Input. Output. Problem Definition. Rectified stereo image pair All correspondences lie in same scan lines

Size: px
Start display at page:

Download "Input. Output. Problem Definition. Rectified stereo image pair All correspondences lie in same scan lines"

Transcription

1 Problem Definition 3 Input Rectified stereo image pair All correspondences lie in same scan lines Output Disparity map of the reference view Foreground: large disparity Background: small disparity

2 Matching Cost Volume 2 C x, y, d denotes the matching cost of pixel (x,y) at different disparity level d

3 WTA (Winner Takes All) 3 C x, y, d denotes the matching cost of pixel (x,y) at different disparity level d Select d with lowest cost as final disparity

4 Some Milestone Approaches 4 Graph Cut (Energy Minimization via Graph Cuts) Boykov et al., ICCV 1999 ASW (Cost Aggregation by adaptive support weight) Yoon and Kweon, CVPR 2005 SGM (Semi-Global Matching) Hirschmuller, CVPR 2005, PAMI 2008 PatchMatch Stereo (Cost aggregation using slanted support windows) Bleyer et al., BMVC 2011

5 Graph Cut 5 Frame the problem as an energy minimization on a multilabeled MRF Solve the MRF by Graph Cut Unary Cost Photo consistency of each label Pairwise Cost Penalize disparity difference between neighboring pixels

6 Graph Cut 6 Frame the problem as an energy minimization on a multilabeled MRF Solve the MRF by Graph Cut

7 Traditional Local Methods 7 C x, y, d Cost aggregation Bilateral filter each C(x, y, i) C A x, y, d

8 ASW (Adaptive Support Weights) 8 Given an initial matching cost volume, Refine the volume by aggregating cost locally and adaptively

9 ASW (Adaptive Support Weights) 9 Given an initial matching cost volume, Refine the volume by aggregating cost locally and adaptively

10 SGM (Semi-Global Matching) 10 Instead of aggregating cost at a local window, SGM Aggregate cost in paths

11 SGM (Semi-Global Matching) 11 Instead of aggregating cost at a local window, SGM Aggregate cost in paths

12 PatchMatch Stereo 12 Parametrize each pixel as a disparity plane Aggregate cost in the slanted window induced by the plane Too many (infinite) possible states, solve by PatchMatch

13 PatchMatch Stereo 13 Parametrize each pixel as a disparity plane Aggregate cost in the slanted window induced by the plane Too many (infinite) possible states, solve by PatchMatch

14 MeshStereo: A Global Stereo Model with Mesh Alignment Regularization for View Interpolation Chi Zhang, Zhiwei Li, Yanhua Cheng, Rui Cai, Hongyang Chao, Yong Rui Presented by Chi Zhang Dec. 15 th, 2015

15 Motivation 2 Goal Output high-quality mesh for view interpolation Motivation Depth estimation and mesh generation are separated in traditional approach, which is not optimal in terms of rendering We aim at unifying such separation, and develop an integrated stereo approach for view interpolation

16 Movitation 3 Traditional Pipeline I L, I R -> Point Clouds (Disparity Maps) Point Clouds -> Mesh Mesh -> New View Angles Ours I L, I R -> Mesh Mesh -> New View Angles

17 Formulation 17 Mesh Representation Delauney triangulated SLIC Segmentation Assign a depth value to each vertex Lifting the 2D triangulation to 3D naturally generate a mesh Technical Difficulty How to split vertices into multiple copies at depth discontinuities Solution Assign a splitting probability to each vertex

18 Formulation 18 Parameterization A Splitting probability for each 2D vertex denoted by α A depth value for each triangle s barycenter and a normal for each triangle denoted by N,D

19 Formulation 19 Objective Function Objective function is a two-layered MRF glued by an Alignment energy term Lower Layer MRF Gluer Upper Layer MRF

20 Formulation 20 The Lower Layer The lower layer MRF is on the dual grid of the 2D triangulation

21 Formulation 21 The Lower Layer Favorites photo-consistent triangles

22 Formulation 22 The Lower Layer Encourages normal smoothness. Encouraged Discouraged

23 Formulation 23 The Upper Layer The upper layer MRF is on the original grid of the 2D triangulation

24 Formulation 24 The Upper Layer Favorite non-split vertices on homogeneous regions

25 Formulation 25 The Upper Layer Similar visual complexity Encourages similar splitting properties when adjacent vertices share similar visual complexity Non-similar visual complexity

26 Formulation 26 The Upper Layer Encourages similar splitting properties when adjacent vertices share similar visual complexity

27 Formulation 27 The Gluer Enforce strong alignment or split a 2D vertex to multiple copies in 3D according to corresponding splitting probability

28 Optimization 28 Objective Function Optimization Iterative Gradient Descent in the blue part and the orange part Fix N, D, minimize the orange part w.r.t. α in closed form Fix α, minimize the blue part by PatchMatch with iterative relaxation (detail at next page)

29 Optimization 29 The orange part sub-energy Optimization Fix α, minimize E LOWER by PatchMatch with iterative relaxation When θ goes to, minimizing E RELAXED is equivalent to minizing E LOWER

30 Optimization 30 The orange part sub-energy Optimization Fix α, minimize E LOWER by PatchMatch with iterative relaxation Minimize by PatchMatch Minimize in closed form

31 Results 31 Stereo Results on Herodion Dataset

32 Results 32 Ranking on Midd3 benchmark

33 Results 33 Examples of generated meshes

34 Results 34 Some synthesized views

35 Results 35 Some synthesized views

36 Conclusion 18 We proposed an integrated stereo model for view interpolation Take I L, I R as inputs, produce a mesh directly It achieves state-of-the-arts performance on both stereo quality and rendering

37 Thank you! The End

Segmentation Based Stereo. Michael Bleyer LVA Stereo Vision

Segmentation Based Stereo. Michael Bleyer LVA Stereo Vision Segmentation Based Stereo Michael Bleyer LVA Stereo Vision What happened last time? Once again, we have looked at our energy function: E ( D) = m( p, dp) + p I < p, q > We have investigated the matching

More information

Part 3: Dense Stereo Correspondence

Part 3: Dense Stereo Correspondence 1 Tutorial on Geometric and Semantic 3D Reconstruction Part 3: Dense Stereo Correspondence Sudipta N. Sinha Microsoft Research Overview 2 Basics Semi Global Matching (SGM) and extensions Recent directions

More information

SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs. Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu

SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs. Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu Discrete Pixel-Labeling Optimization on MRF 2/37 Many computer vision tasks

More information

Stereo Vision II: Dense Stereo Matching

Stereo Vision II: Dense Stereo Matching Stereo Vision II: Dense Stereo Matching Nassir Navab Slides prepared by Christian Unger Outline. Hardware. Challenges. Taxonomy of Stereo Matching. Analysis of Different Problems. Practical Considerations.

More information

Supplementary Material for ECCV 2012 Paper: Extracting 3D Scene-consistent Object Proposals and Depth from Stereo Images

Supplementary Material for ECCV 2012 Paper: Extracting 3D Scene-consistent Object Proposals and Depth from Stereo Images Supplementary Material for ECCV 2012 Paper: Extracting 3D Scene-consistent Object Proposals and Depth from Stereo Images Michael Bleyer 1, Christoph Rhemann 1,2, and Carsten Rother 2 1 Vienna University

More information

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011 Multi-view Stereo Ivo Boyadzhiev CS7670: September 13, 2011 What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

More information

MeshStereo: A Global Stereo Model with Mesh Alignment Regularization for View Interpolation

MeshStereo: A Global Stereo Model with Mesh Alignment Regularization for View Interpolation MeshStereo: A Global Stereo Model with Mesh Alignment Regularization for View Interpolation Chi Zhang 2,3 Zhiwei Li 1 Yanhua Cheng 4 Rui Cai 1 Hongyang Chao 2,3 Yong Rui 1 1 Microsoft Research 2 Sun Yat-Sen

More information

What have we leaned so far?

What have we leaned so far? What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging What have we learned so far? Image Filtering Image Warping Camera Projection Model Project 2: Panoramic

More information

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision What Happened Last Time? Human 3D perception (3D cinema) Computational stereo Intuitive explanation of what is meant by disparity Stereo matching

More information

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from?

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from? Binocular Stereo Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image Where does the depth information come from? Binocular stereo Given a calibrated binocular stereo

More information

Stereo Correspondence with Occlusions using Graph Cuts

Stereo Correspondence with Occlusions using Graph Cuts Stereo Correspondence with Occlusions using Graph Cuts EE368 Final Project Matt Stevens mslf@stanford.edu Zuozhen Liu zliu2@stanford.edu I. INTRODUCTION AND MOTIVATION Given two stereo images of a scene,

More information

Graph Cut based Continuous Stereo Matching using Locally Shared Labels

Graph Cut based Continuous Stereo Matching using Locally Shared Labels Graph Cut based Continuous Stereo Matching using Locally Shared Labels Tatsunori Taniai University of Tokyo, Japan taniai@iis.u-tokyo.ac.jp Yasuyuki Matsushita Microsoft Research Asia, China yasumat@microsoft.com

More information

A Local Iterative Refinement Method for Adaptive Support-Weight Stereo Matching

A Local Iterative Refinement Method for Adaptive Support-Weight Stereo Matching A Local Iterative Refinement Method for Adaptive Support-Weight Stereo Matching Eric T. Psota, Jędrzej Kowalczuk, Jay Carlson, and Lance C. Pérez Department of Electrical Engineering, University of Nebraska,

More information

Stereo vision. Many slides adapted from Steve Seitz

Stereo vision. Many slides adapted from Steve Seitz Stereo vision Many slides adapted from Steve Seitz What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape What is

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 19: Graph Cuts source S sink T Readings Szeliski, Chapter 11.2 11.5 Stereo results with window search problems in areas of uniform texture Window-based matching

More information

PatchMatch Stereo - Stereo Matching with Slanted Support Windows

PatchMatch Stereo - Stereo Matching with Slanted Support Windows M. BLEYER, C. RHEMANN, C. ROTHER: PATCHMATCH STEREO 1 PatchMatch Stereo - Stereo Matching with Slanted Support Windows Michael Bleyer 1 bleyer@ims.tuwien.ac.at Christoph Rhemann 1 rhemann@ims.tuwien.ac.at

More information

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5)

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5) Announcements Stereo Project 2 due today Project 3 out today Single image stereogram, by Niklas Een Readings Szeliski, Chapter 10 (through 10.5) Public Library, Stereoscopic Looking Room, Chicago, by Phillips,

More information

Combining Monocular Geometric Cues with Traditional Stereo Cues for Consumer Camera Stereo

Combining Monocular Geometric Cues with Traditional Stereo Cues for Consumer Camera Stereo 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 Combining Monocular Geometric

More information

Stereo: the graph cut method

Stereo: the graph cut method Stereo: the graph cut method Last lecture we looked at a simple version of the Marr-Poggio algorithm for solving the binocular correspondence problem along epipolar lines in rectified images. The main

More information

Improving the accuracy of fast dense stereo correspondence algorithms by enforcing local consistency of disparity fields

Improving the accuracy of fast dense stereo correspondence algorithms by enforcing local consistency of disparity fields Improving the accuracy of fast dense stereo correspondence algorithms by enforcing local consistency of disparity fields Stefano Mattoccia University of Bologna Dipartimento di Elettronica, Informatica

More information

Markov Networks in Computer Vision

Markov Networks in Computer Vision Markov Networks in Computer Vision Sargur Srihari srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Some applications: 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

A locally global approach to stereo correspondence

A locally global approach to stereo correspondence A locally global approach to stereo correspondence Stefano Mattoccia Department of Electronics Computer Science and Systems (DEIS) Advanced Research Center on Electronic Systems (ARCES) University of Bologna,

More information

Markov Networks in Computer Vision. Sargur Srihari

Markov Networks in Computer Vision. Sargur Srihari Markov Networks in Computer Vision Sargur srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Important application area for MNs 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Voronoi Diagram. Xiao-Ming Fu

Voronoi Diagram. Xiao-Ming Fu Voronoi Diagram Xiao-Ming Fu Outlines Introduction Post Office Problem Voronoi Diagram Duality: Delaunay triangulation Centroidal Voronoi tessellations (CVT) Definition Applications Algorithms Outlines

More information

Filter Flow: Supplemental Material

Filter Flow: Supplemental Material Filter Flow: Supplemental Material Steven M. Seitz University of Washington Simon Baker Microsoft Research We include larger images and a number of additional results obtained using Filter Flow [5]. 1

More information

Efficient Large-Scale Stereo Matching

Efficient Large-Scale Stereo Matching Efficient Large-Scale Stereo Matching Andreas Geiger*, Martin Roser* and Raquel Urtasun** *KARLSRUHE INSTITUTE OF TECHNOLOGY **TOYOTA TECHNOLOGICAL INSTITUTE AT CHICAGO KIT University of the State of Baden-Wuerttemberg

More information

Combining Monocular Geometric Cues with Traditional Stereo Cues for Consumer Camera Stereo

Combining Monocular Geometric Cues with Traditional Stereo Cues for Consumer Camera Stereo Combining Monocular Geometric Cues with Traditional Stereo Cues for Consumer Camera Stereo Adarsh Kowdle, Andrew Gallagher, and Tsuhan Chen Cornell University, Ithaca, NY, USA Abstract. This paper presents

More information

Supplementary Material: Adaptive and Move Making Auxiliary Cuts for Binary Pairwise Energies

Supplementary Material: Adaptive and Move Making Auxiliary Cuts for Binary Pairwise Energies Supplementary Material: Adaptive and Move Making Auxiliary Cuts for Binary Pairwise Energies Lena Gorelick Yuri Boykov Olga Veksler Computer Science Department University of Western Ontario Abstract Below

More information

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence CS4495/6495 Introduction to Computer Vision 3B-L3 Stereo correspondence For now assume parallel image planes Assume parallel (co-planar) image planes Assume same focal lengths Assume epipolar lines are

More information

Stereo. Many slides adapted from Steve Seitz

Stereo. Many slides adapted from Steve Seitz Stereo Many slides adapted from Steve Seitz Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image image 1 image 2 Dense depth map Binocular stereo Given a calibrated

More information

Separating Objects and Clutter in Indoor Scenes

Separating Objects and Clutter in Indoor Scenes Separating Objects and Clutter in Indoor Scenes Salman H. Khan School of Computer Science & Software Engineering, The University of Western Australia Co-authors: Xuming He, Mohammed Bennamoun, Ferdous

More information

ACM MM Dong Liu, Shuicheng Yan, Yong Rui and Hong-Jiang Zhang

ACM MM Dong Liu, Shuicheng Yan, Yong Rui and Hong-Jiang Zhang ACM MM 2010 Dong Liu, Shuicheng Yan, Yong Rui and Hong-Jiang Zhang Harbin Institute of Technology National University of Singapore Microsoft Corporation Proliferation of images and videos on the Internet

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Today: dense 3D reconstruction The matching problem

More information

MRFs and Segmentation with Graph Cuts

MRFs and Segmentation with Graph Cuts 02/24/10 MRFs and Segmentation with Graph Cuts Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Today s class Finish up EM MRFs w ij i Segmentation with Graph Cuts j EM Algorithm: Recap

More information

Introduction à la vision artificielle X

Introduction à la vision artificielle X Introduction à la vision artificielle X Jean Ponce Email: ponce@di.ens.fr Web: http://www.di.ens.fr/~ponce Planches après les cours sur : http://www.di.ens.fr/~ponce/introvis/lect10.pptx http://www.di.ens.fr/~ponce/introvis/lect10.pdf

More information

Stereo Matching.

Stereo Matching. Stereo Matching Stereo Vision [1] Reduction of Searching by Epipolar Constraint [1] Photometric Constraint [1] Same world point has same intensity in both images. True for Lambertian surfaces A Lambertian

More information

Probabilistic Correspondence Matching using Random Walk with Restart

Probabilistic Correspondence Matching using Random Walk with Restart C. OH, B. HAM, K. SOHN: PROBABILISTIC CORRESPONDENCE MATCHING 1 Probabilistic Correspondence Matching using Random Walk with Restart Changjae Oh ocj1211@yonsei.ac.kr Bumsub Ham mimo@yonsei.ac.kr Kwanghoon

More information

STEREO matching has been one of the most active research

STEREO matching has been one of the most active research > TCSVT < 1 Color Image Guided Boundary-inconsistent Region Refinement for Stereo Matching Jianbo Jiao, Student Member, IEEE, Ronggang Wang*, Member, IEEE, Wenmin Wang, Member, IEEE, Dagang Li, Member,

More information

Models for grids. Computer vision: models, learning and inference. Multi label Denoising. Binary Denoising. Denoising Goal.

Models for grids. Computer vision: models, learning and inference. Multi label Denoising. Binary Denoising. Denoising Goal. Models for grids Computer vision: models, learning and inference Chapter 9 Graphical Models Consider models where one unknown world state at each pixel in the image takes the form of a grid. Loops in the

More information

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2009 Today From 2D to 3D using multiple views Introduction Geometry of two views Stereo matching Other applications Multiview geometry

More information

Flow Estimation. Min Bai. February 8, University of Toronto. Min Bai (UofT) Flow Estimation February 8, / 47

Flow Estimation. Min Bai. February 8, University of Toronto. Min Bai (UofT) Flow Estimation February 8, / 47 Flow Estimation Min Bai University of Toronto February 8, 2016 Min Bai (UofT) Flow Estimation February 8, 2016 1 / 47 Outline Optical Flow - Continued Min Bai (UofT) Flow Estimation February 8, 2016 2

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely, Zhengqi Li Stereo Single image stereogram, by Niklas Een Mark Twain at Pool Table", no date, UCR Museum of Photography Stereo Given two images from different viewpoints

More information

Temporally Consistence Depth Estimation from Stereo Video Sequences

Temporally Consistence Depth Estimation from Stereo Video Sequences Temporally Consistence Depth Estimation from Stereo Video Sequences Ji-Hun Mun and Yo-Sung Ho (&) School of Information and Communications, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro,

More information

Visual Recognition: Examples of Graphical Models

Visual Recognition: Examples of Graphical Models Visual Recognition: Examples of Graphical Models Raquel Urtasun TTI Chicago March 6, 2012 Raquel Urtasun (TTI-C) Visual Recognition March 6, 2012 1 / 64 Graphical models Applications Representation Inference

More information

Efficient Deep Learning for Stereo Matching

Efficient Deep Learning for Stereo Matching Efficient Deep Learning for Stereo Matching Wenjie Luo Alexander G. Schwing Raquel Urtasun Department of Computer Science, University of Toronto {wenjie, aschwing, urtasun}@cs.toronto.edu Abstract In the

More information

Multi-View Stereo for Static and Dynamic Scenes

Multi-View Stereo for Static and Dynamic Scenes Multi-View Stereo for Static and Dynamic Scenes Wolfgang Burgard Jan 6, 2010 Main references Yasutaka Furukawa and Jean Ponce, Accurate, Dense and Robust Multi-View Stereopsis, 2007 C.L. Zitnick, S.B.

More information

Embedded real-time stereo estimation via Semi-Global Matching on the GPU

Embedded real-time stereo estimation via Semi-Global Matching on the GPU Embedded real-time stereo estimation via Semi-Global Matching on the GPU Daniel Hernández Juárez, Alejandro Chacón, Antonio Espinosa, David Vázquez, Juan Carlos Moure and Antonio M. López Computer Architecture

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Review of Tuesday. ECS 175 Chapter 3: Object Representation

Review of Tuesday. ECS 175 Chapter 3: Object Representation Review of Tuesday We have learnt how to rasterize lines and fill polygons Colors (and other attributes) are specified at vertices Interpolation required to fill polygon with attributes 26 Review of Tuesday

More information

Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts

Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts [Yuri Boykov, Olga Veksler, Ramin Zabih, Fast Approximation

More information

Fathi El-Yafi Project and Software Development Manager Engineering Simulation

Fathi El-Yafi Project and Software Development Manager Engineering Simulation An Introduction to Mesh Generation Algorithms Part 2 Fathi El-Yafi Project and Software Development Manager Engineering Simulation 21-25 April 2008 1 Overview Adaptive Meshing: Remeshing Decimation Optimization

More information

Direct Methods in Visual Odometry

Direct Methods in Visual Odometry Direct Methods in Visual Odometry July 24, 2017 Direct Methods in Visual Odometry July 24, 2017 1 / 47 Motivation for using Visual Odometry Wheel odometry is affected by wheel slip More accurate compared

More information

Geometric Reconstruction Dense reconstruction of scene geometry

Geometric Reconstruction Dense reconstruction of scene geometry Lecture 5. Dense Reconstruction and Tracking with Real-Time Applications Part 2: Geometric Reconstruction Dr Richard Newcombe and Dr Steven Lovegrove Slide content developed from: [Newcombe, Dense Visual

More information

Volumetric stereo with silhouette and feature constraints

Volumetric stereo with silhouette and feature constraints Volumetric stereo with silhouette and feature constraints Jonathan Starck, Gregor Miller and Adrian Hilton Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH, UK.

More information

Stereo Matching: An Outlier Confidence Approach

Stereo Matching: An Outlier Confidence Approach Stereo Matching: An Outlier Confidence Approach Li Xu and Jiaya Jia Department of Computer Science and Engineering The Chinese University of Hong Kong {xuli,leojia}@cse.cuhk.edu.hk Abstract. One of the

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 15 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

arxiv: v2 [cs.cv] 20 Oct 2015

arxiv: v2 [cs.cv] 20 Oct 2015 Computing the Stereo Matching Cost with a Convolutional Neural Network Jure Žbontar University of Ljubljana jure.zbontar@fri.uni-lj.si Yann LeCun New York University yann@cs.nyu.edu arxiv:1409.4326v2 [cs.cv]

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

Supplementary Material for A Multi-View Stereo Benchmark with High-Resolution Images and Multi-Camera Videos

Supplementary Material for A Multi-View Stereo Benchmark with High-Resolution Images and Multi-Camera Videos Supplementary Material for A Multi-View Stereo Benchmark with High-Resolution Images and Multi-Camera Videos Thomas Schöps 1 Johannes L. Schönberger 1 Silvano Galliani 2 Torsten Sattler 1 Konrad Schindler

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

Markov Random Fields and Segmentation with Graph Cuts

Markov Random Fields and Segmentation with Graph Cuts Markov Random Fields and Segmentation with Graph Cuts Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project Proposal due Oct 27 (Thursday) HW 4 is out

More information

3D Photography: Stereo Matching

3D Photography: Stereo Matching 3D Photography: Stereo Matching Kevin Köser, Marc Pollefeys Spring 2012 http://cvg.ethz.ch/teaching/2012spring/3dphoto/ Stereo & Multi-View Stereo Tsukuba dataset http://cat.middlebury.edu/stereo/ Stereo

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Wide baseline matching (SIFT) Today: dense 3D reconstruction

More information

Oblique Image Processing in SURE - First Experiments and Results

Oblique Image Processing in SURE - First Experiments and Results EuroSDR / ISPRS Workshop, Southampton 2015 Oblique Image Processing in SURE - First Experiments and Results Mathias Rothermel Outline» General Workflow» 2.5D Meshing» Mesh Texturing» 3D Workflow» First

More information

Stereo imaging ideal geometry

Stereo imaging ideal geometry Stereo imaging ideal geometry (X,Y,Z) Z f (x L,y L ) f (x R,y R ) Optical axes are parallel Optical axes separated by baseline, b. Line connecting lens centers is perpendicular to the optical axis, and

More information

Ping Tan. Simon Fraser University

Ping Tan. Simon Fraser University Ping Tan Simon Fraser University Photos vs. Videos (live photos) A good photo tells a story Stories are better told in videos Videos in the Mobile Era (mobile & share) More videos are captured by mobile

More information

Image Segmentation with a Bounding Box Prior Victor Lempitsky, Pushmeet Kohli, Carsten Rother, Toby Sharp Microsoft Research Cambridge

Image Segmentation with a Bounding Box Prior Victor Lempitsky, Pushmeet Kohli, Carsten Rother, Toby Sharp Microsoft Research Cambridge Image Segmentation with a Bounding Box Prior Victor Lempitsky, Pushmeet Kohli, Carsten Rother, Toby Sharp Microsoft Research Cambridge Dylan Rhodes and Jasper Lin 1 Presentation Overview Segmentation problem

More information

Stereo Matching. Stereo Matching. Face modeling. Z-keying: mix live and synthetic

Stereo Matching. Stereo Matching. Face modeling. Z-keying: mix live and synthetic Stereo Matching Stereo Matching Given two or more images of the same scene or object, compute a representation of its shape? Computer Vision CSE576, Spring 2005 Richard Szeliski What are some possible

More information

Combinatorial optimization and its applications in image Processing. Filip Malmberg

Combinatorial optimization and its applications in image Processing. Filip Malmberg Combinatorial optimization and its applications in image Processing Filip Malmberg Part 1: Optimization in image processing Optimization in image processing Many image processing problems can be formulated

More information

Image Based Reconstruction II

Image Based Reconstruction II Image Based Reconstruction II Qixing Huang Feb. 2 th 2017 Slide Credit: Yasutaka Furukawa Image-Based Geometry Reconstruction Pipeline Last Lecture: Multi-View SFM Multi-View SFM This Lecture: Multi-View

More information

segments. The geometrical relationship of adjacent planes such as parallelism and intersection is employed for determination of whether two planes sha

segments. The geometrical relationship of adjacent planes such as parallelism and intersection is employed for determination of whether two planes sha A New Segment-based Stereo Matching using Graph Cuts Daolei Wang National University of Singapore EA #04-06, Department of Mechanical Engineering Control and Mechatronics Laboratory, 10 Kent Ridge Crescent

More information

Final Review CMSC 733 Fall 2014

Final Review CMSC 733 Fall 2014 Final Review CMSC 733 Fall 2014 We have covered a lot of material in this course. One way to organize this material is around a set of key equations and algorithms. You should be familiar with all of these,

More information

CONVOLUTIONAL COST AGGREGATION FOR ROBUST STEREO MATCHING. Somi Jeong Seungryong Kim Bumsub Ham Kwanghoon Sohn

CONVOLUTIONAL COST AGGREGATION FOR ROBUST STEREO MATCHING. Somi Jeong Seungryong Kim Bumsub Ham Kwanghoon Sohn CONVOLUTIONAL COST AGGREGATION FOR ROBUST STEREO MATCHING Somi Jeong Seungryong Kim Bumsub Ham Kwanghoon Sohn School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea E-mail: khsohn@yonsei.ac.kr

More information

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman Stereo 11/02/2012 CS129, Brown James Hays Slides by Kristen Grauman Multiple views Multi-view geometry, matching, invariant features, stereo vision Lowe Hartley and Zisserman Why multiple views? Structure

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by ) Readings Szeliski, Chapter 10 (through 10.5)

Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by  ) Readings Szeliski, Chapter 10 (through 10.5) Announcements Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by email) One-page writeup (from project web page), specifying:» Your team members» Project goals. Be specific.

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

Segmentation. Separate image into coherent regions

Segmentation. Separate image into coherent regions Segmentation II Segmentation Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Interactive

More information

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo II CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Camera parameters A camera is described by several parameters Translation T of the optical center from the origin of world

More information

Stereo Matching! Christian Unger 1,2, Nassir Navab 1!! Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany!!

Stereo Matching! Christian Unger 1,2, Nassir Navab 1!! Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany!! Stereo Matching Christian Unger 12 Nassir Navab 1 1 Computer Aided Medical Procedures CAMP) Technische Universität München German 2 BMW Group München German Hardware Architectures. Microprocessors Pros:

More information

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA Tomoki Hayashi 1, Francois de Sorbier 1 and Hideo Saito 1 1 Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi,

More information

GPU-Accelerated Real-Time Stereo Matching. Master s thesis in Computer Science algorithms, languages and logic PETER HILLERSTRÖM

GPU-Accelerated Real-Time Stereo Matching. Master s thesis in Computer Science algorithms, languages and logic PETER HILLERSTRÖM GPU-Accelerated Real-Time Stereo Matching Master s thesis in Computer Science algorithms, languages and logic PETER HILLERSTRÖM Department of Computer Science and Engineering CHALMERS UNIVERSITY OF TECHNOLOGY

More information

STEREO vision often struggles with a bias toward reconstructing

STEREO vision often struggles with a bias toward reconstructing TECHNICAL REPORT. TANIAI et al.: CONTINUOUS 3D LABEL STEREO MATCHING USING LOCAL EXPANSION MOVES. 1 Continuous 3D Label Stereo Matching using Local Expansion Moves Tatsunori Taniai, Yasuyuki Matsushita,

More information

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 ECCV 2016 Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 Fundamental Question What is a good vector representation of an object? Something that can be easily predicted from 2D

More information

Stereo Wrap + Motion. Computer Vision I. CSE252A Lecture 17

Stereo Wrap + Motion. Computer Vision I. CSE252A Lecture 17 Stereo Wrap + Motion CSE252A Lecture 17 Some Issues Ambiguity Window size Window shape Lighting Half occluded regions Problem of Occlusion Stereo Constraints CONSTRAINT BRIEF DESCRIPTION 1-D Epipolar Search

More information

Segment-Tree based Cost Aggregation for Stereo Matching

Segment-Tree based Cost Aggregation for Stereo Matching Segment-Tree based Cost Aggregation for Stereo Matching Xing Mei 1, Xun Sun 2, Weiming Dong 1, Haitao Wang 2, Xiaopeng Zhang 1 1 NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China

More information

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision Stereo Thurs Mar 30 Kristen Grauman UT Austin Outline Last time: Human stereopsis Epipolar geometry and the epipolar constraint Case example with parallel optical axes General case with calibrated cameras

More information

Lecture 14: Basic Multi-View Geometry

Lecture 14: Basic Multi-View Geometry Lecture 14: Basic Multi-View Geometry Stereo If I needed to find out how far point is away from me, I could use triangulation and two views scene point image plane optical center (Graphic from Khurram

More information

When Big Datasets are Not Enough: The need for visual virtual worlds.

When Big Datasets are Not Enough: The need for visual virtual worlds. When Big Datasets are Not Enough: The need for visual virtual worlds. Alan Yuille Bloomberg Distinguished Professor Departments of Cognitive Science and Computer Science Johns Hopkins University Computational

More information

Primal Dual Schema Approach to the Labeling Problem with Applications to TSP

Primal Dual Schema Approach to the Labeling Problem with Applications to TSP 1 Primal Dual Schema Approach to the Labeling Problem with Applications to TSP Colin Brown, Simon Fraser University Instructor: Ramesh Krishnamurti The Metric Labeling Problem has many applications, especially

More information

Reliability Based Cross Trilateral Filtering for Depth Map Refinement

Reliability Based Cross Trilateral Filtering for Depth Map Refinement Reliability Based Cross Trilateral Filtering for Depth Map Refinement Takuya Matsuo, Norishige Fukushima, and Yutaka Ishibashi Graduate School of Engineering, Nagoya Institute of Technology Nagoya 466-8555,

More information

Supplementary Material for A Locally Linear Regression Model for Boundary Preserving Regularization in Stereo Matching

Supplementary Material for A Locally Linear Regression Model for Boundary Preserving Regularization in Stereo Matching Supplementary Material for A Locally Linear Regression Model for Boundary Preserving Regularization in Stereo Matching Shengqi Zhu 1, Li Zhang 1, and Hailin Jin 2 1 University of Wisconsin - Madison 2

More information

Image Restoration using Markov Random Fields

Image Restoration using Markov Random Fields Image Restoration using Markov Random Fields Based on the paper Stochastic Relaxation, Gibbs Distributions and Bayesian Restoration of Images, PAMI, 1984, Geman and Geman. and the book Markov Random Field

More information

On Building an Accurate Stereo Matching System on Graphics Hardware

On Building an Accurate Stereo Matching System on Graphics Hardware On Building an Accurate Stereo Matching System on Graphics Hardware Xing Mei 1,2, Xun Sun 1, Mingcai Zhou 1, Shaohui Jiao 1, Haitao Wang 1, Xiaopeng Zhang 2 1 Samsung Advanced Institute of Technology,

More information

Image Morphing. CSC320: Introduction to Visual Computing Michael Guerzhoy. Many slides borrowed from Derek Hoeim, Alexei Efros

Image Morphing. CSC320: Introduction to Visual Computing Michael Guerzhoy. Many slides borrowed from Derek Hoeim, Alexei Efros Image Morphing Edvard Munch, The Scream Many slides borrowed from Derek Hoeim, Alexei Efros CSC320: Introduction to Visual Computing Michael Guerzhoy Morphing Examples Women in art http://youtube.com/watch?v=nudion-_hxs

More information

A FAST SEGMENTATION-DRIVEN ALGORITHM FOR ACCURATE STEREO CORRESPONDENCE. Stefano Mattoccia and Leonardo De-Maeztu

A FAST SEGMENTATION-DRIVEN ALGORITHM FOR ACCURATE STEREO CORRESPONDENCE. Stefano Mattoccia and Leonardo De-Maeztu A FAST SEGMENTATION-DRIVEN ALGORITHM FOR ACCURATE STEREO CORRESPONDENCE Stefano Mattoccia and Leonardo De-Maeztu University of Bologna, Public University of Navarre ABSTRACT Recent cost aggregation strategies

More information

A TESSELLATION FOR ALGEBRAIC SURFACES IN CP 3

A TESSELLATION FOR ALGEBRAIC SURFACES IN CP 3 A TESSELLATION FOR ALGEBRAIC SURFACES IN CP 3 ANDREW J. HANSON AND JI-PING SHA In this paper we present a systematic and explicit algorithm for tessellating the algebraic surfaces (real 4-manifolds) F

More information

Integrating LIDAR into Stereo for Fast and Improved Disparity Computation

Integrating LIDAR into Stereo for Fast and Improved Disparity Computation Integrating LIDAR into Stereo for Fast and Improved Computation Hernán Badino, Daniel Huber, and Takeo Kanade Robotics Institute, Carnegie Mellon University Pittsburgh, PA, USA Stereo/LIDAR Integration

More information