prachi Misra Sahoo I.A.S.R.I., New Delhi

DATA MODELS IN GIS. Prachi Misra Sahoo I.A.S.R.I., New Delhi DATA MODELS IN GIS Prachi Misra Sahoo I.A.S.R.I., New Delhi -110012 1. Introduction GIS depicts the real world through models involving geometry, attributes, relations, and data quality. Here the realization

More information

Module 4A: Creating the 3D Model of Right and Oblique Pyramids

Module 4A: Creating the 3D Model of Right and Oblique Pyramids Inventor (5) Module 4A: 4A- 1 Module 4A: Creating the 3D Model of Right and Oblique Pyramids In Module 4A, we will learn how to create 3D solid models of right-axis and oblique-axis pyramid (regular or

More information

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics DIGITAL TERRAIN MODELLING Endre Katona University of Szeged Department of Informatics katona@inf.u-szeged.hu The problem: data sources data structures algorithms DTM = Digital Terrain Model Terrain function:

More information

Robot Motion Planning in Eight Directions

Robot Motion Planning in Eight Directions Robot Motion Planning in Eight Directions Miloš Šeda and Tomáš Březina Abstract In this paper, we investigate the problem of 8-directional robot motion planning where the goal is to find a collision-free

More information

West Linn-Wilsonville School District Mathematics Curriculum Content Standards Grades K-5. Kindergarten

West Linn-Wilsonville School District Mathematics Curriculum Content Standards Grades K-5. Kindergarten Mathematics Curriculum s Kindergarten K.1 Number and Operations and Algebra: Represent, compare, and order whole numbers, and join and separate sets. Read and write whole numbers to 10. Connect numbers,

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

Answer Key: Three-Dimensional Cross Sections

Answer Key: Three-Dimensional Cross Sections Geometry A Unit Answer Key: Three-Dimensional Cross Sections Name Date Objectives In this lesson, you will: visualize three-dimensional objects from different perspectives be able to create a projection

More information

Number and Operation Standard #1. Divide multi- digit numbers; solve real- world and mathematical problems using arithmetic.

Number and Operation Standard #1. Divide multi- digit numbers; solve real- world and mathematical problems using arithmetic. Number and Operation Standard #1 MN Math Standards Vertical Alignment for Grade 5 Demonstrate mastery of multiplication and division basic facts; multiply multi- digit numbers; solve real- world and mathematical

More information

Roadmap Methods vs. Cell Decomposition in Robot Motion Planning

Roadmap Methods vs. Cell Decomposition in Robot Motion Planning Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 007 17 Roadmap Methods vs. Cell Decomposition in Robot Motion

More information

Multipatched B-Spline Surfaces and Automatic Rough Cut Path Generation

Multipatched B-Spline Surfaces and Automatic Rough Cut Path Generation Int J Adv Manuf Technol (2000) 16:100 106 2000 Springer-Verlag London Limited Multipatched B-Spline Surfaces and Automatic Rough Cut Path Generation S. H. F. Chuang and I. Z. Wang Department of Mechanical

More information

Geometry Workbook WALCH PUBLISHING

Geometry Workbook WALCH PUBLISHING Geometry Workbook WALCH PUBLISHING Table of Contents To the Student..............................vii Unit 1: Lines and Triangles Activity 1 Dimensions............................. 1 Activity 2 Parallel

More information

CONTOURING ALGORITHMS WITH TERRAIN MAPPING APPLICATIONS

CONTOURING ALGORITHMS WITH TERRAIN MAPPING APPLICATIONS CONTOURING ALGORITHMS WITH TERRAIN MAPPING APPLICATIONS Dylan Wyn Griffiths School of Mathematics, University of Wales, Bangor. December 2010 Thesis submitted to the University of Wales, Bangor in Candidature

More information

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY 13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY Lecture 23 Dr. W. Cho Prof. N. M. Patrikalakis Copyright c 2003 Massachusetts Institute of Technology Contents 23 F.E. and B.E. Meshing Algorithms 2

More information

Course: Geometry Level: Regular Date: 11/2016. Unit 1: Foundations for Geometry 13 Days 7 Days. Unit 2: Geometric Reasoning 15 Days 8 Days

Course: Geometry Level: Regular Date: 11/2016. Unit 1: Foundations for Geometry 13 Days 7 Days. Unit 2: Geometric Reasoning 15 Days 8 Days Geometry Curriculum Chambersburg Area School District Course Map Timeline 2016 Units *Note: unit numbers are for reference only and do not indicate the order in which concepts need to be taught Suggested

More information

A Constrained Delaunay Triangle Mesh Method for Three-Dimensional Unstructured Boundary Point Cloud

A Constrained Delaunay Triangle Mesh Method for Three-Dimensional Unstructured Boundary Point Cloud International Journal of Computer Systems (ISSN: 2394-1065), Volume 03 Issue 02, February, 2016 Available at http://www.ijcsonline.com/ A Constrained Delaunay Triangle Mesh Method for Three-Dimensional

More information

Southern York County School District

Southern York County School District Southern York County School District Course/Subject: Math Comprehensive Grade Level: 5 One Warrior at a Time Textbook(s)/Materials Used: Ready Pennsylvania Math Instruction, Practice Problem Solving, Assessment,

More information

2) For any triangle edge not on the boundary, there is exactly one neighboring

2) For any triangle edge not on the boundary, there is exactly one neighboring Triangulating Trimmed NURBS Surfaces Chang Shu and Pierre Boulanger Abstract. This paper describes techniques for the piecewise linear approximation of trimmed NURBS surfaces. The problem, called surface

More information

Manipulating the Boundary Mesh

Manipulating the Boundary Mesh Chapter 7. Manipulating the Boundary Mesh The first step in producing an unstructured grid is to define the shape of the domain boundaries. Using a preprocessor (GAMBIT or a third-party CAD package) you

More information

Consolidation of Grade 6 EQAO Questions Geometry and Spatial Sense

Consolidation of Grade 6 EQAO Questions Geometry and Spatial Sense Consolidation of Grade 6 EQAO Questions Geometry and Spatial Sense SE2 Families of Schools Year GV1 GV2 GV3 Spring 2006 Spring 2007 Spring 2008 MC14 MC24 MC13 OR9 MC17 OR30 OR9 MC21 MC18 MC3 MC23 OR30

More information

Terrain Modeling Using Voronoi Hierarchies

Terrain Modeling Using Voronoi Hierarchies Terrain Modeling Using Voronoi Hierarchies Martin Bertram 1, Shirley E. Konkle 2, Hans Hagen 1, Bernd Hamann 3,and Kenneth I. Joy 3 1 University of Kaiserslautern, Department of Computer Science, P.O.

More information

Minimum Bounding Boxes for Regular Cross-Polytopes

Minimum Bounding Boxes for Regular Cross-Polytopes Minimum Bounding Boxes for Regular Cross-Polytopes Salman Shahid Michigan State University shahids1@cse.msu.edu Dr. Sakti Pramanik Michigan State University pramanik@cse.msu.edu Dr. Charles B. Owen Michigan

More information

Visualization of cross sectional data for morphogenetic studies

Visualization of cross sectional data for morphogenetic studies Visualization of cross sectional data for morphogenetic studies G. Brunnett, M. Vančo, Ch. Haller, S. Washausen, H.-J. Kuhn, W. Knabe Abstract: We report on a visualization system that has been implemented

More information

FOR 474: Forest Inventory. Plot Level Metrics: Getting at Canopy Heights. Plot Level Metrics: What is the Point Cloud Anyway?

FOR 474: Forest Inventory. Plot Level Metrics: Getting at Canopy Heights. Plot Level Metrics: What is the Point Cloud Anyway? FOR 474: Forest Inventory Plot Level Metrics from Lidar Heights Other Plot Measures Sources of Error Readings: See Website Plot Level Metrics: Getting at Canopy Heights Heights are an Implicit Output of

More information

Geostatistics Predictions with Deterministic Procedures

Geostatistics Predictions with Deterministic Procedures Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Predictions with Deterministic Procedures Carlos Alberto

More information

Contour Simplification with Defined Spatial Accuracy

Contour Simplification with Defined Spatial Accuracy Contour Simplification with Defined Spatial Accuracy Bulent Cetinkaya, Serdar Aslan, Yavuz Selim Sengun, O. Nuri Cobankaya, Dursun Er Ilgin General Command of Mapping, 06100 Cebeci, Ankara, Turkey bulent.cetinkaya@hgk.mil.tr

More information

[Me] Meisters, G. H., Polygons have ears, American Mathematical Monthly, June/July 1975, pp

[Me] Meisters, G. H., Polygons have ears, American Mathematical Monthly, June/July 1975, pp 4. Applications Meisters [Me] Two-Ears Theorem was motivated by the problem of triangulating a simple polygon. In fact Meisters suggests a greedy, but concise algorithm to achieve this goal, i.e., find

More information

Geometry 10 and 11 Notes

Geometry 10 and 11 Notes Geometry 10 and 11 Notes Area and Volume Name Per Date 10.1 Area is the amount of space inside of a two dimensional object. When working with irregular shapes, we can find its area by breaking it up into

More information

Correlation of the ALEKS courses Algebra 1 and High School Geometry to the Wyoming Mathematics Content Standards for Grade 11

Correlation of the ALEKS courses Algebra 1 and High School Geometry to the Wyoming Mathematics Content Standards for Grade 11 Correlation of the ALEKS courses Algebra 1 and High School Geometry to the Wyoming Mathematics Content Standards for Grade 11 1: Number Operations and Concepts Students use numbers, number sense, and number

More information

Vertex Configurations and Their Relationship on Orthogonal Pseudo-Polyhedra Jefri Marzal, Hong Xie, and Chun Che Fung

Vertex Configurations and Their Relationship on Orthogonal Pseudo-Polyhedra Jefri Marzal, Hong Xie, and Chun Che Fung Vertex Configurations and Their Relationship on Orthogonal Pseudo-Polyhedra Jefri Marzal, Hong Xie, and Chun Che Fung Abstract Vertex configuration for a vertex in an orthogonal pseudo-polyhedron is an

More information

Essential Understandings

Essential Understandings Understandings Questions Basic properties about lines, angles, two- and three-dimensional figures can be used to solve a variety of theoretical and practical problems. What are the various relationships

More information

Lesson Polygons

Lesson Polygons Lesson 4.1 - Polygons Obj.: classify polygons by their sides. classify quadrilaterals by their attributes. find the sum of the angle measures in a polygon. Decagon - A polygon with ten sides. Dodecagon

More information

Extra Practice 1. Name Date. Lesson 1: Exploring Triangles

Extra Practice 1. Name Date. Lesson 1: Exploring Triangles Master 6.36 Extra Practice 1 Lesson 1: Exploring Triangles 1. Draw 3 different triangles. Measure and label the side lengths. Name each triangle as equilateral, isosceles, or scalene. 2. Name each triangle

More information

California Standard Study Island Topic Common Core Standard

California Standard Study Island Topic Common Core Standard State: CA Subject: Math Grade Level: 4 California Standard Study Island Topic Standard NUMBER SENSE 1.0: Students understand the place value of whole numbers and decimals to two decimal places and how

More information

Alaska Mathematics Standards Vocabulary Word List Grade 7

Alaska Mathematics Standards Vocabulary Word List Grade 7 1 estimate proportion proportional relationship rate ratio rational coefficient rational number scale Ratios and Proportional Relationships To find a number close to an exact amount; an estimate tells

More information

CAMI KEYS. TOPIC 1.1 Whole numbers to to to to to

CAMI KEYS. TOPIC 1.1 Whole numbers to to to to to TOPIC 1.1 Whole numbers GRADE 9_CAPS Curriculum 1. Numbers, operations and relationships CONTENT Properties of numbers Describing the real number system by recognizing, defining and distinguishing properties

More information

SHAPE AND STRUCTURE. Shape and Structure. An explanation of Mathematical terminology

SHAPE AND STRUCTURE. Shape and Structure. An explanation of Mathematical terminology Shape and Structure An explanation of Mathematical terminology 2005 1 POINT A dot Dots join to make lines LINE A line is 1 dimensional (length) A line is a series of points touching each other and extending

More information

Voronoi Diagrams. A Voronoi diagram records everything one would ever want to know about proximity to a set of points

Voronoi Diagrams. A Voronoi diagram records everything one would ever want to know about proximity to a set of points Voronoi Diagrams Voronoi Diagrams A Voronoi diagram records everything one would ever want to know about proximity to a set of points Who is closest to whom? Who is furthest? We will start with a series

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 18: Putting Lines Together: Polylines and Polygons Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book

More information

TIPS4Math Grades 4 to 6 Overview Grade 4 Grade 5 Grade 6 Collect, Organize, and Display Primary Data (4+ days)

TIPS4Math Grades 4 to 6 Overview Grade 4 Grade 5 Grade 6 Collect, Organize, and Display Primary Data (4+ days) Collect, Organize, and Display Primary Data (4+ days) Collect, Organize, Display and Interpret Categorical Data (5+ days) 4m88 Collect data by conducting a survey or an experiment to do with the 4m89 Collect

More information

Mathematics K-8 Content Standards

Mathematics K-8 Content Standards Mathematics K-8 Content Standards Kindergarten K.1 Number and Operations and Algebra: Represent, compare, and order whole numbers, and join and separate sets. K.1.1 Read and write whole numbers to 10.

More information

CONSTRUCTIONS OF QUADRILATERAL MESHES: A COMPARATIVE STUDY

CONSTRUCTIONS OF QUADRILATERAL MESHES: A COMPARATIVE STUDY South Bohemia Mathematical Letters Volume 24, (2016), No. 1, 43-48. CONSTRUCTIONS OF QUADRILATERAL MESHES: A COMPARATIVE STUDY PETRA SURYNKOVÁ abstrakt. Polygonal meshes represent important geometric structures

More information

ACT Math and Science - Problem Drill 11: Plane Geometry

ACT Math and Science - Problem Drill 11: Plane Geometry ACT Math and Science - Problem Drill 11: Plane Geometry No. 1 of 10 1. Which geometric object has no dimensions, no length, width or thickness? (A) Angle (B) Line (C) Plane (D) Point (E) Polygon An angle

More information

Curriculum Connections (Fractions): K-8 found at under Planning Supports

Curriculum Connections (Fractions): K-8 found at   under Planning Supports Curriculum Connections (Fractions): K-8 found at http://www.edugains.ca/newsite/digitalpapers/fractions/resources.html under Planning Supports Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade

More information

Math 7 Glossary Terms

Math 7 Glossary Terms Math 7 Glossary Terms Absolute Value Absolute value is the distance, or number of units, a number is from zero. Distance is always a positive value; therefore, absolute value is always a positive value.

More information

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight Three-Dimensional Object Reconstruction from Layered Spatial Data Michael Dangl and Robert Sablatnig Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image

More information

Introduction to Geometry

Introduction to Geometry Introduction to Geometry This course covers the topics outlined below. You can customize the scope and sequence of this course to meet your curricular needs. Curriculum (211 topics + 6 additional topics)

More information

Chapter 1. Introduction

Chapter 1. Introduction Introduction 1 Chapter 1. Introduction We live in a three-dimensional world. Inevitably, any application that analyzes or visualizes this world relies on three-dimensional data. Inherent characteristics

More information

Week 8 Voronoi Diagrams

Week 8 Voronoi Diagrams 1 Week 8 Voronoi Diagrams 2 Voronoi Diagram Very important problem in Comp. Geo. Discussed back in 1850 by Dirichlet Published in a paper by Voronoi in 1908 3 Voronoi Diagram Fire observation towers: an

More information

Overview of Unstructured Mesh Generation Methods

Overview of Unstructured Mesh Generation Methods Overview of Unstructured Mesh Generation Methods Structured Meshes local mesh points and cells do not depend on their position but are defined by a general rule. Lead to very efficient algorithms and storage.

More information

Aston Hall s A-Z of mathematical terms

Aston Hall s A-Z of mathematical terms Aston Hall s A-Z of mathematical terms The following guide is a glossary of mathematical terms, covering the concepts children are taught in FS2, KS1 and KS2. This may be useful to clear up any homework

More information

Unit 3 Geometry. Chapter 7 Geometric Relationships Chapter 8 Measurement Relationships Chapter 9 Optimizing Measurements MPM1D

Unit 3 Geometry. Chapter 7 Geometric Relationships Chapter 8 Measurement Relationships Chapter 9 Optimizing Measurements MPM1D Unit 3 Geometry Chapter 7 Geometric Relationships Chapter 8 Measurement Relationships Chapter 9 Optimizing Measurements MPM1D Chapter 7 Outline Section Subject Homework Notes Lesson and Homework Complete

More information

SOLIDS.

SOLIDS. SOLIDS Prisms Among the numerous objects we see around us, some have a regular shape while many others do not have a regular shape. Take, for example, a brick and a stone. A brick has a regular shape while

More information

Elementary Planar Geometry

Elementary Planar Geometry Elementary Planar Geometry What is a geometric solid? It is the part of space occupied by a physical object. A geometric solid is separated from the surrounding space by a surface. A part of the surface

More information

arxiv: v1 [cs.cg] 11 Sep 2007

arxiv: v1 [cs.cg] 11 Sep 2007 Unfolding Restricted Convex Caps Joseph O Rourke arxiv:0709.1647v1 [cs.cg] 11 Sep 2007 September 11, 2007 Abstract This paper details an algorithm for unfolding a class of convex polyhedra, where each

More information

Maths Levels Criteria

Maths Levels Criteria Maths Levels Criteria Level 1-5 pencilplayground.co.uk 2012 NUMBER I can count up to ten objects I can read and write numbers up to ten I can work out one more and one less then a number I can count backwards

More information

A triangle that has three acute angles Example:

A triangle that has three acute angles Example: 1. acute angle : An angle that measures less than a right angle (90 ). 2. acute triangle : A triangle that has three acute angles 3. angle : A figure formed by two rays that meet at a common endpoint 4.

More information

Computational Geometry Lecture Delaunay Triangulation

Computational Geometry Lecture Delaunay Triangulation Computational Geometry Lecture Delaunay Triangulation INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 7.12.2015 1 Modelling a Terrain Sample points p = (x p, y p, z p ) Projection π(p) = (p

More information

Scope and Sequence for the New Jersey Core Curriculum Content Standards

Scope and Sequence for the New Jersey Core Curriculum Content Standards Scope and Sequence for the New Jersey Core Curriculum Content Standards The following chart provides an overview of where within Prentice Hall Course 3 Mathematics each of the Cumulative Progress Indicators

More information

FOOTPRINTS EXTRACTION

FOOTPRINTS EXTRACTION Building Footprints Extraction of Dense Residential Areas from LiDAR data KyoHyouk Kim and Jie Shan Purdue University School of Civil Engineering 550 Stadium Mall Drive West Lafayette, IN 47907, USA {kim458,

More information

Describe Plane Shapes

Describe Plane Shapes Lesson 12.1 Describe Plane Shapes You can use math words to describe plane shapes. point an exact position or location line endpoints line segment ray a straight path that goes in two directions without

More information

COMPARISON OF TWO METHODS FOR DERIVING SKELETON LINES OF TERRAIN

COMPARISON OF TWO METHODS FOR DERIVING SKELETON LINES OF TERRAIN COMPARISON OF TWO METHODS FOR DERIVING SKELETON LINES OF TERRAIN T. Gökgöz, F. Gülgen Yildiz Technical University, Dept. of Geodesy and Photogrammetry Engineering, 34349 Besiktas Istanbul, Turkey (gokgoz,

More information

Unit E Geometry Unit Review Packet

Unit E Geometry Unit Review Packet Unit E Geometry Unit Review Packet Name Directions: Do ALL (A) Questions. Check Your Answers to (A) Questions. If ALL (A) Questions are correct, skip (B) Questions and move onto next I can statement. If

More information

2. A circle is inscribed in a square of diagonal length 12 inches. What is the area of the circle?

2. A circle is inscribed in a square of diagonal length 12 inches. What is the area of the circle? March 24, 2011 1. When a square is cut into two congruent rectangles, each has a perimeter of P feet. When the square is cut into three congruent rectangles, each has a perimeter of P 6 feet. Determine

More information

Honors Geometry Pacing Guide Honors Geometry Pacing First Nine Weeks

Honors Geometry Pacing Guide Honors Geometry Pacing First Nine Weeks Unit Topic To recognize points, lines and planes. To be able to recognize and measure segments and angles. To classify angles and name the parts of a degree To recognize collinearity and betweenness of

More information

Digits. Value The numbers a digit. Standard Form. Expanded Form. The symbols used to show numbers: 0,1,2,3,4,5,6,7,8,9

Digits. Value The numbers a digit. Standard Form. Expanded Form. The symbols used to show numbers: 0,1,2,3,4,5,6,7,8,9 Digits The symbols used to show numbers: 0,1,2,3,4,5,6,7,8,9 Value The numbers a digit represents, which is determined by the position of the digits Standard Form Expanded Form A common way of the writing

More information

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples :

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples : 3. Voronoi Diagrams Examples : 1. Fire Observation Towers Imagine a vast forest containing a number of fire observation towers. Each ranger is responsible for extinguishing any fire closer to her tower

More information