H(curl) and H(div) Elements on Polytopes from Generalized Barycentric Coordinates

Size: px
Start display at page:

Download "H(curl) and H(div) Elements on Polytopes from Generalized Barycentric Coordinates"

Transcription

1 H(curl) and H(div) Elements on Polytopes from Generalized Barycentric Coordinates Andrew Gillette Department of Mathematics University of Arizona joint work with Alex Rand (CD-adapco) Chandrajit Bajaj (UT Austin) Andrew Gillette - U. Arizona Vector Elements () on Polytopes with GBCs Finite Element Circus / 13

2 The generalized barycentric coordinate approach Let P be a convex polytope with vertex set V. We say that λ v : P R are generalized barycentric coordinates (GBCs) on P if they satisfy λ v 0 on P and L = v V L(v v)λ v L : P R linear. Familiar properties are implied by this definition: λ v 1 vλ v(x) = x v V }{{} partition of unity v V } {{ } linear precision λ vi (v j ) = δ ij }{{} interpolation traditional FEM family of GBC reference elements Bilinear Map Unit Diameter Affine Map T Reference Element Physical Element T Ω Ω Andrew Gillette - U. Arizona Vector Elements ( ) on Polytopes with GBCs Finite Element Circus / 13

3 Developments in GBC FEM theory 1 Characterization of the dependence of error estimates on polytope geometry. vs. 2 Construction of higher order scalar-valued methods using λv functions. {λi } {λi λj } {ψij } 3 Construction of H(curl) and H(div) methods using λv and λv functions. H1 grad {λi } Andrew Gillette - U. Arizona / H(curl) {λi λj } curl / H(div) {λi λj λk } Vector Elements () on Polytopes with GBCs div / L2 {χp } Finite Element Circus / 13

4 Many choices of generalized barycentric coordinates Triangulation FLOATER HORMANN KÓS A general construction of barycentric coordinates over convex polygons λ Tm i (x) λ i (x) λ T M i (x) 1 Wachspress WACHSPRESS A Rational Finite Element Basis WARREN Barycentric coordinates for convex polytopes Sibson / Laplace SIBSON A vector identity for the Dirichlet tessellation HIYOSHI SUGIHARA Voronoi-based interpolation with higher continuity Andrew Gillette - U. Arizona Vector Elements ( ) on Polytopes with GBCs Finite Element Circus / 13

5 Many choices of generalized barycentric coordinates x α i ri α i 1 v i+1 v i Mean value FLOATER Mean value coordinates FLOATER KÓS REIMERS Mean value coordinates in 3D v i 1 u = 0 Harmonic WARREN SCHAEFER HIRANI DESBRUN Barycentric coordinates for convex sets CHRISTIANSEN A construction of spaces of compatible differential forms on cellular complexes Many more papers could be cited (maximum entropy coordinates moving least squares coordinates surface barycentric coordinates etc...) Andrew Gillette - U. Arizona Vector Elements ( ) on Polytopes with GBCs Finite Element Circus / 13

6 From scalar to vector elements The classical finite element sequences for a domain Ω R n are written: n = 2 : H 1 grad n = 3 : H 1 grad H(curl) rot H(div) H(curl) curl H(div) div L 2 div L 2 These correspond to the L 2 derham diagrams from differential topology: n = 2 : HΛ 0 d 0 HΛ 1 = HΛ 1 d 1 HΛ 2 n = 3 : HΛ 0 d 0 HΛ 1 d 1 HΛ 2 d 2 HΛ 3 Conforming finite element subspaces of HΛ k are of two types: P r Λ k := k-forms with degree r polynomial coefficients P r Λ k := P r 1 Λ k {certain additional k-forms} This notation from Finite Element Exterior Calculus can be used to describe many well-known finite element spaces. ARNOLD FALK WINTHER Finite Element Exterior Calculus Bulletin of the AMS Andrew Gillette - U. Arizona Vector Elements ( ) on Polytopes with GBCs Finite Element Circus / 13

7 Classical finite element spaces on simplices n=2 (triangles) k dim space type classical description 0 3 P 1 Λ 0 H 1 Lagrange elements of degree 1 3 P 1 Λ0 H 1 Lagrange elements of degree P 1 Λ 1 H(div) Brezzi-Douglas-Marini H(div) elements of degree 1 3 P 1 Λ1 H(div) Raviart-Thomas elements of order P 1 Λ 2 L 2 discontinuous linear 1 P 1 Λ2 L 2 discontinuous piecewise constant n=3 (tetrahedra) 0 4 P 1 Λ 0 H 1 Lagrange elements of degree 1 4 P 1 Λ0 H 1 Lagrange elements of degree P 1 Λ 1 H(curl) Nédélec second kind H(curl) elements of degree 1 6 P 1 Λ1 H(curl) Nédélec first kind H(curl) elements of order P 1 Λ 2 H(div) Nédélec second kind H(div) elements of degree 1 4 P 1 Λ2 H(div) Nédélec first kind H(div) elements of order P 1 Λ 3 L 2 discontinuous linear 1 P 1 Λ3 L 2 discontinuous piecewise constant Andrew Gillette - U. Arizona Vector Elements ( ) on Polytopes with GBCs Finite Element Circus / 13

8 Basis functions on simplices n=2 (triangles) k dim space type basis functions 0 3 P 1 Λ 0 H 1 λ i 1 6 P 1 Λ 1 H(curl) λ i λ j 6 P 1 Λ 1 H(div) rot(λ i λ j ) 3 P 1 Λ1 H(curl) λ i λ j λ j λ i 3 P 1 Λ1 H(div) rot(λ i λ j λ j λ i ) 2 3 P 1 Λ 2 L 2 piecewise linear functions 1 P 1 Λ2 L 2 piecewise constant functions n=3 (tetrahedra) 0 4 P 1 Λ 0 H 1 λ i 1 12 P 1 Λ 1 H(curl) λ i λ j 6 P 1 Λ1 H(curl) λ i λ j λ j λ i 2 12 P 1 Λ 2 H(div) λ i λ j λ k 4 P 1 Λ2 H(div) (λ i λ j λ k ) + (λ j λ k λ i ) + (λ k λ i λ j ) 3 4 P 1 Λ 3 L 2 piecewise linear functions 1 P 1 Λ3 L 2 piecewise constant functions Andrew Gillette - U. Arizona Vector Elements ( ) on Polytopes with GBCs Finite Element Circus / 13

9 Essential properties of basis functions The vector-valued basis constructions (0 < k < n) have two key properties: 1 Global continuity in H(curl) or H(div) λ i λ j agree on tangential components at element interfaces λ i λ j λ k agree on normal components at element interfaces = H(curl) continuity = H(div) continuity 2 Reproduction of requisite polynomial differential forms. For i j {1 2 3}: span{λ i λ j } = span span{λ i λ j λ j λ i } = span {[ ] 1 0 {[ ] 1 0 [ ] 0 1 [ ] 0 1 [ ] x 0 [ ] 0 x [ ] y 0 [ ]} x = P 1 y Λ1 (R 2 ) [ ]} 0 = P y 1 Λ 1 (R 2 ) Using generalized barycentric coordinates we can extend all these results to polygonal and polyhedral elements. Andrew Gillette - U. Arizona Vector Elements ( ) on Polytopes with GBCs Finite Element Circus / 13

10 Basis functions on polygons and polyhedra Theorem [G. Rand Bajaj 2014] Let P be a convex polygon or polyhedron. Given any set of generalized barycentric coordinates {λ i } associated to P the functions listed below have global continuity and polynomial differential form reproduction properties as indicated. k space type functions n=2 (polygons) 1 P 1 Λ 1 H(curl) λ i λ j P 1 Λ 1 H(div) rot(λ i λ j ) P 1 Λ1 H(curl) λ i λ j λ j λ i P 1 Λ1 H(div) rot(λ i λ j λ j λ i ) n=3 (polyhedra) 1 P 1 Λ 1 H(curl) λ i λ j P 1 Λ1 H(curl) λ i λ j λ j λ i 2 P 1 Λ 2 H(div) λ i λ j λ k P 1 Λ2 H(div) (λ i λ j λ k ) + (λ j λ k λ i ) + (λ k λ i λ j ) Note: The indices range over all pairs or triples of vertex indices from P. Andrew Gillette - U. Arizona Vector Elements ( ) on Polytopes with GBCs Finite Element Circus / 13

11 Polynomial differential form reproduction identities Let P R 3 be a convex polyhedron with vertex set {v i }. Let x = [ x y z ] T. Then for any 3 3 real matrix A λ i λ j (v j v i ) T = I ij (Av i v j )(λ i λ j ) = Ax ij 1 2 λ i λ j λ k ((v j v i ) (v k v i )) T = I ijk 1 2 (Av i (v j v k ))(λ i λ j λ k ) = Ax. ijk By appropriate choice of constant entries for A the column vectors of I and Ax span P 1 Λ 1 H(curl) or P 1 Λ 2 H(div). Additional identities for the remaining cases are stated in: G RAND BAJAJ Construction of Scalar and Vector Finite Element Families on Polygonal and Polyhedral Meshes arxiv: Andrew Gillette - U. Arizona Vector Elements ( ) on Polytopes with GBCs Finite Element Circus / 13

12 Reducing the basis In some cases it should be possible to reduce the size of the basis constructed by our method in an analogous fashion to the quadratic scalar case. n=2 (polygons) k space # construction # boundary # polynomial 0 P 1 Λ 0 (m)/p 0 Λ1 (m) v v 3 1 P 1 Λ 1 (m) v(v 1) 2e 6 ( ) P v 1 Λ1 (m) e P 1 Λ 2 (m) P 1 Λ2 (m) v(v 1)(v 2) 2 ( ) v 3 The n = 3 (polyhedra) version of this table is given in: G RAND BAJAJ Construction of Scalar and Vector Finite Element Families on Polygonal and Polyhedral Meshes arxiv: Andrew Gillette - U. Arizona Vector Elements ( ) on Polytopes with GBCs Finite Element Circus / 13

13 Acknowledgments Chandrajit Bajaj Alexander Rand UT Austin UT Austin / CD-adapco Happy birthday Doug! Slides and pre-prints: More on GBCs: Andrew Gillette - U. Arizona Vector Elements ( ) on Polytopes with GBCs Finite Element Circus / 13

Conforming Vector Interpolation Functions for Polyhedral Meshes

Conforming Vector Interpolation Functions for Polyhedral Meshes Conforming Vector Interpolation Functions for Polyhedral Meshes Andrew Gillette joint work with Chandrajit Bajaj and Alexander Rand Department of Mathematics Institute of Computational Engineering and

More information

Dual Interpolants for Finite Element Methods

Dual Interpolants for Finite Element Methods Dual Interpolants for Finite Element Methods Andrew Gillette joint work with Chandrajit Bajaj and Alexander Rand Department of Mathematics Institute of Computational Engineering and Sciences University

More information

Polygonal, Polyhedral, and Serendipity Finite Element Methods

Polygonal, Polyhedral, and Serendipity Finite Element Methods Polygonal, Polyhedral, and Serendipity Finite Element Methods Andrew Gillette Department of Mathematics University of Arizona ASU Computational and Applied Math Seminar Slides and more info at: http://math.arizona.edu/

More information

Modern Directions in Finite Element Theory: Polytope Meshes and Serendipity Methods

Modern Directions in Finite Element Theory: Polytope Meshes and Serendipity Methods Modern Directions in Finite Element Theory: Polytope Meshes and Serendipity Methods Andrew Gillette Department of Mathematics University of Arizona Andrew Gillette - U. Arizona Polytope ( ) and Serendipity

More information

Nodal Basis Functions for Serendipity Finite Elements

Nodal Basis Functions for Serendipity Finite Elements Nodal Basis Functions for Serendipity Finite Elements Andrew Gillette Department of Mathematics University of Arizona joint work with Michael Floater (University of Oslo) Andrew Gillette - U. Arizona Nodal

More information

Generalized Barycentric Coordinates

Generalized Barycentric Coordinates Generalized Barycentric Coordinates Kai Hormann Faculty of Informatics University of Lugano Cartesian coordinates y 3 2 ( 3,1) 1 3 2 1 1 2 3 (2,2) (0,0) 1 2 3 (1, 2) x René Descartes (1596 1650) Appendix

More information

arxiv: v2 [math.na] 2 Oct 2015

arxiv: v2 [math.na] 2 Oct 2015 INTERPOLATION ERROR ESTIMATES FOR HARMONIC COORDINATES ON POLYTOPES ANDREW GILLETTE AND ALEXANDER RAND arxiv:1504.00599v2 [math.na] 2 Oct 2015 Abstract. Interpolation error estimates in terms of geometric

More information

Finite Element Methods

Finite Element Methods Chapter 5 Finite Element Methods 5.1 Finite Element Spaces Remark 5.1 Mesh cells, faces, edges, vertices. A mesh cell is a compact polyhedron in R d, d {2,3}, whose interior is not empty. The boundary

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

Discrete Exterior Calculus

Discrete Exterior Calculus Discrete Exterior Calculus Peter Schröder with Mathieu Desbrun and the rest of the DEC crew 1 Big Picture Deriving a whole Discrete Calculus first: discrete domain notion of chains and discrete representation

More information

Generalized Barycentric Coordinates

Generalized Barycentric Coordinates Generalized Barycentric Coordinates Kai Hormann Faculty of Informatics Università della Svizzera italiana, Lugano School of Computer Science and Engineering Nanyang Technological University, Singapore

More information

Barycentric Finite Element Methods

Barycentric Finite Element Methods University of California, Davis Barycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing November 8, 2007 Collaborators and Acknowledgements

More information

A Generalization for Stable Mixed Finite Elements

A Generalization for Stable Mixed Finite Elements A Generalization for Stable Mixed Finite Elements Andrew Gillette Department of Mathematics University of Texas at Austin agillette@math.utexas.edu Chandrajit Bajaj Department of Computer Sciences University

More information

maximize c, x subject to Ax b,

maximize c, x subject to Ax b, Lecture 8 Linear programming is about problems of the form maximize c, x subject to Ax b, where A R m n, x R n, c R n, and b R m, and the inequality sign means inequality in each row. The feasible set

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

PROPERTIES OF NATURAL ELEMENT COORDINATES ON ANY POLYHEDRON

PROPERTIES OF NATURAL ELEMENT COORDINATES ON ANY POLYHEDRON PROPRTIS OF NATURAL LMNT COORDINATS ON ANY POLYHDRON P. Milbradt and T. Fröbel Institute of Computer Science in Civil ngineering, Univercity of Hanover, 3067, Hanover, Germany; PH (+49) 5-76-5757; FAX

More information

Generalized Barycentric Coordinates

Generalized Barycentric Coordinates Generalized Barycentric Coordinates Kai Hormann Faculty of Informatics Università della Svizzera italiana, Lugano My life in a nutshell 2009??? Associate Professor @ University of Lugano 1 Generalized

More information

Barycentric Finite Element Methods

Barycentric Finite Element Methods University of California, Davis Barycentric Finite Element Methods N. Sukumar UC Davis Workshop on Generalized Barycentric Coordinates, Columbia University July 26, 2012 Collaborators and Acknowledgements

More information

Generalized barycentric coordinates

Generalized barycentric coordinates Generalized barycentric coordinates Michael S. Floater August 20, 2012 In this lecture, we review the definitions and properties of barycentric coordinates on triangles, and study generalizations to convex,

More information

HPC Python Tutorial: Introduction to FEniCS 4/23/2012. Instructor: Yaakoub El Khamra, Research Associate, TACC

HPC Python Tutorial: Introduction to FEniCS 4/23/2012. Instructor: Yaakoub El Khamra, Research Associate, TACC HPC Python Tutorial: Introduction to FEniCS 4/23/2012 Instructor: Yaakoub El Khamra, Research Associate, TACC yaakoub@tacc.utexas.edu What is FEniCS The FEniCS Project is a collection of free software

More information

arxiv: v1 [math.na] 28 Oct 2015

arxiv: v1 [math.na] 28 Oct 2015 Serendipity Nodal VEM spaces L. Beirão da Veiga, F. Brezzi, L.D. Marini, A. Russo arxiv:1510.08477v1 [math.na] 28 Oct 2015 Lourenço Beirão da Veiga - Dipartimento di Matematica, Università di Milano Statale,

More information

A new 8-node quadrilateral spline finite element

A new 8-node quadrilateral spline finite element Journal of Computational and Applied Mathematics 195 (2006) 54 65 www.elsevier.com/locate/cam A new 8-node quadrilateral spline finite element Chong-Jun Li, Ren-Hong Wang Institute of Mathematical Sciences,

More information

Kai Hormann, N. Sukumar. Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics

Kai Hormann, N. Sukumar. Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics Kai Hormann, N. Sukumar Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics Contents Chapter 1 Multi-Sided Patches via Barycentric Coordinates 1 Scott Schaefer 1.1 INTRODUCTION

More information

arxiv:submit/ [math.na] 18 Sep 2012

arxiv:submit/ [math.na] 18 Sep 2012 Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons arxiv:submit/055404 [mathna] 8 Sep 0 Alexander Rand, Andrew Gillette, and Chandrajit Bajaj September 8, 0 Abstract In a similar

More information

Serendipity Nodal VEM spaces

Serendipity Nodal VEM spaces Serendipity Nodal VEM spaces L. Beirão da Veiga, F. Brezzi, L.D. Marini, A. Russo Lourenço Beirão da Veiga - Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Via Cozzi 53, I-20153,

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

THE MORTAR FINITE ELEMENT METHOD IN 2D: IMPLEMENTATION IN MATLAB

THE MORTAR FINITE ELEMENT METHOD IN 2D: IMPLEMENTATION IN MATLAB THE MORTAR FINITE ELEMENT METHOD IN D: IMPLEMENTATION IN MATLAB J. Daněk, H. Kutáková Department of Mathematics, University of West Bohemia, Pilsen MECAS ESI s.r.o., Pilsen Abstract The paper is focused

More information

Polygonal spline spaces and the numerical solution of the Poisson equation

Polygonal spline spaces and the numerical solution of the Poisson equation Polygonal spline spaces and the numerical solution of the Poisson equation Michael S. Floater, Ming-Jun Lai September 10, 2015 Abstract It is known that generalized barycentric coordinates (GBCs) can be

More information

6100 Main St E. California Boulevard 3737 Watt Way, PHE 434 Houston, TX Pasadena, CA Los Angeles, CA 90089

6100 Main St E. California Boulevard 3737 Watt Way, PHE 434 Houston, TX Pasadena, CA Los Angeles, CA 90089 Joe Warren, Scott Schaefer, Anil N. Hirani and Mathieu Desbrun Rice University Caltech University of Southern California 6 Main St. E. California Boulevard 77 Watt Way, PHE Houston, TX 775 Pasadena, CA

More information

Comparison and affine combination of generalized barycentric coordinates for convex polygons

Comparison and affine combination of generalized barycentric coordinates for convex polygons Annales Mathematicae et Informaticae 47 (2017) pp. 185 200 http://ami.uni-eszterhazy.hu Comparison and affine combination of generalized barycentric coordinates for convex polygons Ákos Tóth Department

More information

Blended barycentric coordinates

Blended barycentric coordinates Blended barycentric coordinates Dmitry Anisimov a, Daniele Panozzo b, Kai Hormann a, a Università della Svizzera italiana, Lugano, Switzerland b New York University, New York, USA Abstract Generalized

More information

Def De orma f tion orma Disney/Pixar

Def De orma f tion orma Disney/Pixar Deformation Disney/Pixar Deformation 2 Motivation Easy modeling generate new shapes by deforming existing ones 3 Motivation Easy modeling generate new shapes by deforming existing ones 4 Motivation Character

More information

Optimizing Voronoi Diagrams for Polygonal Finite Element Computations

Optimizing Voronoi Diagrams for Polygonal Finite Element Computations Optimizing Voronoi Diagrams for Polygonal Finite Element Computations Daniel Sieger 1, Pierre Alliez 2, and Mario Botsch 1 1 Bielefeld University, Germany {dsieger,botsch}@techfak.uni-bielefeld.de 2 INRIA

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo 12 - Spatial And Skeletal Deformations Space Deformations Space Deformation Displacement function defined on the ambient space Evaluate the function on the points of the shape embedded in the space Twist

More information

A Polygonal Spline Method for General 2nd-Order Elliptic Equations and Its Applications

A Polygonal Spline Method for General 2nd-Order Elliptic Equations and Its Applications A Polygonal Spline Method for General 2nd-Order Elliptic Equations and Its Applications Ming-Jun Lai James Lanterman Nov. 29, 2016 Abstract We explain how to use polygonal splines to numerically solve

More information

Polygonal Finite Elements for Finite Elasticity

Polygonal Finite Elements for Finite Elasticity Polygonal Finite Elements for Finite Elasticity Heng Chi a, Cameron Talischi b, Oscar Lopez-Pamies b, Glaucio H. Paulino a a: Georgia Institute of Technology b: University of Illinois at Urbana-Champaign

More information

Galerkin Projections Between Finite Element Spaces

Galerkin Projections Between Finite Element Spaces Galerkin Projections Between Finite Element Spaces Ross A. Thompson Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

PyDEC: Software and Algorithms for Discretization of Exterior Calculus

PyDEC: Software and Algorithms for Discretization of Exterior Calculus PyDEC: Software and Algorithms for Discretization of Exterior Calculus Nathan Bell 1 and Anil N. Hirani 2 1 NVIDIA Corporation, nbell@nvidia.com 2 Department of Computer Science, University of Illinois

More information

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W

More information

ACTUALLY DOING IT : an Introduction to Polyhedral Computation

ACTUALLY DOING IT : an Introduction to Polyhedral Computation ACTUALLY DOING IT : an Introduction to Polyhedral Computation Jesús A. De Loera Department of Mathematics Univ. of California, Davis http://www.math.ucdavis.edu/ deloera/ 1 What is a Convex Polytope? 2

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry CS 468 (Spring 2013) Discrete Differential Geometry 1 Math Review Lecture 14 15 May 2013 Discrete Exterior Calculus Lecturer: Justin Solomon Scribe: Cassidy Saenz Before we dive into Discrete Exterior

More information

High Order Nédélec Elements with local complete sequence properties

High Order Nédélec Elements with local complete sequence properties High Order Nédélec Elements with local complete sequence properties Joachim Schöberl and Sabine Zaglmayr Institute for Computational Mathematics, Johannes Kepler University Linz, Austria E-mail: {js,sz}@jku.at

More information

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia 2008 1 Non-Convex Non Convex Boundary Convex boundary creates significant distortion Free boundary is better 2 Fixed

More information

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems Long Chen University of California, Irvine chenlong@math.uci.edu Joint work with: Huayi Wei (Xiangtan University),

More information

Scientific Computing WS 2018/2019. Lecture 12. Jürgen Fuhrmann Lecture 12 Slide 1

Scientific Computing WS 2018/2019. Lecture 12. Jürgen Fuhrmann Lecture 12 Slide 1 Scientific Computing WS 2018/2019 Lecture 12 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 12 Slide 1 Recap For more discussion of mesh generation, see J.R. Shewchuk: Lecture Notes on Delaunay

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany A Primer on Laplacians Max Wardetzky Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany Warm-up: Euclidean case Warm-up The Euclidean case Chladni s vibrating plates

More information

C 1 Quintic Spline Interpolation Over Tetrahedral Partitions

C 1 Quintic Spline Interpolation Over Tetrahedral Partitions C 1 Quintic Spline Interpolation Over Tetrahedral Partitions Gerard Awanou and Ming-Jun Lai Abstract. We discuss the implementation of a C 1 quintic superspline method for interpolating scattered data

More information

Parameterization of Triangular Meshes with Virtual Boundaries

Parameterization of Triangular Meshes with Virtual Boundaries Parameterization of Triangular Meshes with Virtual Boundaries Yunjin Lee 1;Λ Hyoung Seok Kim 2;y Seungyong Lee 1;z 1 Department of Computer Science and Engineering Pohang University of Science and Technology

More information

VoroCrust: Simultaneous Surface Reconstruction and Volume Meshing with Voronoi cells

VoroCrust: Simultaneous Surface Reconstruction and Volume Meshing with Voronoi cells VoroCrust: Simultaneous Surface Reconstruction and Volume Meshing with Voronoi cells Scott A. Mitchell (speaker), joint work with Ahmed H. Mahmoud, Ahmad A. Rushdi, Scott A. Mitchell, Ahmad Abdelkader

More information

Adaptive computations on conforming quadtree meshes

Adaptive computations on conforming quadtree meshes Finite Elements in Analysis and Design 41 (2005) 686 702 www.elsevier.com/locate/finel Adaptive computations on conforming quadtree meshes A. Tabarraei, N. Sukumar Department of Civil and Environmental

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

Scientific Computing: Interpolation

Scientific Computing: Interpolation Scientific Computing: Interpolation Aleksandar Donev Courant Institute, NYU donev@courant.nyu.edu Course MATH-GA.243 or CSCI-GA.22, Fall 25 October 22nd, 25 A. Donev (Courant Institute) Lecture VIII /22/25

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

On transfinite Gordon-Wixom interpolation schemes and their extensions Belyaev, Alexander; Fayolle, Pierre-Alain

On transfinite Gordon-Wixom interpolation schemes and their extensions Belyaev, Alexander; Fayolle, Pierre-Alain Heriot-Watt University Heriot-Watt University Research Gateway On transfinite Gordon-Wixom interpolation schemes and their extensions Belyaev, Alexander; Fayolle, Pierre-Alain Published in: Computers and

More information

Computers and Fluids

Computers and Fluids Computers and Fluids 141 (2016) 2 12 Contents lists available at ScienceDirect Computers and Fluids journal homepage: www.elsevier.com/locate/compfluid Serendipity Nodal VM spaces L. Beirão da Veiga a,

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

INF3320 Computer Graphics and Discrete Geometry

INF3320 Computer Graphics and Discrete Geometry INF3320 Computer Graphics and Discrete Geometry More smooth Curves and Surfaces Christopher Dyken, Michael Floater and Martin Reimers 10.11.2010 Page 1 More smooth Curves and Surfaces Akenine-Möller, Haines

More information

IsoGeometric Analysis: Be zier techniques in Numerical Simulations

IsoGeometric Analysis: Be zier techniques in Numerical Simulations IsoGeometric Analysis: Be zier techniques in Numerical Simulations Ahmed Ratnani IPP, Garching, Germany July 30, 2015 1/ 1 1/1 Outline Motivations Computer Aided Design (CAD) Zoology Splines/NURBS Finite

More information

Discrete Geometry Processing

Discrete Geometry Processing Non Convex Boundary Convex boundary creates significant distortion Free boundary is better Some slides from the Mesh Parameterization Course (Siggraph Asia 008) 1 Fixed vs Free Boundary Fixed vs Free Boundary

More information

Documentation for Numerical Derivative on Discontinuous Galerkin Space

Documentation for Numerical Derivative on Discontinuous Galerkin Space Documentation for Numerical Derivative on Discontinuous Galerkin Space Stefan Schnake 204 Introduction This documentation gives a guide to the syntax and usage of the functions in this package as simply

More information

Classification of Ehrhart quasi-polynomials of half-integral polygons

Classification of Ehrhart quasi-polynomials of half-integral polygons Classification of Ehrhart quasi-polynomials of half-integral polygons A thesis presented to the faculty of San Francisco State University In partial fulfilment of The Requirements for The Degree Master

More information

INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD ON VERY GENERAL POLYGONAL AND POLYHEDRAL MESHES

INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD ON VERY GENERAL POLYGONAL AND POLYHEDRAL MESHES INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD ON VERY GENERAL POLYGONAL AND POLYHEDRAL MESHES LIN MU, JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This paper provides a theoretical foundation for interior

More information

Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws

Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws Ivan Christov 1,* Bojan Popov 1 Peter Popov 2 1 Department of Mathematics, 2 Institute for Scientific

More information

Moving Least Squares Coordinates

Moving Least Squares Coordinates Eurographics Symposium on Geometry Processing 2010 Olga Sorkine and Bruno Lévy (Guest Editors) Volume 29 (2010), Number 5 Moving Least Squares Coordinates Josiah Manson, Scott Schaefer Texas A&M University

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

Algebraic Geometry of Segmentation and Tracking

Algebraic Geometry of Segmentation and Tracking Ma191b Winter 2017 Geometry of Neuroscience Geometry of lines in 3-space and Segmentation and Tracking This lecture is based on the papers: Reference: Marco Pellegrini, Ray shooting and lines in space.

More information

ECE 600, Dr. Farag, Summer 09

ECE 600, Dr. Farag, Summer 09 ECE 6 Summer29 Course Supplements. Lecture 4 Curves and Surfaces Aly A. Farag University of Louisville Acknowledgements: Help with these slides were provided by Shireen Elhabian A smile is a curve that

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

More information

Element Quality Metrics for Higher-Order Bernstein Bézier Elements

Element Quality Metrics for Higher-Order Bernstein Bézier Elements Element Quality Metrics for Higher-Order Bernstein Bézier Elements Luke Engvall and John A. Evans Abstract In this note, we review the interpolation theory for curvilinear finite elements originally derived

More information

Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons

Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons Noname manuscript No. (will be inserted by the editor) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons S. E. Mousavi N. Sukumar Received: date

More information

Lectures in Discrete Differential Geometry 3 Discrete Surfaces

Lectures in Discrete Differential Geometry 3 Discrete Surfaces Lectures in Discrete Differential Geometry 3 Discrete Surfaces Etienne Vouga March 19, 2014 1 Triangle Meshes We will now study discrete surfaces and build up a parallel theory of curvature that mimics

More information

ORIE 6300 Mathematical Programming I September 2, Lecture 3

ORIE 6300 Mathematical Programming I September 2, Lecture 3 ORIE 6300 Mathematical Programming I September 2, 2014 Lecturer: David P. Williamson Lecture 3 Scribe: Divya Singhvi Last time we discussed how to take dual of an LP in two different ways. Today we will

More information

FACES OF CONVEX SETS

FACES OF CONVEX SETS FACES OF CONVEX SETS VERA ROSHCHINA Abstract. We remind the basic definitions of faces of convex sets and their basic properties. For more details see the classic references [1, 2] and [4] for polytopes.

More information

Computer Graphics 7 - Rasterisation

Computer Graphics 7 - Rasterisation Computer Graphics 7 - Rasterisation Tom Thorne Slides courtesy of Taku Komura www.inf.ed.ac.uk/teaching/courses/cg Overview Line rasterisation Polygon rasterisation Mean value coordinates Decomposing polygons

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

Curves and Surfaces for Computer-Aided Geometric Design

Curves and Surfaces for Computer-Aided Geometric Design Curves and Surfaces for Computer-Aided Geometric Design A Practical Guide Fourth Edition Gerald Farin Department of Computer Science Arizona State University Tempe, Arizona /ACADEMIC PRESS I San Diego

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Linear programming and the efficiency of the simplex algorithm for transportation polytopes

Linear programming and the efficiency of the simplex algorithm for transportation polytopes Linear programming and the efficiency of the simplex algorithm for transportation polytopes Edward D. Kim University of Wisconsin-La Crosse February 20, 2015 Loras College Department of Mathematics Colloquium

More information

Discrete Exterior Calculus How to Turn Your Mesh into a Computational Structure. Discrete Differential Geometry

Discrete Exterior Calculus How to Turn Your Mesh into a Computational Structure. Discrete Differential Geometry Discrete Exterior Calculus How to Turn Your Mesh into a Computational Structure Discrete Differential Geometry Big Picture Deriving a whole Discrete Calculus you need first a discrete domain will induce

More information

UFC Specification and User Manual 1.1

UFC Specification and User Manual 1.1 February 21, 2011 Martin Sandve Alnæs, Anders Logg, Kent-Andre Mardal, Ola Skavhaug, and Hans Petter Langtangen www.fenics.org Visit http://www.fenics.org/ for the latest version of this manual. Send comments

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

FreeFem++, New Finite Elements, New Graphics,...

FreeFem++, New Finite Elements, New Graphics,... FreeFem++, New Finite Elements, New Graphics,... F. Hecht Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris, France with O. Pironneau, J. Morice http://www.freefem.org mailto:hecht@ann.jussieu.fr

More information

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger Topology/Geometry of Geodesics Joseph D. Clinton SNEC-04 28-29 June 2003 Magnus J. Wenninger Introduction Definitions Topology Goldberg s polyhedra Classes of Geodesic polyhedra Triangular tessellations

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Deformation II. Disney/Pixar

Deformation II. Disney/Pixar Deformation II Disney/Pixar 1 Space Deformation Deformation function on ambient space f : n n Shape S deformed by applying f to points of S S = f (S) f (x,y)=(2x,y) S S 2 Motivation Can be applied to any

More information

Computer Aided Geometric Design

Computer Aided Geometric Design Computer Aided Geometric Design 28 (2011) 349 356 Contents lists available at ScienceDirect Computer Aided Geometric Design www.elsevier.com/locate/cagd Embedding a triangular graph within a given boundary

More information

H (div) approximations based on hp-adaptive curved meshes using quarter point elements

H (div) approximations based on hp-adaptive curved meshes using quarter point elements Trabalho apresentado no CNMAC, Gramado - RS, 2016. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics H (div) approximations based on hp-adaptive curved meshes using quarter

More information

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November Surfaces for CAGD FSP Tutorial FSP-Seminar, Graz, November 2005 1 Tensor Product Surfaces Given: two curve schemes (Bézier curves or B splines): I: x(u) = m i=0 F i(u)b i, u [a, b], II: x(v) = n j=0 G

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

Linear Finite Element Methods

Linear Finite Element Methods Chapter 3 Linear Finite Element Methods The finite element methods provide spaces V n of functions that are piecewise smooth and simple, and locally supported basis function of these spaces to achieve

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Review of Tuesday. ECS 175 Chapter 3: Object Representation

Review of Tuesday. ECS 175 Chapter 3: Object Representation Review of Tuesday We have learnt how to rasterize lines and fill polygons Colors (and other attributes) are specified at vertices Interpolation required to fill polygon with attributes 26 Review of Tuesday

More information

Discrete Surfaces. David Gu. Tsinghua University. Tsinghua University. 1 Mathematics Science Center

Discrete Surfaces. David Gu. Tsinghua University. Tsinghua University. 1 Mathematics Science Center Discrete Surfaces 1 1 Mathematics Science Center Tsinghua University Tsinghua University Discrete Surface Discrete Surfaces Acquired using 3D scanner. Discrete Surfaces Our group has developed high speed

More information

Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons

Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons Comput Mech (2011) 47:535 554 DOI 10.1007/s00466-010-0562-5 ORIGINAL PAPER Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons S. E. Mousavi N.

More information