Convexity, concavity, super-additivity, and sub-additivity of cost function without fixed cost

Size: px
Start display at page:

Download "Convexity, concavity, super-additivity, and sub-additivity of cost function without fixed cost"

Transcription

1 MPRA Munich Personal RePEc Archive Convexity, concavity, super-additivity, and sub-additivity of cost function without fixed cost Yasuhito Tanaka and Masahiko Hattori 31 July 2017 Online at MPRA Paper No , posted 1 August :30 UTC

2 Convexity, concavity, super-additivity, and sub-additivity of cost function without fixed cost Masahiko Hattori* Faculty of Economics, Doshisha University, Kamigyo-ku, Kyoto, , Japan. and Yasuhito Tanaka Faculty of Economics, Doshisha University, Kamigyo-ku, Kyoto, , Japan. Abstract With zero fixed cost, convexity of a cost function implies super-additivity, and concavity of a cost function implies sub-additivity. But converse relations do not hold. However, in addition to the zero fixed cost condition we put the following assumption. (1) If a cost function is convex in some interval, it is convex throughout the domain. (2) If a cost function is concave in some interval, it is concave throughout the domain. Then, super-additivity implies convexity and sub-additivity implies concavity. Subsequently, super-additivity and convexity are equivalent, and sub-additivity and concavity are equivalent. Keywords: cost function, convexity, concavity, super-additivity, sub-additivity JEL Classification: D43, L13 *mhattori@mail.doshisha.ac.jp yasuhito@mail.doshisha.ac.jp

3 1 Introduction Convexity and concavity are important properties for cost functions of firms. Also superadditivity and sub-additivity are other important properties for them. A cost function c(x) is convex when it satisfies c(λx + (1 λ)y) λc(x) + (1 λ)c(y) for 0 λ 1, x 0, y 0. It is concave when it satisfies c(λx + (1 λ)y) λc(x) + (1 λ)c(y) for 0 λ 1, x 0, y 0. It is super-additive if it satisfies It is sub-additive if it satisfies c(x + y) c(x) + c(y), for x 0, y 0. c(x + y) c(x) + c(y), for x 0, y 0. It is well known that with zero fixed cost, that is, c(0) = 0, convexity implies superadditivity, and concavity implies sub-additivity. But converse relations do not hold. See Bruckner and Ostrow (1962) and Sen and Stamatopoulos (2016). Referring to Bourin and Hiai (2015), Sen and Stamatopoulos (2016) pointed out that the following function is super-additive but it is not convex. xe 1 x 2, x 0. However, if, in addition to the zero fixed cost condition, we put the following assumption, we can show that super-additivity implies convexity, and sub-additivity implies concavity. Assumption 1. the domain. (1) If a cost function is convex in some interval, it is convex throughout (2) If a cost function is concave in some interval, it is concave throughout the domain. Then, super-additivity and convexity are equivalent, and sub-additivity and concavity are equivalent. Assumption 1 excludes a case where a cost function is strictly convex in some interval is such a function. We assume that a cost function, c(x), is positive for positive x, increasing and continuous. and strictly concave in another interval. Above mentioned xe 1 x 2 2

4 2 Main results We show the following theorems. Theorem 1. (1) If there is no fixed cost, convexity of a cost function implies its superadditivity. (2) If there is no fixed cost, concavity of a cost function implies its sub-additivity. Proof. (1) Convexity super-additivity: For 0 λ 1 and x 0 convexity implies c(λx + (1 λ) 0) λc(x) + (1 λ)c(0) = λc(x). Thus, Then, for x > 0 and y 0 c(λx) λc(x). (2) Concavity sub-additivity: c(x) + c(y) =c ( x (x + y)) + c ( y (x + y)) x + y x + y x c(x + y) + y c(x + y) = c(x + y). x + y x + y For 0 λ 1 and x 0 concavity implies c(λx + (1 λ) 0) λc(x) + (1 λ)c(0) = λc(x). Thus, Then, for x > 0 and y 0 c(λx) λc(x). c(x) + c(y) =c ( x (x + y)) + c ( y (x + y)) x + y x + y x c(x + y) + y c(x + y) = c(x + y). x + y x + y Theorem 2. Suppose that a cost function satisfies Assumption 1, and there is no fixed cost. (1) Super-additivity of a cost function implies convexity. (2) Sub-additivity of a cost function implies concavity. 3

5 Proof. (1) Super-additivity convexity: Let x > 0. By super-additivity, for any 0 λ 1, c(x) c(λx) + c((1 λ)x). This implies, for any 0 λ 1, c(x) c(λx + (1 λ) 0) + c(λ 0 + (1 λ)x). (1) By the zero fixed cost condition, for any 0 λ 1, c(x) = λc(x) + (1 λ)c(0) + λc(0) + (1 λ)c(x). (2) (1) and (2) imply that, for any 0 λ 1, λc(x) + (1 λ)c(0) c(λx + (1 λ) 0), (3a) or λc(0) + (1 λ)c(x) c(λ 0 + (1 λ)x) (3b) holds. Suppose that for some x and some 0 < λ < 1, (3a) does not hold, that is, λc(x) + (1 λ)c(0) < c(λx + (1 λ) 0). (4a) Then, (3b) must hold with strict inequality, that is, λc(0) + (1 λ)c(x) > c(λ 0 + (1 λ)x). (4b) (4a) means that c(x) can not be convex (nor linear) throughout [0, x]. Similarly, (4b) means that c(x) can not be concave (nor linear) throughout [0, x]. It contradicts to Assumption 1. If c(x) is not differentiable at, for example, y, it may be not concave nor convex (nor linear) in an interval including y. However, if we exclude a pathological function which is continuous everywhere but differentiable nowhere, any function is concave or convex in some interval. Then, by Assumption 1 it is concave or convex throughout the domain. Therefore, both (3a) and (3b) must hold for any x > 0 and any 0 λ 1. Alternatively, we can prove the same result assuming that (3b) instead of (3a) does not hold. Let y = αx for x > 0 and 0 < α < 1. Assume that for some 0 < λ < 1, λc(x) + (1 λ)c(y) < c(λx + (1 λ)y). (5) Let z = λx + (1 λ)y = [λ + (1 λ)α]x. 4

6 By (3a) Then, from (5) αc(x) c(αx) = c(y). ( λ + 1 λ) c(y) < c(z). α This means where β = α λ + (1 λ)α c(y) < βc(z) + (1 β)c(0), (6) > 0 and 1 β = λ(1 α) λ + (1 λ)α > 0. (5) means that c(x) can not be convex (nor linear) throughout [y, x]. (6) means that c(x) can not be concave (nor linear) throughout [0, z]. It contradicts to Assumption 1. Therefore, for any x > y 0 and any 0 λ 1 λc(x) + (1 λ)c(y) c(λx + (1 λ)y). Thus, c(x) is convex throughout the domain. (2) Sub-additivity concavity: Let x > 0. By sub-additivity, for any 0 λ 1, This implies, for any 0 λ 1, c(x) c(λx) + c((1 λ)x). c(x) c(λx + (1 λ) 0) + c(λ 0 + (1 λ)x). (7) By the zero fixed cost condition, for any 0 λ 1, c(x) = λc(x) + (1 λ)c(0) + λc(0) + (1 λ)c(x). (8) (7) and (8) imply that, for any 0 λ 1, λc(x) + (1 λ)c(0) c(λx + (1 λ) 0), (9a) or λc(0) + (1 λ)c(x) c(λ 0 + (1 λ)x) (9b) holds. Suppose that for some x and some 0 < λ < 1, (9a) does not hold, that is, λc(x) + (1 λ)c(0) > c(λx + (1 λ) 0). (10a) Then, (9b) must hold with strict inequality, that is, λc(0) + (1 λ)c(x) < c(λ 0 + (1 λ)x). (10b) 5

7 (10a) means that c(x) can not be concave throughout [0, x]. Similarly, (10b) means that c(x) can not be convex throughout [0, x]. It contradicts to Assumption 1. Therefore, both (9a) and (9b) must hold for any x > 0 and any 0 λ 1. Alternatively, we can prove the same result assuming that (9b) instead of (9a) does not hold. Let y = α x for x > 0 and 0 < α < 1. Assume that for some 0 < λ < 1, λc(x) + (1 λ)c(y ) > c(λx + (1 λ)y ). (11) Let By (9a) Then, from (11) z = λx + (1 λ)y = [λ + (1 λ)α ]x. α c(x) c(α x) = c(y ). ( λ α + 1 λ) c(y ) > c(z ). This means where β = c(y ) > β c(z ) + (1 β )c(0), (12) α λ + (1 λ)α > 0, and 1 β = λ(1 α ) λ + (1 λ)α > 0. (11) means that c(x) can not be concave throughout [y, x]. (12) means that c(x) can not be convex throughout [0, z ]. It contradicts to Assumption 1. Therefore, for any x > y 0 and any 0 λ 1 λc(x) + (1 λ)c(y ) c(λx + (1 λ)y ). Thus, c(x) is concave throughout the domain. If c(x) is twice continuously differentiable, convexity of c(x) is equivalent to non-negativity of its second order derivative, that is, c (x) 0, and its concavity is equivalent to nonpositivity of its second order derivative, that is, c (x) 0. We present a proof of Theorem 2 using differentiability. Proof of Theorem 2 with differentiability. Let x > 0 and y > 0. By super-additivity (1) Super-additivity convexity: c(x + y) c(x) + c(y). With the zero fixed cost condition, we have c(x + y) c(x) y c(y) c(0). y 6

8 Let y 0, Thus, This means Let x 0, we obtain c(x + y) c(x) lim y 0 y c (x) c (0). c (x) c (0) x c(y) c(0) lim. y 0 y 0. c (0) = lim x 0 c (x) c (0) x Suppose that there exist x 2 > x 1 > 0 such that c (x 2 ) < c (x 1 ). Since c (x 2 ) c (0), we have c (x 1 ) > c (0). Then, c(x) is strictly concave in an interval within [x 1, x 2 ] and at the same time strictly convex in an interval within [0, x 1 ]. It contradicts to Assumption 1. Thus, c (x) 0 throughout the domain and c(x) is convex. (2) Sub-additivity concavity: Let x > 0 and y > 0. By sub-additivity c(x + y) c(x) + c(y). With the zero fixed cost condition, we have 0. c(x + y) c(x) y c(y) c(0). y Let y 0, Thus, This means Let x 0, we obtain c(x + y) c(x) lim y 0 y c (x) c (0). c (x) c (0) x c(y) c(0) lim. y 0 y 0. c (0) = lim x 0 c (x) c (0) x Suppose that there exist x 2 > x 1 > 0 such that c (x 2) > c (x 1). Since c (x 2) c (0), we have c (x 1) < c (0). Then, c(x) is strictly convex in an interval within [x 1, x 2] and at the same time strictly concave in an interval within [0, x 1]. It contradicts to Assumption 1. Thus, c (x) 0 throughout the domain and c(x) is concave. 0. 7

9 3 Concluding Remark We usually assume that a cost function is convex throughout the domain or concave throughout the domain. Therefore, if there is no fixed cost, we can use interchangeably convexity and super-additivity of a cost function, and can use interchangeably concavity and subadditivity of a cost function. References Sen, D. and Stamatopoulos, G. (2016) Licensing under general demand and cost functions, European Journal of Operations Research, 253, pp Bruin, J.-C. and Hiai, F. (2015) Anti-norms on finite von Neumann algebras, Publications of the Research Institute for Mathematical Sciences, 51, pp Bruckner, A. M. and Ostrow, E. (1962) Some function classes related to the class of convex functions, Pacific Journal of Mathematics, 14, pp

ORIE 6300 Mathematical Programming I September 2, Lecture 3

ORIE 6300 Mathematical Programming I September 2, Lecture 3 ORIE 6300 Mathematical Programming I September 2, 2014 Lecturer: David P. Williamson Lecture 3 Scribe: Divya Singhvi Last time we discussed how to take dual of an LP in two different ways. Today we will

More information

Convexity. 1 X i is convex. = b is a hyperplane in R n, and is denoted H(p, b) i.e.,

Convexity. 1 X i is convex. = b is a hyperplane in R n, and is denoted H(p, b) i.e., Convexity We ll assume throughout, without always saying so, that we re in the finite-dimensional Euclidean vector space R n, although sometimes, for statements that hold in any vector space, we ll say

More information

2. Optimization problems 6

2. Optimization problems 6 6 2.1 Examples... 7... 8 2.3 Convex sets and functions... 9 2.4 Convex optimization problems... 10 2.1 Examples 7-1 An (NP-) optimization problem P 0 is defined as follows Each instance I P 0 has a feasibility

More information

Numerical Optimization

Numerical Optimization Convex Sets Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Let x 1, x 2 R n, x 1 x 2. Line and line segment Line passing through x 1 and x 2 : {y

More information

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets EC 51 MATHEMATICAL METHODS FOR ECONOMICS Lecture : Convex Sets Murat YILMAZ Boğaziçi University In this section, we focus on convex sets, separating hyperplane theorems and Farkas Lemma. And as an application

More information

MTAEA Convexity and Quasiconvexity

MTAEA Convexity and Quasiconvexity School of Economics, Australian National University February 19, 2010 Convex Combinations and Convex Sets. Definition. Given any finite collection of points x 1,..., x m R n, a point z R n is said to be

More information

A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING A LINEAR FUNCTION OVER THE EFFICIENT SET OF A BICRITERIA LINEAR PROBLEM. 1.

A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING A LINEAR FUNCTION OVER THE EFFICIENT SET OF A BICRITERIA LINEAR PROBLEM. 1. ACTA MATHEMATICA VIETNAMICA Volume 21, Number 1, 1996, pp. 59 67 59 A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING A LINEAR FUNCTION OVER THE EFFICIENT SET OF A BICRITERIA LINEAR PROBLEM NGUYEN DINH DAN AND

More information

arxiv: v1 [math.lo] 9 Mar 2011

arxiv: v1 [math.lo] 9 Mar 2011 arxiv:03.776v [math.lo] 9 Mar 0 CONSTRUCTIVE PROOF OF BROUWER S FIXED POINT THEOREM FOR SEQUENTIALLY LOCALLY NON-CONSTANT FUNCTIONS BY SPERNER S LEMMA YASUHITO TANAKA Abstract. In this paper using Sperner

More information

Locally convex topological vector spaces

Locally convex topological vector spaces Chapter 4 Locally convex topological vector spaces 4.1 Definition by neighbourhoods Let us start this section by briefly recalling some basic properties of convex subsets of a vector space over K (where

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com 1.0 Introduction Linear programming

More information

AM 221: Advanced Optimization Spring 2016

AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 2 Wednesday, January 27th 1 Overview In our previous lecture we discussed several applications of optimization, introduced basic terminology,

More information

Division of the Humanities and Social Sciences. Convex Analysis and Economic Theory Winter Separation theorems

Division of the Humanities and Social Sciences. Convex Analysis and Economic Theory Winter Separation theorems Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 8: Separation theorems 8.1 Hyperplanes and half spaces Recall that a hyperplane in

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

Key points. Assume (except for point 4) f : R n R is twice continuously differentiable. strictly above the graph of f except at x

Key points. Assume (except for point 4) f : R n R is twice continuously differentiable. strictly above the graph of f except at x Key points Assume (except for point 4) f : R n R is twice continuously differentiable 1 If Hf is neg def at x, then f attains a strict local max at x iff f(x) = 0 In (1), replace Hf(x) negative definite

More information

Introduction to optimization

Introduction to optimization Introduction to optimization G. Ferrari Trecate Dipartimento di Ingegneria Industriale e dell Informazione Università degli Studi di Pavia Industrial Automation Ferrari Trecate (DIS) Optimization Industrial

More information

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral.

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral. 1 Chain rules 2 Directional derivative 3 Gradient Vector Field 4 Most Rapid Increase 5 Implicit Function Theorem, Implicit Differentiation 6 Lagrange Multiplier 7 Second Derivative Test Theorem Suppose

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

REVIEW OF FUZZY SETS

REVIEW OF FUZZY SETS REVIEW OF FUZZY SETS CONNER HANSEN 1. Introduction L. A. Zadeh s paper Fuzzy Sets* [1] introduces the concept of a fuzzy set, provides definitions for various fuzzy set operations, and proves several properties

More information

Lag Order and Critical Values of the Augmented Dickey-Fuller Test: A Replication

Lag Order and Critical Values of the Augmented Dickey-Fuller Test: A Replication MPRA Munich Personal RePEc Archive Lag Order and Critical Values of the Augmented Dicey-Fuller Test: A Replication Tamer Kulasizoglu 31 August 2014 Online at https://mpra.ub.uni-muenchen.de/60456/ MPRA

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS Linear Programming Larry Blume Cornell University & The Santa Fe Institute & IHS Linear Programs The general linear program is a constrained optimization problem where objectives and constraints are all

More information

Convexity and Optimization

Convexity and Optimization Convexity and Optimization Richard Lusby Department of Management Engineering Technical University of Denmark Today s Material Extrema Convex Function Convex Sets Other Convexity Concepts Unconstrained

More information

General properties of staircase and convex dual feasible functions

General properties of staircase and convex dual feasible functions General properties of staircase and convex dual feasible functions JÜRGEN RIETZ, CLÁUDIO ALVES, J. M. VALÉRIO de CARVALHO Centro de Investigação Algoritmi da Universidade do Minho, Escola de Engenharia

More information

f x How can we determine algebraically where f is concave up and where f is concave down?

f x How can we determine algebraically where f is concave up and where f is concave down? Concavity - 3.5 1. Concave up and concave down Definition For a function f that is differentiable on an interval I, the graph of f is a. If f is concave up on a, b, then the secant line passing through

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization Teacher: Gianni A. Di Caro GLOBAL FUNCTION OPTIMIZATION Find the global maximum of the function f x (and

More information

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25 Linear Optimization Andongwisye John Linkoping University November 17, 2016 Andongwisye John (Linkoping University) November 17, 2016 1 / 25 Overview 1 Egdes, One-Dimensional Faces, Adjacency of Extreme

More information

Fuzzy Generalized γ-closed set in Fuzzy Topological Space

Fuzzy Generalized γ-closed set in Fuzzy Topological Space Annals of Pure and Applied Mathematics Vol. 7, No. 1, 2014, 104-109 ISSN: 2279-087X (P), 2279-0888(online) Published on 9 September 2014 www.researchmathsci.org Annals of Fuzzy Generalized γ-closed set

More information

Convexity and Optimization

Convexity and Optimization Convexity and Optimization Richard Lusby DTU Management Engineering Class Exercises From Last Time 2 DTU Management Engineering 42111: Static and Dynamic Optimization (3) 18/09/2017 Today s Material Extrema

More information

Convexity: an introduction

Convexity: an introduction Convexity: an introduction Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo 1 / 74 1. Introduction 1. Introduction what is convexity where does it arise main concepts and

More information

Topological properties of convex sets

Topological properties of convex sets Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 5: Topological properties of convex sets 5.1 Interior and closure of convex sets Let

More information

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2 (1 Given the following system of linear equations, which depends on a parameter a R, x + 2y 3z = 4 3x y + 5z = 2 4x + y + (a 2 14z = a + 2 (a Classify the system of equations depending on the values of

More information

. 1. Chain rules. Directional derivative. Gradient Vector Field. Most Rapid Increase. Implicit Function Theorem, Implicit Differentiation

. 1. Chain rules. Directional derivative. Gradient Vector Field. Most Rapid Increase. Implicit Function Theorem, Implicit Differentiation 1 Chain rules 2 Directional derivative 3 Gradient Vector Field 4 Most Rapid Increase 5 Implicit Function Theorem, Implicit Differentiation 6 Lagrange Multiplier 7 Second Derivative Test Theorem Suppose

More information

Convex Optimization Lecture 2

Convex Optimization Lecture 2 Convex Optimization Lecture 2 Today: Convex Analysis Center-of-mass Algorithm 1 Convex Analysis Convex Sets Definition: A set C R n is convex if for all x, y C and all 0 λ 1, λx + (1 λ)y C Operations that

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

arxiv: v2 [math.lo] 25 Apr 2011

arxiv: v2 [math.lo] 25 Apr 2011 arxiv:04.4369v [math.lo] 5 Apr 0 AMS-TEX CONSTRUCTIVE PROOF OF BROUWER S FIXED POINT THEOREM FOR SEQUENTIALLY LOCALLY NON-CONSTANT AND UNIFORMLY SEQUENTIALLY CONTINUOUS FUNCTIONS BY SPERNER S LEMMA YASUHITO

More information

Unconstrained Optimization

Unconstrained Optimization Unconstrained Optimization Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 13, 2013 1 Denitions Economics is a science of optima We maximize utility functions, minimize

More information

The Set-Open topology

The Set-Open topology Volume 37, 2011 Pages 205 217 http://topology.auburn.edu/tp/ The Set-Open topology by A. V. Osipov Electronically published on August 26, 2010 Topology Proceedings Web: http://topology.auburn.edu/tp/ Mail:

More information

The simplex method and the diameter of a 0-1 polytope

The simplex method and the diameter of a 0-1 polytope The simplex method and the diameter of a 0-1 polytope Tomonari Kitahara and Shinji Mizuno May 2012 Abstract We will derive two main results related to the primal simplex method for an LP on a 0-1 polytope.

More information

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 CS G399: Algorithmic Power Tools I Scribe: Eric Robinson Lecture Outline: Linear Programming: Vertex Definitions

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

Increasing and Decreasing Functions. MATH 1003 Calculus and Linear Algebra (Lecture 20) Increasing and Decreasing Functions

Increasing and Decreasing Functions. MATH 1003 Calculus and Linear Algebra (Lecture 20) Increasing and Decreasing Functions Increasing and Decreasing Functions MATH 1003 Calculus and Linear Algebra (Lecture 20) Maosheng Xiong Department of Mathematics, HKUST Suppose y = f (x). 1. f (x) is increasing on an interval a < x < b,

More information

ON BINARY TOPOLOGICAL SPACES

ON BINARY TOPOLOGICAL SPACES Pacific-Asian Journal of Mathematics, Volume 5, No. 2, July-December 2011 ON BINARY TOPOLOGICAL SPACES S. NITHYANANTHA JOTHI & P. THANGAVELU ABSTRACT: Recently the authors introduced the concept of a binary

More information

11 Linear Programming

11 Linear Programming 11 Linear Programming 11.1 Definition and Importance The final topic in this course is Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed

More information

Convex sets and convex functions

Convex sets and convex functions Convex sets and convex functions Convex optimization problems Convex sets and their examples Separating and supporting hyperplanes Projections on convex sets Convex functions, conjugate functions ECE 602,

More information

Lecture 4: Convexity

Lecture 4: Convexity 10-725: Convex Optimization Fall 2013 Lecture 4: Convexity Lecturer: Barnabás Póczos Scribes: Jessica Chemali, David Fouhey, Yuxiong Wang Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

1 Linear Programming. 1.1 Optimizion problems and convex polytopes 1 LINEAR PROGRAMMING

1 Linear Programming. 1.1 Optimizion problems and convex polytopes 1 LINEAR PROGRAMMING 1 LINEAR PROGRAMMING 1 Linear Programming Now, we will talk a little bit about Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed in the

More information

Gradient and Directional Derivatives

Gradient and Directional Derivatives Gradient and Directional Derivatives MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Given z = f (x, y) we understand that f : gives the rate of change of z in

More information

On Soft Topological Linear Spaces

On Soft Topological Linear Spaces Republic of Iraq Ministry of Higher Education and Scientific Research University of AL-Qadisiyah College of Computer Science and Formation Technology Department of Mathematics On Soft Topological Linear

More information

Interpretation of Dual Model for Piecewise Linear. Programming Problem Robert Hlavatý

Interpretation of Dual Model for Piecewise Linear. Programming Problem Robert Hlavatý Interpretation of Dual Model for Piecewise Linear 1 Introduction Programming Problem Robert Hlavatý Abstract. Piecewise linear programming models are suitable tools for solving situations of non-linear

More information

IE 521 Convex Optimization

IE 521 Convex Optimization Lecture 4: 5th February 2019 Outline 1 / 23 Which function is different from others? Figure: Functions 2 / 23 Definition of Convex Function Definition. A function f (x) : R n R is convex if (i) dom(f )

More information

EC5555 Economics Masters Refresher Course in Mathematics September Lecture 6 Optimization with equality constraints Francesco Feri

EC5555 Economics Masters Refresher Course in Mathematics September Lecture 6 Optimization with equality constraints Francesco Feri EC5555 Economics Masters Refresher Course in Mathematics September 2013 Lecture 6 Optimization with equality constraints Francesco Feri Constrained optimization The idea of constrained optimisation is

More information

Dubna 2018: lines on cubic surfaces

Dubna 2018: lines on cubic surfaces Dubna 2018: lines on cubic surfaces Ivan Cheltsov 20th July 2018 Lecture 1: projective plane Complex plane Definition A line in C 2 is a subset that is given by ax + by + c = 0 for some complex numbers

More information

A Review on 2-normed Structures

A Review on 2-normed Structures Int. Journal of Math. Analysis, Vol. 1, 2007, no. 4, 187-191 A Review on 2-normed Structures Mehmet Açıkgöz University of Gaziantep, Science and Arts Faculty Department of Mathematics, Gaziantep, Turkey

More information

EXTREME POINTS AND AFFINE EQUIVALENCE

EXTREME POINTS AND AFFINE EQUIVALENCE EXTREME POINTS AND AFFINE EQUIVALENCE The purpose of this note is to use the notions of extreme points and affine transformations which are studied in the file affine-convex.pdf to prove that certain standard

More information

Lecture 2 Optimization with equality constraints

Lecture 2 Optimization with equality constraints Lecture 2 Optimization with equality constraints Constrained optimization The idea of constrained optimisation is that the choice of one variable often affects the amount of another variable that can be

More information

Lesson 17. Geometry and Algebra of Corner Points

Lesson 17. Geometry and Algebra of Corner Points SA305 Linear Programming Spring 2016 Asst. Prof. Nelson Uhan 0 Warm up Lesson 17. Geometry and Algebra of Corner Points Example 1. Consider the system of equations 3 + 7x 3 = 17 + 5 = 1 2 + 11x 3 = 24

More information

Convex sets and convex functions

Convex sets and convex functions Convex sets and convex functions Convex optimization problems Convex sets and their examples Separating and supporting hyperplanes Projections on convex sets Convex functions, conjugate functions ECE 602,

More information

Partition of a Nonempty Fuzzy Set in Nonempty Convex Fuzzy Subsets

Partition of a Nonempty Fuzzy Set in Nonempty Convex Fuzzy Subsets Applied Mathematical Sciences, Vol. 6, 2012, no. 59, 2917-2921 Partition of a Nonempty Fuzzy Set in Nonempty Convex Fuzzy Subsets Omar Salazar Morales Universidad Distrital Francisco José de Caldas, Bogotá,

More information

Lecture 5: Properties of convex sets

Lecture 5: Properties of convex sets Lecture 5: Properties of convex sets Rajat Mittal IIT Kanpur This week we will see properties of convex sets. These properties make convex sets special and are the reason why convex optimization problems

More information

EXTERNAL VISIBILITY. 1. Definitions and notation. The boundary and interior of

EXTERNAL VISIBILITY. 1. Definitions and notation. The boundary and interior of PACIFIC JOURNAL OF MATHEMATICS Vol. 64, No. 2, 1976 EXTERNAL VISIBILITY EDWIN BUCHMAN AND F. A. VALENTINE It is possible to see any eleven vertices of an opaque solid regular icosahedron from some appropriate

More information

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to 2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to be connected if it is not disconnected. A subset of

More information

Lecture 2: August 29, 2018

Lecture 2: August 29, 2018 10-725/36-725: Convex Optimization Fall 2018 Lecturer: Ryan Tibshirani Lecture 2: August 29, 2018 Scribes: Adam Harley Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Two Characterizations of Hypercubes

Two Characterizations of Hypercubes Two Characterizations of Hypercubes Juhani Nieminen, Matti Peltola and Pasi Ruotsalainen Department of Mathematics, University of Oulu University of Oulu, Faculty of Technology, Mathematics Division, P.O.

More information

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1 Section 5 Convex Optimisation 1 W. Dai (IC) EE4.66 Data Proc. Convex Optimisation 1 2018 page 5-1 Convex Combination Denition 5.1 A convex combination is a linear combination of points where all coecients

More information

The angle measure at for example the vertex A is denoted by m A, or m BAC.

The angle measure at for example the vertex A is denoted by m A, or m BAC. MT 200 ourse notes on Geometry 5 2. Triangles and congruence of triangles 2.1. asic measurements. Three distinct lines, a, b and c, no two of which are parallel, form a triangle. That is, they divide the

More information

Lagrange multipliers October 2013

Lagrange multipliers October 2013 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 1 1 3/2 Example: Optimization

More information

Lecture 2: August 29, 2018

Lecture 2: August 29, 2018 10-725/36-725: Convex Optimization Fall 2018 Lecturer: Ryan Tibshirani Lecture 2: August 29, 2018 Scribes: Yingjing Lu, Adam Harley, Ruosong Wang Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Name. Final Exam, Economics 210A, December 2012 There are 8 questions. Answer as many as you can... Good luck!

Name. Final Exam, Economics 210A, December 2012 There are 8 questions. Answer as many as you can... Good luck! Name Final Exam, Economics 210A, December 2012 There are 8 questions. Answer as many as you can... Good luck! 1) Let S and T be convex sets in Euclidean n space. Let S + T be the set {x x = s + t for some

More information

Optimization Problems Under One-sided (max, min)-linear Equality Constraints

Optimization Problems Under One-sided (max, min)-linear Equality Constraints WDS'12 Proceedings of Contributed Papers, Part I, 13 19, 2012. ISBN 978-80-7378-224-5 MATFYZPRESS Optimization Problems Under One-sided (max, min)-linear Equality Constraints M. Gad Charles University,

More information

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example).

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example). 98 CHAPTER 3. PROPERTIES OF CONVEX SETS: A GLIMPSE 3.2 Separation Theorems It seems intuitively rather obvious that if A and B are two nonempty disjoint convex sets in A 2, then there is a line, H, separating

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

COM Optimization for Communications Summary: Convex Sets and Convex Functions

COM Optimization for Communications Summary: Convex Sets and Convex Functions 1 Convex Sets Affine Sets COM524500 Optimization for Communications Summary: Convex Sets and Convex Functions A set C R n is said to be affine if A point x 1, x 2 C = θx 1 + (1 θ)x 2 C, θ R (1) y = k θ

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

International Journal of Mathematical Archive-5(9), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(9), 2014, Available online through   ISSN International Journal of Mathematical Archive-5(9), 2014, 100-112 Available online through wwwijmainfo ISSN 2229 5046 ON D RULAR FUZZY RAPHS K Radha 1 and N Kumaravel 2 1 P Department of Mathematics, Periyar

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

A note on isolate domination

A note on isolate domination Electronic Journal of Graph Theory and Applications 4 (1) (016), 94 100 A note on isolate domination I. Sahul Hamid a, S. Balamurugan b, A. Navaneethakrishnan c a Department of Mathematics, The Madura

More information

Lecture 19 Subgradient Methods. November 5, 2008

Lecture 19 Subgradient Methods. November 5, 2008 Subgradient Methods November 5, 2008 Outline Lecture 19 Subgradients and Level Sets Subgradient Method Convergence and Convergence Rate Convex Optimization 1 Subgradients and Level Sets A vector s is a

More information

LECTURE 7 LECTURE OUTLINE. Review of hyperplane separation Nonvertical hyperplanes Convex conjugate functions Conjugacy theorem Examples

LECTURE 7 LECTURE OUTLINE. Review of hyperplane separation Nonvertical hyperplanes Convex conjugate functions Conjugacy theorem Examples LECTURE 7 LECTURE OUTLINE Review of hyperplane separation Nonvertical hyperplanes Convex conjugate functions Conjugacy theorem Examples Reading: Section 1.5, 1.6 All figures are courtesy of Athena Scientific,

More information

On Jeśmanowicz Conjecture Concerning Pythagorean Triples

On Jeśmanowicz Conjecture Concerning Pythagorean Triples Journal of Mathematical Research with Applications Mar., 2015, Vol. 35, No. 2, pp. 143 148 DOI:10.3770/j.issn:2095-2651.2015.02.004 Http://jmre.dlut.edu.cn On Jeśmanowicz Conjecture Concerning Pythagorean

More information

Recursive Estimation

Recursive Estimation Recursive Estimation Raffaello D Andrea Spring 28 Problem Set : Probability Review Last updated: March 6, 28 Notes: Notation: Unless otherwise noted, x, y, and z denote random variables, p x denotes the

More information

Introduction to Operations Research

Introduction to Operations Research - Introduction to Operations Research Peng Zhang April, 5 School of Computer Science and Technology, Shandong University, Ji nan 5, China. Email: algzhang@sdu.edu.cn. Introduction Overview of the Operations

More information

A Constant Bound for the Periods of Parallel Chip-firing Games with Many Chips

A Constant Bound for the Periods of Parallel Chip-firing Games with Many Chips A Constant Bound for the Periods of Parallel Chip-firing Games with Many Chips Paul Myer Kominers and Scott Duke Kominers Abstract. We prove that any parallel chip-firing game on a graph G with at least

More information

QEM Optimization, WS 2017/18 Part 4. Constrained optimization

QEM Optimization, WS 2017/18 Part 4. Constrained optimization QEM Optimization, WS 2017/18 Part 4 Constrained optimization (about 4 Lectures) Supporting Literature: Angel de la Fuente, Mathematical Methods and Models for Economists, Chapter 7 Contents 4 Constrained

More information

Lagrange multipliers 14.8

Lagrange multipliers 14.8 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 Maximum? 1 1 Minimum? 3/2 Idea:

More information

Compact Sets. James K. Peterson. September 15, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Compact Sets. James K. Peterson. September 15, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Compact Sets James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 15, 2017 Outline 1 Closed Sets 2 Compactness 3 Homework Closed Sets

More information

In this chapter, we define limits of functions and describe some of their properties.

In this chapter, we define limits of functions and describe some of their properties. Chapter 2 Limits of Functions In this chapter, we define its of functions and describe some of their properties. 2.. Limits We begin with the ϵ-δ definition of the it of a function. Definition 2.. Let

More information

A note on the number of edges guaranteeing a C 4 in Eulerian bipartite digraphs

A note on the number of edges guaranteeing a C 4 in Eulerian bipartite digraphs A note on the number of edges guaranteeing a C 4 in Eulerian bipartite digraphs Jian Shen Department of Mathematics Southwest Texas State University San Marcos, TX 78666 email: js48@swt.edu Raphael Yuster

More information

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007 : Convex Non-Smooth Optimization April 2, 2007 Outline Lecture 19 Convex non-smooth problems Examples Subgradients and subdifferentials Subgradient properties Operations with subgradients and subdifferentials

More information

maximize c, x subject to Ax b,

maximize c, x subject to Ax b, Lecture 8 Linear programming is about problems of the form maximize c, x subject to Ax b, where A R m n, x R n, c R n, and b R m, and the inequality sign means inequality in each row. The feasible set

More information

University of Twente. Faculty of Mathematical Sciences. Convexity preservation of the four-point interpolatory subdivision scheme

University of Twente. Faculty of Mathematical Sciences. Convexity preservation of the four-point interpolatory subdivision scheme Faculty of Mathematical Sciences University of Twente University for Technical and Social Sciences P.O. Box 17 7500 AE Enschede The Netherlands Phone: +31-53-4893400 Fax: +31-53-4893114 Email: memo@math.utwente.nl

More information

4&5 Binary Operations and Relations. The Integers. (part I)

4&5 Binary Operations and Relations. The Integers. (part I) c Oksana Shatalov, Spring 2016 1 4&5 Binary Operations and Relations. The Integers. (part I) 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition,

More information

FUZZY METRIC SPACES ZUN-QUAN XIA AND FANG-FANG GUO

FUZZY METRIC SPACES ZUN-QUAN XIA AND FANG-FANG GUO J. Appl. Math. & Computing Vol. 16(2004), No. 1-2, pp. 371-381 FUZZY METRIC SPACES ZUN-QUAN XIA AND FANG-FANG GUO Abstract. In this paper, fuzzy metric spaces are redefined, different from the previous

More information

Angle Structures and Hyperbolic Structures

Angle Structures and Hyperbolic Structures Angle Structures and Hyperbolic Structures Craig Hodgson University of Melbourne Throughout this talk: M = compact, orientable 3-manifold with M = incompressible tori, M. Theorem (Thurston): M irreducible,

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 1 A. d Aspremont. Convex Optimization M2. 1/49 Today Convex optimization: introduction Course organization and other gory details... Convex sets, basic definitions. A. d

More information

ON SWELL COLORED COMPLETE GRAPHS

ON SWELL COLORED COMPLETE GRAPHS Acta Math. Univ. Comenianae Vol. LXIII, (1994), pp. 303 308 303 ON SWELL COLORED COMPLETE GRAPHS C. WARD and S. SZABÓ Abstract. An edge-colored graph is said to be swell-colored if each triangle contains

More information