Solutions to assignment 3

Size: px
Start display at page:

Download "Solutions to assignment 3"

Transcription

1 Math 9 Solutions to assignment Due: : Noon on Thursday, October, 5.. Find the minimum of the function f, y, z) + y + z subject to the condition + y + z 4. Solution. Let s define g, y, z) + y + z, so the problem is to find the minimum of f, y, z) subject to the constraint g, y, z) 4. We have f λ g, y, z) λ,, ); and reading this component by component we obtain λ, y λ, z λ. Plugging this into the constraint we have ) λ λ + λ + 4 λ 4 7. Thus, y 4, z, and, 4, ) is the only critical point. Now we could use the Hessian matri of f and see that it is positive definite to justify that this critical point gives the minimum. Alternatively, we can note that the function f is unbounded above even subject to the restriction) and therefore has no maimum, but it has a minimum since it is bounded below by. Therefore the minimum subject to the given restriction is f, 4, ) Find the maimum value of the function F, y, z) +y +z), subject to the constraint given by + y + z. Solution. Let s define g, y, z) +y +z, so the problem is to find the maimum of F, y, z) subject to the constraint g, y, z). We have F λ g + y + z), + y + z), + y + z)) λ, 4y, z). eading this component by component and including the restriction we get the system of equations + y + z λ + y + z λy + y + z λz + y + z. A) B) C) D)

2 Subtracting A) B) we get λ y), so either λ or y. But λ would give y z, and f,, ) is obviously not the maimum. Therefore we work with y. Subtracting B) C) we get λy z), and since we already discarded the case λ we are left with z y. Using the results in the two frames into D) we get ) y) + y + y y ± ±, z ±. It is clear that the maimum of F occurs when, y, z are all positive, or when they are all negative. Therefore the maimum value is F,, ) ) F,, ± ).. Find the maimum and minimum values of the function f, y, z) y z, subject to the constraints + y z, + z. Solution. Let s define g, y, z) +y z and h, y, z) +z, so the problem is to find the maimum of f, y, z) subject to the constraints g, y, z) and h, y, z). We have f λ g + µ h,, ) λ,, ) + µ,, 4z). eading this component by component and including the restrictions we get the system of equations λ + µ A) λ λ + 4µz + y z + z. B) C) D) E)

3 Note that B) already gives λ. Using this in A) and C) we obtain and µ z respectively. Plugging these epressions for and z into E) we get µ Now, from D) we have y z, so we get ) + µ ± µ µ). µ, z, y. µ, z, y. Since the intersection of + y z and + z is closed and bounded, all we need to do now is evaluate f at the critical points we have found. f,, ) is the maimum value, f,, ) is the minimum value. 4. Find the etreme values of the function f, y, ) y + z on the region described by the inequality + y + z. Use Lagrange multipliers to treat the boundary case. Solution. First we work in the interior: + y + z <. to find the critical points we set f. This yields y, so the only critical point in the interior is,, ). But clearly f,, ) is neither a maimum nor a minimum. It is also clear that there are no singular points. Now we work on the boundary: +y +z. Here we can define g, y, z) +y +z, so the problem is to find the etreme values of f, y, z) subject to g, y, z). We have f λ g y,, z) λ, y, z). eading this component by component and including the restriction we get y λ λy z λz + y + z. A) B) C) E) Note that C) implies z λ), so either z or λ. Case : z. Note that A) and B) imply y, and then from D) we get y. this way we get four points: ±, ±, ).

4 Case : λ. Now A) and B) imply y, and then from D) we get z ±. This way we get the two points,, ±). Since +y +z is closed and bounded, all we need to do now is evaluate the function at the points we have found: ) f,, f, ), f, ), f ),, this is the global minimum) f,, ±) this is the global maimum). 5. Use Lagrange multipliers to prove that a rectangle with maimum area, that has a given perimeter p, is a square. Solution. Let the sides of the rectangle be and y, so the area is A, y) y. The problem is to maimize the function A, y) subject to the constraint g, y) + y p p > is a fied number). We have A λ g y, ) λ, ). eading this component by component we get { y λ λ y so the rectangle with maimum area is a square with side length p 4.. Evaluate y + dy. Solution. Since we are integrating with respect to y, the letter in the integrand is treated as a constant. We have y + dy dy y arctany) y y + arctan) arctan)) arctan).

5 7. Calculate the iterated integral + y) ddy. Solution. We have + y) ddy + y) ) dy [ + y) + y ] dy ln + y) y y + lny) y y ln) ln)) + ln) ln) ln) + ln) ln 4 ). 8. Calculate the double integral sin + y) da, where [, π/] [, π/]. Solution. In this case it is convenient to integrate first with respect to the variable y. We have π/ π/ sin + y) da sin + y) dy d π/ π/ π/ cos + y) yπ/ y ) d cos + π ) ) + cos) d cos) d π/ cos + π ) d. These two single integrals can be computed easily using integration by parts, and this way we get sin + y) da π. 9. Calculate the double integral da, where [, ] [, ]. + y

6 Solution. We will need to use the identity lna + ) d lna + ) + a arctan. *) a) which can be obtained using integration by parts. Integrating first with respect to the variable, we have + y da d dy + y ln + y ) ) dy ln4 + y ) dy y ln4 + y ) y + 4 arctan d dy + y ) ln + y ) dy ) y y ) y y ln + y ) y + arctany) ) y y here we have used the identity *)) ln 5 ) + arctan ) arctan).. Find the volume of the solid that lies under the hyperbolic paraboloid z y, and above the square [, ] [, ]. Solution. We can see that the function f, y) y is nonnegative over the given rectangle. Therefore, calling S the solid we have VolS) Thus VolS) cubic units. y ) da y y ) ) dy dy. y ) d dy

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints:

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints: Math 9 (Fall 7) Calculus III Solution #5. Find the minimum and maximum values of the following functions f under the given constraints: (a) f(x, y) 4x + 6y, x + y ; (b) f(x, y) x y, x + y 6. Solution:

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

Instructions and information

Instructions and information Instructions and information. Check that this paper has a total of 5 pages including the cover page.. This is a closed book exam. Calculators and electronic devices are not allowed. Notes and dictionaries

More information

Math 21a Homework 22 Solutions Spring, 2014

Math 21a Homework 22 Solutions Spring, 2014 Math 1a Homework Solutions Spring, 014 1. Based on Stewart 11.8 #6 ) Consider the function fx, y) = e xy, and the constraint x 3 + y 3 = 16. a) Use Lagrange multipliers to find the coordinates x, y) of

More information

Math 233. Lagrange Multipliers Basics

Math 233. Lagrange Multipliers Basics Math 233. Lagrange Multipliers Basics Optimization problems of the form to optimize a function f(x, y, z) over a constraint g(x, y, z) = k can often be conveniently solved using the method of Lagrange

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

Answers to Worksheet 5, Math 272

Answers to Worksheet 5, Math 272 Answers to Worksheet 5, Math 7 1. Calculate the directional derivative of the function f(, y, z) = cos y sin z at the point a = (1, π/, 5π/6) in the direction u = (3, 0, 1). The gradient of f at a is (

More information

Math 233. Lagrange Multipliers Basics

Math 233. Lagrange Multipliers Basics Math 33. Lagrange Multipliers Basics Optimization problems of the form to optimize a function f(x, y, z) over a constraint g(x, y, z) = k can often be conveniently solved using the method of Lagrange multipliers:

More information

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8)

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8) Math 130 Practice Final (Spring 017) Before the exam: Do not write anything on this page. Do not open the exam. Turn off your cell phone. Make sure your books, notes, and electronics are not visible during

More information

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008 A small review, Second Midterm, Calculus, Prof. Montero 45:-4, Fall 8 Maxima and minima Let us recall first, that for a function f(x, y), the gradient is the vector ( f)(x, y) = ( ) f f (x, y); (x, y).

More information

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 5 FALL 8 KUNIYUKI SCORED OUT OF 15 POINTS MULTIPLIED BY.84 15% POSSIBLE 1) Reverse the order of integration, and evaluate the resulting double integral: 16 y dx dy. Give

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

Constrained Optimization and Lagrange Multipliers

Constrained Optimization and Lagrange Multipliers Constrained Optimization and Lagrange Multipliers MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Constrained Optimization In the previous section we found the local or absolute

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Evaluate the area A of the triangle with the vertices

More information

Intro to Linear Programming. The problem that we desire to address in this course is loosely stated below.

Intro to Linear Programming. The problem that we desire to address in this course is loosely stated below. . Introduction Intro to Linear Programming The problem that we desire to address in this course is loosely stated below. Given a number of generators make price-quantity offers to sell (each provides their

More information

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

More information

Math 21a Final Exam Solutions Spring, 2009

Math 21a Final Exam Solutions Spring, 2009 Math a Final Eam olutions pring, 9 (5 points) Indicate whether the following statements are True or False b circling the appropriate letter No justifications are required T F The (vector) projection of

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

The base of a solid is the region in the first quadrant bounded above by the line y = 2, below by

The base of a solid is the region in the first quadrant bounded above by the line y = 2, below by Chapter 7 1) (AB/BC, calculator) The base of a solid is the region in the first quadrant bounded above by the line y =, below by y sin 1 x, and to the right by the line x = 1. For this solid, each cross-section

More information

Math 241 Spring 2015 Final Exam Solutions

Math 241 Spring 2015 Final Exam Solutions Math 4 Spring 5 Final Exam Solutions. Find the equation of the plane containing the line x y z+ and the point (,,). Write [ pts] your final answer in the form ax+by +cz d. Solution: A vector parallel to

More information

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. . Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = x y, x + y = 8. Set up the triple integral of an arbitrary continuous function

More information

Homework 8. Due: Tuesday, March 31st, 2009

Homework 8. Due: Tuesday, March 31st, 2009 MATH 55 Applied Honors Calculus III Winter 9 Homework 8 Due: Tuesday, March 3st, 9 Section 6.5, pg. 54: 7, 3. Section 6.6, pg. 58:, 3. Section 6.7, pg. 66: 3, 5, 47. Section 6.8, pg. 73: 33, 38. Section

More information

MAC2313 Test 3 A E g(x, y, z) dy dx dz

MAC2313 Test 3 A E g(x, y, z) dy dx dz MAC2313 Test 3 A (5 pts) 1. If the function g(x, y, z) is integrated over the cylindrical solid bounded by x 2 + y 2 = 3, z = 1, and z = 7, the correct integral in Cartesian coordinates is given by: A.

More information

(c) 0 (d) (a) 27 (b) (e) x 2 3x2

(c) 0 (d) (a) 27 (b) (e) x 2 3x2 1. Sarah the architect is designing a modern building. The base of the building is the region in the xy-plane bounded by x =, y =, and y = 3 x. The building itself has a height bounded between z = and

More information

14.5 Directional Derivatives and the Gradient Vector

14.5 Directional Derivatives and the Gradient Vector 14.5 Directional Derivatives and the Gradient Vector 1. Directional Derivatives. Recall z = f (x, y) and the partial derivatives f x and f y are defined as f (x 0 + h, y 0 ) f (x 0, y 0 ) f x (x 0, y 0

More information

Topic 6: Calculus Integration Volume of Revolution Paper 2

Topic 6: Calculus Integration Volume of Revolution Paper 2 Topic 6: Calculus Integration Standard Level 6.1 Volume of Revolution Paper 1. Let f(x) = x ln(4 x ), for < x

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

Solution of final examination

Solution of final examination of final examination Math 20, pring 201 December 9, 201 Problem 1 Let v(t) (2t e t ) i j + π cos(πt) k be the velocity of a particle with initial position r(0) ( 1, 0, 2). Find the accelaration at the

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Second Midterm Exam Math 212 Fall 2010

Second Midterm Exam Math 212 Fall 2010 Second Midterm Exam Math 22 Fall 2 Instructions: This is a 9 minute exam. You should work alone, without access to any book or notes. No calculators are allowed. Do not discuss this exam with anyone other

More information

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t.

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t. MATH 127 ALULU III Name: 1. Let r(t) = e t i + e t sin t j + e t cos t k (a) Find r (t) Final Exam Review (b) Reparameterize r(t) with respect to arc length measured for the point (1,, 1) in the direction

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

5 Day 5: Maxima and minima for n variables.

5 Day 5: Maxima and minima for n variables. UNIVERSITAT POMPEU FABRA INTERNATIONAL BUSINESS ECONOMICS MATHEMATICS III. Pelegrí Viader. 2012-201 Updated May 14, 201 5 Day 5: Maxima and minima for n variables. The same kind of first-order and second-order

More information

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1.

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1. . Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z 2 (a) f(2, 4,5) = (b) f 2,, 3 9 = (c) f 0,,0 2 (d) f(4,4,00) = = ID: 4..3 2. Given the function f(x,y)

More information

Math 295: Exam 3 Name: Caleb M c Whorter Solutions Fall /16/ Minutes

Math 295: Exam 3 Name: Caleb M c Whorter Solutions Fall /16/ Minutes Math 295: Eam 3 Name: Caleb M c Whorter Solutions Fall 2018 11/16/2018 50 Minutes Write your name on the appropriate line on the eam cover sheet. This eam contains 10 pages (including this cover page)

More information

Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems]

Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems] 1 of 9 25/04/2016 13:15 Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems] [Notes] [Practice Calculus III - Notes

More information

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM MATH 4: CALCULUS 3 MAY 9, 7 FINAL EXAM I have neither given nor received aid on this exam. Name: 1 E. Kim................ (9am) E. Angel.............(1am) 3 I. Mishev............ (11am) 4 M. Daniel...........

More information

Math Triple Integrals in Cylindrical Coordinates

Math Triple Integrals in Cylindrical Coordinates Math 213 - Triple Integrals in Cylindrical Coordinates Peter A. Perry University of Kentucky November 2, 218 Homework Re-read section 15.7 Work on section 15.7, problems 1-13 (odd), 17-21 (odd) from Stewart

More information

Math 2260 Exam #1 Practice Problem Solutions

Math 2260 Exam #1 Practice Problem Solutions Math 6 Exam # Practice Problem Solutions. What is the area bounded by the curves y x and y x + 7? Answer: As we can see in the figure, the line y x + 7 lies above the parabola y x in the region we care

More information

In this chapter, we will investigate what have become the standard applications of the integral:

In this chapter, we will investigate what have become the standard applications of the integral: Chapter 8 Overview: Applications of Integrals Calculus, like most mathematical fields, began with trying to solve everyday problems. The theory and operations were formalized later. As early as 70 BC,

More information

NATIONAL UNIVERSITY OF SINGAPORE MA MATHEMATICS 1. AY2013/2014 : Semester 2. Time allowed : 2 hours

NATIONAL UNIVERSITY OF SINGAPORE MA MATHEMATICS 1. AY2013/2014 : Semester 2. Time allowed : 2 hours Matriculation Number: NATIONAL UNIVERSITY OF SINGAPORE MA1505 - MATHEMATICS 1 AY2013/2014 : Semester 2 Time allowed : 2 hours INSTRUCTIONS TO CANDIDATES 1. Write your matriculation number neatly in the

More information

Three Dimensional Geometry. Linear Programming

Three Dimensional Geometry. Linear Programming Three Dimensional Geometry Linear Programming A plane is determined uniquely if any one of the following is known: The normal to the plane and its distance from the origin is given, i.e. equation of a

More information

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014 4. Determine the nature of the critical points of Section 4. selected answers Math 11 Multivariate Calculus D Joyce, Spring 014 Exercises from section 4.: 6, 1 16.. Determine the nature of the critical

More information

21-256: Lagrange multipliers

21-256: Lagrange multipliers 21-256: Lagrange multipliers Clive Newstead, Thursday 12th June 2014 Lagrange multipliers give us a means of optimizing multivariate functions subject to a number of constraints on their variables. Problems

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

11/1/2017 Second Hourly Math 21a, Fall Name:

11/1/2017 Second Hourly Math 21a, Fall Name: 11/1/2017 Second Hourly Math 21a, Fall 2017 Name: MWF 9 Jameel Al-Aidroos MWF 9 Dennis Tseng MWF 10 Yu-Wei Fan MWF 10 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH 10 Matt

More information

5.2 Graphing Polynomial Functions

5.2 Graphing Polynomial Functions Locker LESSON 5. Graphing Polnomial Functions Common Core Math Standards The student is epected to: F.IF.7c Graph polnomial functions, identifing zeros when suitable factorizations are available, and showing

More information

1.(6pts) Which integral computes the area of the quarter-disc of radius a centered at the origin in the first quadrant? rdr d

1.(6pts) Which integral computes the area of the quarter-disc of radius a centered at the origin in the first quadrant? rdr d .(6pts) Which integral computes the area of the quarter-disc of radius a centered at the origin in the first quadrant? (a) / Z a rdr d (b) / Z a rdr d (c) Z a dr d (d) / Z a dr d (e) / Z a a rdr d.(6pts)

More information

MATH 1A MIDTERM 1 (8 AM VERSION) SOLUTION. (Last edited October 18, 2013 at 5:06pm.) lim

MATH 1A MIDTERM 1 (8 AM VERSION) SOLUTION. (Last edited October 18, 2013 at 5:06pm.) lim MATH A MIDTERM (8 AM VERSION) SOLUTION (Last edited October 8, 03 at 5:06pm.) Problem. (i) State the Squeeze Theorem. (ii) Prove the Squeeze Theorem. (iii) Using a carefully justified application of the

More information

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 1 Linear Equations and Straight Lines 2 of 71 Outline 1.1 Coordinate Systems and Graphs 1.4 The Slope of a Straight Line 1.3 The Intersection Point of a Pair of Lines 1.2 Linear Inequalities 1.5

More information

Practice problems for Econ 1530 Sections C and D York University Fall 2005

Practice problems for Econ 1530 Sections C and D York University Fall 2005 Practice problems for Econ 1530 Sections C and D York University Fall 2005 Problem 1. AquantityK grows by 2% per year (with annual compounding). After 4 years the quantity has increased to: (a) K(1.02)

More information

Math 2130 Practice Problems Sec Name. Change the Cartesian integral to an equivalent polar integral, and then evaluate.

Math 2130 Practice Problems Sec Name. Change the Cartesian integral to an equivalent polar integral, and then evaluate. Math 10 Practice Problems Sec 1.-1. Name Change the Cartesian integral to an equivalent polar integral, and then evaluate. 1) 5 5 - x dy dx -5 0 A) 5 B) C) 15 D) 5 ) 0 0-8 - 6 - x (8 + ln 9) A) 1 1 + x

More information

University of Saskatchewan Department of Mathematics & Statistics MATH Final Instructors: (01) P. J. Browne (03) B. Friberg (05) H.

University of Saskatchewan Department of Mathematics & Statistics MATH Final Instructors: (01) P. J. Browne (03) B. Friberg (05) H. University of Saskatchewan Department of Mathematics & Statistics MATH. Final Instructors: (0) P. J. Browne (0) B. Friberg (0) H. Teismann December 9, 000 Time: :00-:00 pm This is an open book exam. Students

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Math 52 Final Exam March 16, 2009

Math 52 Final Exam March 16, 2009 Math 52 Final Exam March 16, 2009 Name : Section Leader: Josh Lan Xiannan (Circle one) Genauer Huang Li Section Time: 10:00 11:00 1:15 2:15 (Circle one) This is a closed-book, closed-notes exam. No calculators

More information

Linear Mathematical Programming (LP)

Linear Mathematical Programming (LP) Linear Mathematical Programming (LP) A MP is LP if : The objective function is linear where The set is defined by linear equality or inequality constraints c f T ) = ( ],..., [ n T c c c = = n b A where

More information

Tangent Planes/Critical Points

Tangent Planes/Critical Points Tangent Planes/Critical Points Christopher Croke University of Pennsylvania Math 115 UPenn, Fall 2011 Problem: Find the tangent line to the curve of intersection of the surfaces xyz = 1 and x 2 + 2y 2

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

(ii) Explain how the trapezium rule could be used to obtain a more accurate estimate of the area. [1]

(ii) Explain how the trapezium rule could be used to obtain a more accurate estimate of the area. [1] C Integration. June 00 qu. Use the trapezium rule, with strips each of width, to estimate the area of the region bounded by the curve y = 7 +, the -ais, and the lines = and = 0. Give your answer correct

More information

Math 253, Section 102, Fall 2006 Practice Final Solutions

Math 253, Section 102, Fall 2006 Practice Final Solutions Math 253, Section 102, Fall 2006 Practice Final Solutions 1 2 1. Determine whether the two lines L 1 and L 2 described below intersect. If yes, find the point of intersection. If not, say whether they

More information

Lagrange Multipliers

Lagrange Multipliers Lagrange Multipliers Christopher Croke University of Pennsylvania Math 115 How to deal with constrained optimization. How to deal with constrained optimization. Let s revisit the problem of finding the

More information

IB SL REVIEW and PRACTICE

IB SL REVIEW and PRACTICE IB SL REVIEW and PRACTICE Topic: CALCULUS Here are sample problems that deal with calculus. You ma use the formula sheet for all problems. Chapters 16 in our Tet can help ou review. NO CALCULATOR Problems

More information

Bounded, Closed, and Compact Sets

Bounded, Closed, and Compact Sets Bounded, Closed, and Compact Sets Definition Let D be a subset of R n. Then D is said to be bounded if there is a number M > 0 such that x < M for all x D. D is closed if it contains all the boundary points.

More information

Calculus II (Math 122) Final Exam, 11 December 2013

Calculus II (Math 122) Final Exam, 11 December 2013 Name ID number Sections B Calculus II (Math 122) Final Exam, 11 December 2013 This is a closed book exam. Notes and calculators are not allowed. A table of trigonometric identities is attached. To receive

More information

38. Triple Integration over Rectangular Regions

38. Triple Integration over Rectangular Regions 8. Triple Integration over Rectangular Regions A rectangular solid region S in R can be defined by three compound inequalities, a 1 x a, b 1 y b, c 1 z c, where a 1, a, b 1, b, c 1 and c are constants.

More information

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods)

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) (Section 6.: Volumes of Solids of Revolution: Disk / Washer Methods) 6.. PART E: DISK METHOD vs. WASHER METHOD When using the Disk or Washer Method, we need to use toothpicks that are perpendicular to

More information

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26 TABLE OF CONTENTS CHAPTER LIMIT AND CONTINUITY... LECTURE 0- BASIC ALGEBRAIC EXPRESSIONS AND SOLVING EQUATIONS... LECTURE 0- INTRODUCTION TO FUNCTIONS... 9 LECTURE 0- EXPONENTIAL AND LOGARITHMIC FUNCTIONS...

More information

Chapter 15: Functions of Several Variables

Chapter 15: Functions of Several Variables Chapter 15: Functions of Several Variables Section 15.1 Elementary Examples a. Notation: Two Variables b. Example c. Notation: Three Variables d. Functions of Several Variables e. Examples from the Sciences

More information

Math 2 Final Exam Study Guide. Translate down 2 units (x, y-2)

Math 2 Final Exam Study Guide. Translate down 2 units (x, y-2) Math 2 Final Exam Study Guide Name: Unit 2 Transformations Translation translate Slide Moving your original point to the left (-) or right (+) changes the. Moving your original point up (+) or down (-)

More information

x + 2 = 0 or Our limits of integration will apparently be a = 2 and b = 4.

x + 2 = 0 or Our limits of integration will apparently be a = 2 and b = 4. QUIZ ON CHAPTER 6 - SOLUTIONS APPLICATIONS OF INTEGRALS; MATH 15 SPRING 17 KUNIYUKI 15 POINTS TOTAL, BUT 1 POINTS = 1% Note: The functions here are continuous on the intervals of interest. This guarantees

More information

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided.

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided. Math 213 Exam 2 Name: Section: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used other than a onepage cheat

More information

x Boundary Intercepts Test (0,0) Conclusion 2x+3y=12 (0,4), (6,0) 0>12 False 2x-y=2 (0,-2), (1,0) 0<2 True

x Boundary Intercepts Test (0,0) Conclusion 2x+3y=12 (0,4), (6,0) 0>12 False 2x-y=2 (0,-2), (1,0) 0<2 True MATH 34 (Finite Mathematics or Business Math I) Lecture Notes MATH 34 Module 3 Notes: SYSTEMS OF INEQUALITIES & LINEAR PROGRAMMING 3. GRAPHING SYSTEMS OF INEQUALITIES Simple Systems of Linear Inequalities

More information

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers Contents STRAND B: Number Theory Unit 7 Number System and Bases Student Text Contents Section 7. Number System 7.2 Binary Numbers 7.3 Adding and Subtracting Binary Numbers 7.4 Multiplying Binary Numbers

More information

MATH Lagrange multipliers in 3 variables Fall 2016

MATH Lagrange multipliers in 3 variables Fall 2016 MATH 20550 Lagrange multipliers in 3 variables Fall 2016 1. The one constraint they The problem is to find the extrema of a function f(x, y, z) subject to the constraint g(x, y, z) = c. The book gives

More information

MATH 19520/51 Class 10

MATH 19520/51 Class 10 MATH 19520/51 Class 10 Minh-Tam Trinh University of Chicago 2017-10-16 1 Method of Lagrange multipliers. 2 Examples of Lagrange multipliers. The Problem The ingredients: 1 A set of parameters, say x 1,...,

More information

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1 PRACTICE FINAL - MATH 2, Spring 22 The Final will have more material from Chapter 4 than other chapters. To study for chapters -3 you should review the old practice eams IN ADDITION TO what appears here.

More information

Chapter 4.1 & 4.2 (Part 1) Practice Problems

Chapter 4.1 & 4.2 (Part 1) Practice Problems Chapter 4. & 4. Part Practice Problems EXPECTED SKILLS: Understand how the signs of the first and second derivatives of a function are related to the behavior of the function. Know how to use the first

More information

13.7 LAGRANGE MULTIPLIER METHOD

13.7 LAGRANGE MULTIPLIER METHOD 13.7 Lagrange Multipliers Contemporary Calculus 1 13.7 LAGRANGE MULTIPLIER METHOD Suppose we go on a walk on a hillside, but we have to stay on a path. Where along this path are we at the highest elevation?

More information

(ii) Use Simpson s rule with two strips to find an approximation to Use your answers to parts (i) and (ii) to show that ln 2.

(ii) Use Simpson s rule with two strips to find an approximation to Use your answers to parts (i) and (ii) to show that ln 2. C umerical Methods. June 00 qu. 6 (i) Show by calculation that the equation tan = 0, where is measured in radians, has a root between.0 and.. [] Use the iteration formula n+ = tan + n with a suitable starting

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework.

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework. For Test #3 study these problems, the eamples in your notes, and the homework. I. Absolute Etrema A function, continuous on a closed interval, always has an absolute maimum and absolute minimum. They occur

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com 1.0 Introduction Linear programming

More information

MATH 261 EXAM III PRACTICE PROBLEMS

MATH 261 EXAM III PRACTICE PROBLEMS MATH 6 EXAM III PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 3 typically has 5 (not 6!) problems on it, with no more than one problem of any given

More information

1. No calculators or other electronic devices are allowed during this exam.

1. No calculators or other electronic devices are allowed during this exam. Version A Math 2E Spring 24 Midterm Exam Instructions. No calculators or other electronic devices are allowed during this exam. 2. You may use one page of notes, but no books or other assistance during

More information

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z.

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z. Week 1 Worksheet Sections from Thomas 13 th edition: 12.4, 12.5, 12.6, 13.1 1. A plane is a set of points that satisfies an equation of the form c 1 x + c 2 y + c 3 z = c 4. (a) Find any three distinct

More information

Optimization Methods: Optimization using Calculus-Stationary Points 1. Module - 2 Lecture Notes 1

Optimization Methods: Optimization using Calculus-Stationary Points 1. Module - 2 Lecture Notes 1 Optimization Methods: Optimization using Calculus-Stationary Points 1 Module - Lecture Notes 1 Stationary points: Functions of Single and Two Variables Introduction In this session, stationary points of

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Dr. Allen Back. Aug. 27, 2014

Dr. Allen Back. Aug. 27, 2014 Dr. Allen Back Aug. 27, 2014 Math 2220 Preliminaries (2+ classes) Differentiation (12 classes) Multiple Integrals (9 classes) Vector Integrals (15 classes) Math 2220 Preliminaries (2+ classes) Differentiation

More information

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES MA 6100 FINAL EXAM Green April 0, 018 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME Be sure the paper you are looking at right now is GREEN! Write the following in the TEST/QUIZ NUMBER boxes (and blacken

More information

Ma MULTIPLE INTEGRATION

Ma MULTIPLE INTEGRATION Ma 7 - MULTIPLE INTEGATION emark: The concept of a function of one variable in which y gx may be extended to two or more variables. If z is uniquely determined by values of the variables x and y, thenwesayz

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Standard 1 Students will expand number sense to include integers and perform operations with whole numbers, simple fractions, and decimals.

Standard 1 Students will expand number sense to include integers and perform operations with whole numbers, simple fractions, and decimals. Stretch Standard 1 Students will expand number sense to include integers and perform operations with whole numbers, simple fractions, and decimals. Objective 1: Represent whole numbers and decimals from

More information

Unconstrained and Constrained Optimization

Unconstrained and Constrained Optimization Unconstrained and Constrained Optimization Agenda General Ideas of Optimization Interpreting the First Derivative Interpreting the Second Derivative Unconstrained Optimization Constrained Optimization

More information

Lagrangian Multipliers

Lagrangian Multipliers Università Ca Foscari di Venezia - Dipartimento di Management - A.A.2017-2018 Mathematics Lagrangian Multipliers Luciano Battaia November 15, 2017 1 Two variables functions and constraints Consider a two

More information

5.2 Graphing Polynomial Functions

5.2 Graphing Polynomial Functions Name Class Date 5.2 Graphing Polnomial Functions Essential Question: How do ou sketch the graph of a polnomial function in intercept form? Eplore 1 Investigating the End Behavior of the Graphs of Simple

More information

F dr = f dx + g dy + h dz. Using that dz = q x dx + q y dy we get. (g + hq y ) x (f + hq x ) y da.

F dr = f dx + g dy + h dz. Using that dz = q x dx + q y dy we get. (g + hq y ) x (f + hq x ) y da. Math 55 - Vector alculus II Notes 14.7 tokes Theorem tokes Theorem is the three-dimensional version of the circulation form of Green s Theorem. Let s quickly recall that theorem: Green s Theorem: Let be

More information

Systems of Equations and Inequalities. Copyright Cengage Learning. All rights reserved.

Systems of Equations and Inequalities. Copyright Cengage Learning. All rights reserved. 5 Systems of Equations and Inequalities Copyright Cengage Learning. All rights reserved. 5.5 Systems of Inequalities Copyright Cengage Learning. All rights reserved. Objectives Graphing an Inequality Systems

More information