MRFs and Segmentation with Graph Cuts

Size: px
Start display at page:

Download "MRFs and Segmentation with Graph Cuts"

Transcription

1 02/24/10 MRFs and Segmentation with Graph Cuts Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem

2 Today s class Finish up EM MRFs w ij i Segmentation with Graph Cuts j

3 EM Algorithm: Recap 1. E-step: compute E ) 2. M-step: solve [ ( ( ))] ( ) p x z θ = ( ) ( ( t ) p x, z θ p z x θ ) ( t log, log, z x, θ z θ ( t+ 1) = argmax θ z log ( ( )) ( ( t ) p x, z θ p z x, θ ) Determines hidden variable assignments and parameters that maximize likelihood of observed data Improves likelihood at each step (reaches local maximum) Derivation is tricky but implementation is easy

4 EM Demos Mixture of Gaussian demo Simple segmentation demo

5 Hard EM Same as EM except compute z* as most likely values for hidden variables K-means is an example Advantages Simpler: can be applied when cannot derive EM Sometimes works better if you want to make hard predictions at the end But Generally, pdf parameters are not as accurate as EM

6 Missing Data Problems: Outliers You want to train an algorithm to predict whether a photograph is attractive. You collect annotations from Mechanical Turk. Some annotators try to give accurate ratings, but others answer randomly. Challenge: Determine which people to trust and the average rating by accurate annotators. Annotator Ratings Photo: Jam343 (Flickr)

7 Missing Data Problems: Object Discovery You have a collection of images and have extracted regions from them. Each is represented by a histogram of visual words. Challenge: Discover frequently occurring object categories, without pre-trained appearance models.

8 n is the total count of the histogram

9 What s wrong with this prediction? P(foreground image)

10 Solution P(foreground image) Encode dependencies between pixels Normalizing constant 1 P( y; θ, data) = f y data f y y θ data Z i= 1.. N 1 ( i; θ, ) 2( i, j;, ) i, j edges Labels to be predicted Individual predictions Pairwise predictions

11 Writing Likelihood as an Energy = = edges j i j i N i i data y y p data y p Z data P, ), ;, ( ), ; ( 1 ), ; ( θ θ θ y + = edges j i j i i i data y y data y data Energy, 2 1 ), ;, ( ), ; ( ), ; ( θ ψ θ ψ θ y Cost of assignment y i Cost of pairwise assignment yi,yj

12 Markov Random Fields Node y i : pixel label Edge: constrained pairs Cost to assign a label to each pixel Energy( y; θ, data) = ψ θ i Cost to assign a pair of labels to connected pixels 1 ( yi; θ, data) + ψ 2( yi, y j;, data) i, j edges

13 Markov Random Fields Example: label smoothing grid Unary potential 0: -logp(y i = 0 ; data) 1: -logp(y i = 1 ; data) Pairwise Potential K 1 K 0 Energy( y; θ, data) = ψ θ i 1 ( yi; θ, data) + ψ 2( yi, y j;, data) i, j edges

14 Solving MRFs with graph cuts Source (Label 0) Cost to assign to 1 Cost to split nodes Cost to assign to 0 Sink (Label 1) Energy( y; θ, data) = ψ θ i 1 ( yi; θ, data) + ψ 2( yi, y j;, data) i, j edges

15 Solving MRFs with graph cuts Source (Label 0) Cost to assign to 0 Cost to split nodes Cost to assign to 1 Sink (Label 1) Energy( y; θ, data) = ψ θ i 1 ( yi; θ, data) + ψ 2( yi, y j;, data) i, j edges

16 GrabCut segmentation User provides rough indication of foreground region. Goal: Automatically provide a pixel-level segmentation.

17 Grab cuts and graph cuts Magic Wand (198?) Intelligent Scissors Mortensen and Barrett (1995) GrabCut User Input Result Regions Boundary Regions & Boundary Source: Rother

18 Colour Model R Foreground & Background Background G Gaussian Mixture Model (typically 5-8 components) Source: Rother

19 Graph cuts Boykov and Jolly (2001) Image Foreground (source) Min Cut Background (sink) Cut: separating source and sink; Energy: collection of edges Min Cut: Global minimal enegry in polynomial time Source: Rother

20 Colour Model R Foreground & Background Iterated graph cut R Foreground Background G Background G Gaussian Mixture Model (typically 5-8 components) Source: Rother

21 GrabCut segmentation 1. Define graph usually 4-connected or 8-connected 2. Define unary potentials Color histogram or mixture of Gaussians for background and foreground 3. Define pairwise potentials edge _ unary _ potential( x) = log P( c( x); θ P( c( x); θ c( x) c( y) potential( x, y) = k1 + k2 exp 2 2σ foreground background 4. Apply graph cuts 5. Return to 2, using current labels to compute foreground, background models 2 ) )

22 What is easy or hard about these cases for graphcutbased segmentation?

23 Easier examples GrabCut Interactive Foreground Extraction 10

24 More difficult Examples Camouflage & Low Contrast Fine structure Harder Case Initial Rectangle Initial Result GrabCut Interactive Foreground Extraction 11

25

26 Lazy Snapping (Li et al. SG 2004)

27 Using graph cuts for recognition TextonBoost (Shotton et al IJCV)

28 Using graph cuts for recognition Unary Potentials Alpha Expansion Graph Cuts TextonBoost (Shotton et al IJCV)

29 Limitations of graph cuts Associative: edge potentials penalize different labels Must satisfy If not associative, can sometimes clip potentials Approximate for multilabel Alpha-expansion or alpha-beta swaps

30 Graph cuts: Pros and Cons Pros Very fast inference Can incorporate data likelihoods and priors Applies to a wide range of problems (stereo, image labeling, recognition) Cons Not always applicable (associative only) Need unary terms (not used for generic segmentation) Use whenever applicable

31 More about MRFs/CRFs Other common uses Graph structure on regions Encoding relations between multiple scene elements Inference methods Loopy BP or BP-TRW: approximate, slower, but works for more general graphs

32 Further reading and resources Graph cuts Classic paper: What Energy Functions can be Minimized via Graph Cuts? (Kolmogorov and Zabih, ECCV '02/PAMI '04) Belief propagation Yedidia, J.S.; Freeman, W.T.; Weiss, Y., "Understanding Belief Propagation and Its Generalizations, Technical Report, 2001: Normalized cuts and image segmentation (Shi and Malik) N-cut implementation

33 Next Class Gestalt grouping More segmentation methods

Markov Random Fields and Segmentation with Graph Cuts

Markov Random Fields and Segmentation with Graph Cuts Markov Random Fields and Segmentation with Graph Cuts Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project Proposal due Oct 27 (Thursday) HW 4 is out

More information

Markov Random Fields and Segmentation with Graph Cuts

Markov Random Fields and Segmentation with Graph Cuts Markov Random Fields and Segmentation with Graph Cuts Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project Proposal due Oct 30 (Monday) HW 4 is out

More information

Prof. Feng Liu. Spring /17/2017. With slides by F. Durand, Y.Y. Chuang, R. Raskar, and C.

Prof. Feng Liu. Spring /17/2017. With slides by F. Durand, Y.Y. Chuang, R. Raskar, and C. Prof. Feng Liu Spring 2017 http://www.cs.pdx.edu/~fliu/courses/cs510/ 05/17/2017 With slides by F. Durand, Y.Y. Chuang, R. Raskar, and C. Rother Last Time Image segmentation Normalized cut and segmentation

More information

Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision

Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision Fuxin Li Slides and materials from Le Song, Tucker Hermans, Pawan Kumar, Carsten Rother, Peter Orchard, and others Recap:

More information

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class Image Segmentation Announcements Status reports next Thursday ~5min presentations in class Project voting From Sandlot Science Today s Readings Forsyth & Ponce, Chapter 1 (plus lots of optional references

More information

Image Segmentation. April 24, Stanford University. Philipp Krähenbühl (Stanford University) Segmentation April 24, / 63

Image Segmentation. April 24, Stanford University. Philipp Krähenbühl (Stanford University) Segmentation April 24, / 63 Image Segmentation Philipp Krähenbühl Stanford University April 24, 2013 Philipp Krähenbühl (Stanford University) Segmentation April 24, 2013 1 / 63 Image Segmentation Goal: identify groups of pixels that

More information

Segmentation. Separate image into coherent regions

Segmentation. Separate image into coherent regions Segmentation II Segmentation Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Interactive

More information

Segmentation with non-linear constraints on appearance, complexity, and geometry

Segmentation with non-linear constraints on appearance, complexity, and geometry IPAM February 2013 Western Univesity Segmentation with non-linear constraints on appearance, complexity, and geometry Yuri Boykov Andrew Delong Lena Gorelick Hossam Isack Anton Osokin Frank Schmidt Olga

More information

Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts

Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts [Yuri Boykov, Olga Veksler, Ramin Zabih, Fast Approximation

More information

Models for grids. Computer vision: models, learning and inference. Multi label Denoising. Binary Denoising. Denoising Goal.

Models for grids. Computer vision: models, learning and inference. Multi label Denoising. Binary Denoising. Denoising Goal. Models for grids Computer vision: models, learning and inference Chapter 9 Graphical Models Consider models where one unknown world state at each pixel in the image takes the form of a grid. Loops in the

More information

Computer Vision : Exercise 4 Labelling Problems

Computer Vision : Exercise 4 Labelling Problems Computer Vision Exercise 4 Labelling Problems 13/01/2014 Computer Vision : Exercise 4 Labelling Problems Outline 1. Energy Minimization (example segmentation) 2. Iterated Conditional Modes 3. Dynamic Programming

More information

Learning CRFs using Graph Cuts

Learning CRFs using Graph Cuts Appears in European Conference on Computer Vision (ECCV) 2008 Learning CRFs using Graph Cuts Martin Szummer 1, Pushmeet Kohli 1, and Derek Hoiem 2 1 Microsoft Research, Cambridge CB3 0FB, United Kingdom

More information

Segmentation. Bottom up Segmentation Semantic Segmentation

Segmentation. Bottom up Segmentation Semantic Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Semantic Labeling of Street Scenes Ground Truth Labels 11 classes, almost all occur simultaneously, large changes in viewpoint, scale sky, road,

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization in Low Level Vision Low level vision problems concerned with estimating some quantity at each pixel Visual motion (u(x,y),v(x,y))

More information

IMPROVED FINE STRUCTURE MODELING VIA GUIDED STOCHASTIC CLIQUE FORMATION IN FULLY CONNECTED CONDITIONAL RANDOM FIELDS

IMPROVED FINE STRUCTURE MODELING VIA GUIDED STOCHASTIC CLIQUE FORMATION IN FULLY CONNECTED CONDITIONAL RANDOM FIELDS IMPROVED FINE STRUCTURE MODELING VIA GUIDED STOCHASTIC CLIQUE FORMATION IN FULLY CONNECTED CONDITIONAL RANDOM FIELDS M. J. Shafiee, A. G. Chung, A. Wong, and P. Fieguth Vision & Image Processing Lab, Systems

More information

Supervised texture detection in images

Supervised texture detection in images Supervised texture detection in images Branislav Mičušík and Allan Hanbury Pattern Recognition and Image Processing Group, Institute of Computer Aided Automation, Vienna University of Technology Favoritenstraße

More information

Energy Minimization for Segmentation in Computer Vision

Energy Minimization for Segmentation in Computer Vision S * = arg S min E(S) Energy Minimization for Segmentation in Computer Vision Meng Tang, Dmitrii Marin, Ismail Ben Ayed, Yuri Boykov Outline Clustering/segmentation methods K-means, GrabCut, Normalized

More information

Reduce, Reuse & Recycle: Efficiently Solving Multi-Label MRFs

Reduce, Reuse & Recycle: Efficiently Solving Multi-Label MRFs Reduce, Reuse & Recycle: Efficiently Solving Multi-Label MRFs Karteek Alahari 1 Pushmeet Kohli 2 Philip H. S. Torr 1 1 Oxford Brookes University 2 Microsoft Research, Cambridge Abstract In this paper,

More information

Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing

Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing Tomoyuki Nagahashi 1, Hironobu Fujiyoshi 1, and Takeo Kanade 2 1 Dept. of Computer Science, Chubu University. Matsumoto 1200,

More information

Measuring Uncertainty in Graph Cut Solutions - Efficiently Computing Min-marginal Energies using Dynamic Graph Cuts

Measuring Uncertainty in Graph Cut Solutions - Efficiently Computing Min-marginal Energies using Dynamic Graph Cuts Measuring Uncertainty in Graph Cut Solutions - Efficiently Computing Min-marginal Energies using Dynamic Graph Cuts Pushmeet Kohli Philip H.S. Torr Department of Computing, Oxford Brookes University, Oxford.

More information

Belief propagation and MRF s

Belief propagation and MRF s Belief propagation and MRF s Bill Freeman 6.869 March 7, 2011 1 1 Undirected graphical models A set of nodes joined by undirected edges. The graph makes conditional independencies explicit: If two nodes

More information

Grouping and Segmentation

Grouping and Segmentation 03/17/15 Grouping and Segmentation Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Today s class Segmentation and grouping Gestalt cues By clustering (mean-shift) By boundaries (watershed)

More information

Robust Higher Order Potentials for Enforcing Label Consistency

Robust Higher Order Potentials for Enforcing Label Consistency Int J Comput Vis (2009) 82: 302 324 DOI 10.1007/s11263-008-0202-0 Robust Higher Order Potentials for Enforcing Label Consistency Pushmeet Kohli L ubor Ladický Philip H.S. Torr Received: 17 August 2008

More information

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Image Segmentation continued Graph Based Methods Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Previously Binary segmentation Segmentation by thresholding

More information

Chapter 8 of Bishop's Book: Graphical Models

Chapter 8 of Bishop's Book: Graphical Models Chapter 8 of Bishop's Book: Graphical Models Review of Probability Probability density over possible values of x Used to find probability of x falling in some range For continuous variables, the probability

More information

Online Figure-ground Segmentation with Edge Pixel Classification

Online Figure-ground Segmentation with Edge Pixel Classification Online Figure-ground Segmentation with Edge Pixel Classification Zhaozheng Yin Robert T. Collins Department of Computer Science and Engineering The Pennsylvania State University, USA {zyin,rcollins}@cse.psu.edu,

More information

Mathematics in Image Processing

Mathematics in Image Processing Mathematics in Image Processing Michal Šorel Department of Image Processing Institute of Information Theory and Automation (ÚTIA) Academy of Sciences of the Czech Republic http://zoi.utia.cas.cz/ Mathematics

More information

CAP5415-Computer Vision Lecture 13-Image/Video Segmentation Part II. Dr. Ulas Bagci

CAP5415-Computer Vision Lecture 13-Image/Video Segmentation Part II. Dr. Ulas Bagci CAP-Computer Vision Lecture -Image/Video Segmentation Part II Dr. Ulas Bagci bagci@ucf.edu Labeling & Segmentation Labeling is a common way for modeling various computer vision problems (e.g. optical flow,

More information

intro, applications MRF, labeling... how it can be computed at all? Applications in segmentation: GraphCut, GrabCut, demos

intro, applications MRF, labeling... how it can be computed at all? Applications in segmentation: GraphCut, GrabCut, demos Image as Markov Random Field and Applications 1 Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Talk Outline Last update:

More information

Optimization. Intelligent Scissors (see also Snakes)

Optimization. Intelligent Scissors (see also Snakes) Optimization We can define a cost for possible solutions Number of solutions is large (eg., exponential) Efficient search is needed Global methods: cleverly find best solution without considering all.

More information

Segmentation and Grouping

Segmentation and Grouping 02/23/10 Segmentation and Grouping Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Last week Clustering EM Today s class More on EM Segmentation and grouping Gestalt cues By boundaries

More information

Segmentation and Grouping

Segmentation and Grouping CS 1699: Intro to Computer Vision Segmentation and Grouping Prof. Adriana Kovashka University of Pittsburgh September 24, 2015 Goals: Grouping in vision Gather features that belong together Obtain an intermediate

More information

Image Segmentation. Marc Pollefeys. ETH Zurich. Slide credits: V. Ferrari, K. Grauman, B. Leibe, S. Lazebnik, S. Seitz,Y Boykov, W. Freeman, P.

Image Segmentation. Marc Pollefeys. ETH Zurich. Slide credits: V. Ferrari, K. Grauman, B. Leibe, S. Lazebnik, S. Seitz,Y Boykov, W. Freeman, P. Image Segmentation Perceptual and Sensory Augmented Computing Computer Vision WS 0/09 Marc Pollefeys ETH Zurich Slide credits: V. Ferrari, K. Grauman, B. Leibe, S. Lazebnik, S. Seitz,Y Boykov, W. Freeman,

More information

Simultaneous Multi-class Pixel Labeling over Coherent Image Sets

Simultaneous Multi-class Pixel Labeling over Coherent Image Sets Simultaneous Multi-class Pixel Labeling over Coherent Image Sets Paul Rivera Research School of Computer Science Australian National University Canberra, ACT 0200 Stephen Gould Research School of Computer

More information

Robust Higher Order Potentials for Enforcing Label Consistency

Robust Higher Order Potentials for Enforcing Label Consistency Robust Higher Order Potentials for Enforcing Label Consistency Pushmeet Kohli Microsoft Research Cambridge pkohli@microsoft.com L ubor Ladický Philip H. S. Torr Oxford Brookes University lladicky,philiptorr}@brookes.ac.uk

More information

CS448f: Image Processing For Photography and Vision. Graph Cuts

CS448f: Image Processing For Photography and Vision. Graph Cuts CS448f: Image Processing For Photography and Vision Graph Cuts Seam Carving Video Make images smaller by removing seams Seam = connected path of pixels from top to bottom or left edge to right edge Don

More information

Image Segmentation Using Iterated Graph Cuts BasedonMulti-scaleSmoothing

Image Segmentation Using Iterated Graph Cuts BasedonMulti-scaleSmoothing Image Segmentation Using Iterated Graph Cuts BasedonMulti-scaleSmoothing Tomoyuki Nagahashi 1, Hironobu Fujiyoshi 1, and Takeo Kanade 2 1 Dept. of Computer Science, Chubu University. Matsumoto 1200, Kasugai,

More information

CS4670 / 5670: Computer Vision Noah Snavely

CS4670 / 5670: Computer Vision Noah Snavely { { 11/26/2013 CS4670 / 5670: Computer Vision Noah Snavely Graph-Based Image Segmentation Stereo as a minimization problem match cost Want each pixel to find a good match in the other image smoothness

More information

10708 Graphical Models: Homework 4

10708 Graphical Models: Homework 4 10708 Graphical Models: Homework 4 Due November 12th, beginning of class October 29, 2008 Instructions: There are six questions on this assignment. Each question has the name of one of the TAs beside it,

More information

Approximate decoding: ICM, block methods, alpha-beta swap & alpha-expansion

Approximate decoding: ICM, block methods, alpha-beta swap & alpha-expansion Approximate decoding: ICM, block methods, alpha-beta swap & alpha-expansion Julieta Martinez University of British Columbia August 25, 2015 https://www.youtube.com/watch?v=kp3ik5f3-2c&t=18m36s Outline

More information

Image Segmentation continued Graph Based Methods

Image Segmentation continued Graph Based Methods Image Segmentation continued Graph Based Methods Previously Images as graphs Fully-connected graph node (vertex) for every pixel link between every pair of pixels, p,q affinity weight w pq for each link

More information

Algorithms for Markov Random Fields in Computer Vision

Algorithms for Markov Random Fields in Computer Vision Algorithms for Markov Random Fields in Computer Vision Dan Huttenlocher November, 2003 (Joint work with Pedro Felzenszwalb) Random Field Broadly applicable stochastic model Collection of n sites S Hidden

More information

Lecture 16 Segmentation and Scene understanding

Lecture 16 Segmentation and Scene understanding Lecture 16 Segmentation and Scene understanding Introduction! Mean-shift! Graph-based segmentation! Top-down segmentation! Silvio Savarese Lecture 15 -! 3-Mar-14 Segmentation Silvio Savarese Lecture 15

More information

Comparison of Graph Cuts with Belief Propagation for Stereo, using Identical MRF Parameters

Comparison of Graph Cuts with Belief Propagation for Stereo, using Identical MRF Parameters Comparison of Graph Cuts with Belief Propagation for Stereo, using Identical MRF Parameters Marshall F. Tappen William T. Freeman Computer Science and Artificial Intelligence Laboratory Massachusetts Institute

More information

CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu. Lectures 21 & 22 Segmentation and clustering

CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu. Lectures 21 & 22 Segmentation and clustering CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu Lectures 21 & 22 Segmentation and clustering 1 Schedule Last class We started on segmentation Today Segmentation continued Readings

More information

Automatic User Interaction Correction via Multi-label Graph Cuts

Automatic User Interaction Correction via Multi-label Graph Cuts Automatic User Interaction Correction via Multi-label Graph Cuts Antonio Hernández-Vela 1,2 ahernandez@cvc.uab.cat Carlos Primo 2 carlos.pg79@gmail.com Sergio Escalera 1,2 sergio@maia.ub.es 1 Computer

More information

Graph Cuts vs. Level Sets. part I Basics of Graph Cuts

Graph Cuts vs. Level Sets. part I Basics of Graph Cuts ECCV 2006 tutorial on Graph Cuts vs. Level Sets part I Basics of Graph Cuts Yuri Boykov University of Western Ontario Daniel Cremers University of Bonn Vladimir Kolmogorov University College London Graph

More information

Segmentation in electron microscopy images

Segmentation in electron microscopy images Segmentation in electron microscopy images Aurelien Lucchi, Kevin Smith, Yunpeng Li Bohumil Maco, Graham Knott, Pascal Fua. http://cvlab.epfl.ch/research/medical/neurons/ Outline Automated Approach to

More information

SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs. Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu

SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs. Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu Discrete Pixel-Labeling Optimization on MRF 2/37 Many computer vision tasks

More information

Neighbourhood-consensus message passing and its potentials in image processing applications

Neighbourhood-consensus message passing and its potentials in image processing applications Neighbourhood-consensus message passing and its potentials in image processing applications Tijana Ružić a, Aleksandra Pižurica a and Wilfried Philips a a Ghent University, TELIN-IPI-IBBT, Sint-Pietersnieuwstraat

More information

human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC

human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC COS 429: COMPUTER VISON Segmentation human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC Reading: Chapters 14, 15 Some of the slides are credited to:

More information

3D LayoutCRF for Multi-View Object Class Recognition and Segmentation

3D LayoutCRF for Multi-View Object Class Recognition and Segmentation 3D LayoutCRF for Multi-View Object Class Recognition and Segmentation Derek Hoiem Robotics Institute, Carnegie Mellon University dhoiem@cs.cmu.edu Carsten Rother, John Winn Microsoft Research Cambridge,

More information

Multi-label image segmentation via max-sum solver

Multi-label image segmentation via max-sum solver Multi-label image segmentation via max-sum solver Banislav Mičušík Pattern Recognition and Image Processing Group, Inst. of Computer Aided Automation, Vienna University of Technology, Austria micusik@prip.tuwien.ac.at

More information

Graph Cut based Continuous Stereo Matching using Locally Shared Labels

Graph Cut based Continuous Stereo Matching using Locally Shared Labels Graph Cut based Continuous Stereo Matching using Locally Shared Labels Tatsunori Taniai University of Tokyo, Japan taniai@iis.u-tokyo.ac.jp Yasuyuki Matsushita Microsoft Research Asia, China yasumat@microsoft.com

More information

Principal-channels for One-sided Object Cutout

Principal-channels for One-sided Object Cutout Principal-channels for One-sided Object Cutout Lior Gavish, Lior Wolf, Lior Shapira, and Daniel Cohen-Or Tel-Aviv University, Tel-Aviv, Israel Abstract We introduce principal-channels for cutting out objects

More information

Combining Appearance and Structure from Motion Features for Road Scene Understanding

Combining Appearance and Structure from Motion Features for Road Scene Understanding STURGESS et al.: COMBINING APPEARANCE AND SFM FEATURES 1 Combining Appearance and Structure from Motion Features for Road Scene Understanding Paul Sturgess paul.sturgess@brookes.ac.uk Karteek Alahari karteek.alahari@brookes.ac.uk

More information

Efficient Belief Propagation with Learned Higher-order Markov Random Fields

Efficient Belief Propagation with Learned Higher-order Markov Random Fields Efficient Belief Propagation with Learned Higher-order Markov Random Fields Xiangyang Lan 1, Stefan Roth 2, Daniel Huttenlocher 1, and Michael J. Black 2 1 Computer Science Department, Cornell University,

More information

Human Head-Shoulder Segmentation

Human Head-Shoulder Segmentation Human Head-Shoulder Segmentation Hai Xin, Haizhou Ai Computer Science and Technology Tsinghua University Beijing, China ahz@mail.tsinghua.edu.cn Hui Chao, Daniel Tretter Hewlett-Packard Labs 1501 Page

More information

IMA Preprint Series # 2153

IMA Preprint Series # 2153 DISTANCECUT: INTERACTIVE REAL-TIME SEGMENTATION AND MATTING OF IMAGES AND VIDEOS By Xue Bai and Guillermo Sapiro IMA Preprint Series # 2153 ( January 2007 ) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

More information

Graph Cuts. Srikumar Ramalingam School of Computing University of Utah

Graph Cuts. Srikumar Ramalingam School of Computing University of Utah Graph Cuts Srikumar Ramalingam School o Computing University o Utah Outline Introduction Pseudo-Boolean Functions Submodularity Max-low / Min-cut Algorithm Alpha-Expansion Segmentation Problem [Boykov

More information

Extracting Smooth and Transparent Layers from a Single Image

Extracting Smooth and Transparent Layers from a Single Image Extracting Smooth and Transparent Layers from a Single Image Sai-Kit Yeung Tai-Pang Wu Chi-Keung Tang saikit@ust.hk pang@ust.hk cktang@cse.ust.hk Vision and Graphics Group The Hong Kong University of Science

More information

AUTOMATIC OBJECT EXTRACTION IN SINGLE-CONCEPT VIDEOS. Kuo-Chin Lien and Yu-Chiang Frank Wang

AUTOMATIC OBJECT EXTRACTION IN SINGLE-CONCEPT VIDEOS. Kuo-Chin Lien and Yu-Chiang Frank Wang AUTOMATIC OBJECT EXTRACTION IN SINGLE-CONCEPT VIDEOS Kuo-Chin Lien and Yu-Chiang Frank Wang Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan {iker, ycwang}@citi.sinica.edu.tw

More information

Dr. Ulas Bagci

Dr. Ulas Bagci CAP- Computer Vision Lecture - Image Segmenta;on as an Op;miza;on Problem Dr. Ulas Bagci bagci@ucf.edu Reminders Oct Guest Lecture: SVM by Dr. Gong Oct 8 Guest Lecture: Camera Models by Dr. Shah PA# October

More information

Iterative MAP and ML Estimations for Image Segmentation

Iterative MAP and ML Estimations for Image Segmentation Iterative MAP and ML Estimations for Image Segmentation Shifeng Chen 1, Liangliang Cao 2, Jianzhuang Liu 1, and Xiaoou Tang 1,3 1 Dept. of IE, The Chinese University of Hong Kong {sfchen5, jzliu}@ie.cuhk.edu.hk

More information

Interactive Image Segmentation with GrabCut

Interactive Image Segmentation with GrabCut Interactive Image Segmentation with GrabCut Bryan Anenberg Stanford University anenberg@stanford.edu Michela Meister Stanford University mmeister@stanford.edu Abstract We implement GrabCut and experiment

More information

Automatic Salient Object Extraction with Contextual Cue

Automatic Salient Object Extraction with Contextual Cue Salient Object Extraction with Contextual Cue Le Wang, Jianru Xue, Nanning Zheng Institute of Artificial Intelligence and Robotics Xi an Jiaotong University, China {lwang,jrxue,nnzheng}@aiar.xjtu.edu.cn

More information

Variable Grouping for Energy Minimization

Variable Grouping for Energy Minimization Variable Grouping for Energy Minimization Taesup Kim, Sebastian Nowozin, Pushmeet Kohli, Chang D. Yoo Dept. of Electrical Engineering, KAIST, Daejeon Korea Microsoft Research Cambridge, Cambridge UK kim.ts@kaist.ac.kr,

More information

A discriminative view of MRF pre-processing algorithms supplementary material

A discriminative view of MRF pre-processing algorithms supplementary material A discriminative view of MRF pre-processing algorithms supplementary material Chen Wang 1,2 Charles Herrmann 2 Ramin Zabih 1,2 1 Google Research 2 Cornell University {chenwang, cih, rdz}@cs.cornell.edu

More information

Energy Minimization Under Constraints on Label Counts

Energy Minimization Under Constraints on Label Counts Energy Minimization Under Constraints on Label Counts Yongsub Lim 1, Kyomin Jung 1, and Pushmeet Kohli 2 1 Korea Advanced Istitute of Science and Technology, Daejeon, Korea yongsub@kaist.ac.kr, kyomin@kaist.edu

More information

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural

More information

A Feature Point Matching Based Approach for Video Objects Segmentation

A Feature Point Matching Based Approach for Video Objects Segmentation A Feature Point Matching Based Approach for Video Objects Segmentation Yan Zhang, Zhong Zhou, Wei Wu State Key Laboratory of Virtual Reality Technology and Systems, Beijing, P.R. China School of Computer

More information

Lecture 7: Segmentation. Thursday, Sept 20

Lecture 7: Segmentation. Thursday, Sept 20 Lecture 7: Segmentation Thursday, Sept 20 Outline Why segmentation? Gestalt properties, fun illusions and/or revealing examples Clustering Hierarchical K-means Mean Shift Graph-theoretic Normalized cuts

More information

A Tutorial Introduction to Belief Propagation

A Tutorial Introduction to Belief Propagation A Tutorial Introduction to Belief Propagation James Coughlan August 2009 Table of Contents Introduction p. 3 MRFs, graphical models, factor graphs 5 BP 11 messages 16 belief 22 sum-product vs. max-product

More information

Semi-Global Matching: a principled derivation in terms of Message Passing

Semi-Global Matching: a principled derivation in terms of Message Passing Semi-Global Matching: a principled derivation in terms of Message Passing Amnon Drory 1, Carsten Haubold 2, Shai Avidan 1, Fred A. Hamprecht 2 1 Tel Aviv University, 2 University of Heidelberg Semi-global

More information

CS4670: Computer Vision

CS4670: Computer Vision CS4670: Computer Vision Noah Snavely Lecture 34: Segmentation From Sandlot Science Announcements In-class exam this Friday, December 3 Review session in class on Wednesday Final projects: Slides due: Sunday,

More information

Comparison of energy minimization algorithms for highly connected graphs

Comparison of energy minimization algorithms for highly connected graphs Comparison of energy minimization algorithms for highly connected graphs Vladimir Kolmogorov 1 and Carsten Rother 2 1 University College London; vnk@adastral.ucl.ac.uk 2 Microsoft Research Ltd., Cambridge,

More information

Graphcut-based Interactive Segmentation using Colour and Depth cues

Graphcut-based Interactive Segmentation using Colour and Depth cues Graphcut-based Interactive Segmentation using Colour and Depth cues Hu He University of Queensland,Australia h.hu2@uq.edu.au David McKinnon Queensland University of Technology,Australia david.mckinnon@qut.edu.au

More information

Markov Networks in Computer Vision

Markov Networks in Computer Vision Markov Networks in Computer Vision Sargur Srihari srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Some applications: 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Incorporating non-motion cues into 3D motion segmentation

Incorporating non-motion cues into 3D motion segmentation Incorporating non-motion cues into 3D motion segmentation Amit Gruber and Yair Weiss School of Computer Science and Engineering The Hebrew University of Jerusalem Jerusalem, Israel 91904 {amitg,yweiss}@cs.huji.ac.il

More information

Labeling Irregular Graphs with Belief Propagation

Labeling Irregular Graphs with Belief Propagation Labeling Irregular Graphs with Belief Propagation Ifeoma Nwogu and Jason J. Corso State University of New York at Buffalo Department of Computer Science and Engineering 201 Bell Hall, Buffalo, NY 14260

More information

Problem Set 4. Assigned: March 23, 2006 Due: April 17, (6.882) Belief Propagation for Segmentation

Problem Set 4. Assigned: March 23, 2006 Due: April 17, (6.882) Belief Propagation for Segmentation 6.098/6.882 Computational Photography 1 Problem Set 4 Assigned: March 23, 2006 Due: April 17, 2006 Problem 1 (6.882) Belief Propagation for Segmentation In this problem you will set-up a Markov Random

More information

Markov Networks in Computer Vision. Sargur Srihari

Markov Networks in Computer Vision. Sargur Srihari Markov Networks in Computer Vision Sargur srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Important application area for MNs 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Data-driven Depth Inference from a Single Still Image

Data-driven Depth Inference from a Single Still Image Data-driven Depth Inference from a Single Still Image Kyunghee Kim Computer Science Department Stanford University kyunghee.kim@stanford.edu Abstract Given an indoor image, how to recover its depth information

More information

Smooth Image Segmentation by Nonparametric Bayesian Inference

Smooth Image Segmentation by Nonparametric Bayesian Inference Smooth Image Segmentation by Nonparametric Bayesian Inference Peter Orbanz and Joachim M. Buhmann Institute of Computational Science, ETH Zurich European Conference on Computer Vision (ECCV), 2006 The

More information

The goals of segmentation

The goals of segmentation Image segmentation The goals of segmentation Group together similar-looking pixels for efficiency of further processing Bottom-up process Unsupervised superpixels X. Ren and J. Malik. Learning a classification

More information

Multi-Label Moves for Multi-Label Energies

Multi-Label Moves for Multi-Label Energies Multi-Label Moves for Multi-Label Energies Olga Veksler University of Western Ontario some work is joint with Olivier Juan, Xiaoqing Liu, Yu Liu Outline Review multi-label optimization with graph cuts

More information

Image Segmentation using Combined User Interactions

Image Segmentation using Combined User Interactions Image Segmentation using Combined User Interactions Jonathan-Lee Jones, Xianghua Xie, and Ehab Essa Department of Computer Science, Swansea University, Swansea, UK x.xie@swansea.ac.uk http://csvision.swan.ac.uk

More information

Parsing World s Skylines using Shape-Constrained MRFs

Parsing World s Skylines using Shape-Constrained MRFs Parsing World s Skylines using Shape-Constrained MRFs Rashmi Tonge CVIT, IIIT Hyderabad Subhransu Maji Toyota Technological Institute at Chicago C. V. Jawahar CVIT, IIIT Hyderabad Abstract We propose an

More information

Discriminative classifiers for image recognition

Discriminative classifiers for image recognition Discriminative classifiers for image recognition May 26 th, 2015 Yong Jae Lee UC Davis Outline Last time: window-based generic object detection basic pipeline face detection with boosting as case study

More information

Input. Output. Problem Definition. Rectified stereo image pair All correspondences lie in same scan lines

Input. Output. Problem Definition. Rectified stereo image pair All correspondences lie in same scan lines Problem Definition 3 Input Rectified stereo image pair All correspondences lie in same scan lines Output Disparity map of the reference view Foreground: large disparity Background: small disparity Matching

More information

Scene Segmentation with Conditional Random Fields Learned from Partially Labeled Images

Scene Segmentation with Conditional Random Fields Learned from Partially Labeled Images Scene Segmentation with Conditional Random Fields Learned from Partially Labeled Images Jakob Verbeek and Bill Triggs INRIA and Laboratoire Jean Kuntzmann, 655 avenue de l Europe, 38330 Montbonnot, France

More information

A Comparative Study of Energy Minimization Methods for Markov Random Fields

A Comparative Study of Energy Minimization Methods for Markov Random Fields A Comparative Study of Energy Minimization Methods for Markov Random Fields Richard Szeliski 1, Ramin Zabih 2, Daniel Scharstein 3, Olga Veksler 4, Vladimir Kolmogorov 5, Aseem Agarwala 6, Marshall Tappen

More information

Scene Segmentation with Conditional Random Fields Learned from Partially Labeled Images

Scene Segmentation with Conditional Random Fields Learned from Partially Labeled Images Scene Segmentation with Conditional Random Fields Learned from Partially Labeled Images Jakob Verbeek and Bill Triggs INRIA and Laboratoire Jean Kuntzmann, 655 avenue de l Europe, 38330 Montbonnot, France

More information

Segmentation and low-level grouping.

Segmentation and low-level grouping. Segmentation and low-level grouping. Bill Freeman, MIT 6.869 April 14, 2005 Readings: Mean shift paper and background segmentation paper. Mean shift IEEE PAMI paper by Comanici and Meer, http://www.caip.rutgers.edu/~comanici/papers/msrobustapproach.pdf

More information

Efficiently Learning Random Fields for Stereo Vision with Sparse Message Passing

Efficiently Learning Random Fields for Stereo Vision with Sparse Message Passing Efficiently Learning Random Fields for Stereo Vision with Sparse Message Passing Jerod J. Weinman 1, Lam Tran 2, and Christopher J. Pal 2 1 Dept. of Computer Science 2 Dept. of Computer Science Grinnell

More information

Motion Estimation (II) Ce Liu Microsoft Research New England

Motion Estimation (II) Ce Liu Microsoft Research New England Motion Estimation (II) Ce Liu celiu@microsoft.com Microsoft Research New England Last time Motion perception Motion representation Parametric motion: Lucas-Kanade T I x du dv = I x I T x I y I x T I y

More information

Undirected Graphical Models. Raul Queiroz Feitosa

Undirected Graphical Models. Raul Queiroz Feitosa Undirected Graphical Models Raul Queiroz Feitosa Pros and Cons Advantages of UGMs over DGMs UGMs are more natural for some domains (e.g. context-dependent entities) Discriminative UGMs (CRF) are better

More information

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL)

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) http://chrischoy.org Stanford CS231A 1 Understanding a Scene Objects Chairs, Cups, Tables,

More information

Transductive Object Cutout

Transductive Object Cutout Transductive Object Cutout Jingyu Cui 1, Qiong Yang 3, Fang Wen 2, Qiying Wu 4, Changshui Zhang 1, Luc Van Gool 3, and Xiaoou Tang 2 1 Tsinghua University, Beijing, China cui-jy@mails.thu.edu.cn, zcs@mail.thu.edu.cn

More information