Lecture 19: Convex Non-Smooth Optimization. April 2, 2007

Size: px
Start display at page:

Download "Lecture 19: Convex Non-Smooth Optimization. April 2, 2007"

Transcription

1 : Convex Non-Smooth Optimization April 2, 2007

2 Outline Lecture 19 Convex non-smooth problems Examples Subgradients and subdifferentials Subgradient properties Operations with subgradients and subdifferentials Optimality conditions Subgradient algorithms Convex Optimization 1

3 Convex-Constrained Non-smooth Minimization Characteristics: minimize f(x) subject to x C The function f : R n R is convex and possibly non-differentiable The set C R n is nonempty and convex The optimal value f is finite Our focus here is non-differentiability Renewed interest comes from large-scale problems and the need for distributed computations. Main questions: Where do such problems arise? How do we deal with non-differentiability? How can we solve them? Convex Optimization 2

4 Where they arise Lecture 19 Naturally in some applications (comm. nets, data fitting, neural-nets): Least-squares problems minimize mj=1 h(w, x j ) y j 2 subject to w 0 here (x j, y j ), j = 1,..., m are the input-output pairs, w are weights (decision variables) to be optimized, h is convex possibly nonsmooth In Lagrangian duality minimize q(µ, λ) subject to µ 0 A systematic approach for generating primal optimal bounds A part of some primal-dual scheme In (sharp) penalty approaches {f(x) + tp (g(x))} min x C where t > 0 is a penalty parameter and the penalty function is P (u) = m j=1 max{u j, 0} or P (u) = max{u 1,..., u m, 0} Convex Optimization 3

5 Example: Optimization in Network Coding Linear Cost Model minimize (i,j) L a ij max s S x s ij subject to 0 max s S x s ij c ij for all (i, j) L {j (i,j) L} x s ij {j (j,i)} x s ji = b s i for all i N, s S Lecture 19 N is the set of nodes in the communication network S is the set of sessions [a session is a pair of nodes that communicate] L is the set of directed links (i, j) denotes a link originating at node i and ending at node j c ij is the communication rate capacity of the link (i, j) a ij is the cost for the link (i, j) x s ij is the communication rate for session s on link (i, j) Problem Assign the rates x ij so as to minimize the cost subject to link capacities and the network balance equations The full knowledge of the network is not centralized Convex Optimization 4

6 Non-differentiability Issue Any convex function is differentiable almost everywhere on its domain [the points of non-differentiability are countable - zero measure] However, the points of nondifferentiability cannot be ignored minimize x subject to x R Consider a gradient descent method d k = f(x k ) starting with x 0 = 2, and a backtracking line search with α = 1 and σ = 0.2 Point x = 1 will be accepted since f(2) = 2, f(1) = 1, and f(2) = 2, so that 1 = f(2) f(1) 0.2 f(2) 2 = 0.8 Thus, x 1 = 1 and f(1) = 1, and x = 0 will be accepted: x 2 = 0. To proceed, we need f(0), which is not defined!!! Is there a direction playing role of a gradient? Convex Optimization 5

7 Subgradient What is a subgradient? For a convex and differentiable f, the linearization of f at a vector ˆx dom f underestimates f at all points in dom f f(x) f(ˆx) + f(ˆx) T (x ˆx) for all x dom f For a differentiable function this linearization is unique at any given ˆx dom f A convex non-differentiable f may have multiple linearizations at some points in dom f For such functions, a subgradient provides a linearization of f that underestimates f globally (at all points of the domain of f) Convex Optimization 6

8 Definition of Subgradient and Subdifferential Def. A vector s R n is a subgradient of f at ˆx dom f when Lecture 19 f(x) f(ˆx) + s T (x ˆx) for all x dom f Def. A subdifferential of f at ˆx dom f is the set of all subgradients s of f at ˆx dom f The subdifferential of f at ˆx is denoted by f(ˆx) When f is differentible at ˆx, we have f(ˆx) = { f(ˆx)} (the subdifferential is a singleton) Examples f(x) = x, f(0) = f(x) = sign(x) for x 0 [ 1, 1] for x = 0 x x 3 for x > 1 0 for x 1 Convex Optimization 7

9 Subgradients and Epigraph Let s be a subgradient of f at ˆx: f(x) f(ˆx) + s T (x ˆx) The subgradient inequality is equivalent to s T ˆx + f(ˆx) s T x + f(x) for all x dom f for all x dom f Let f(x) > for all x R n. Then epi f = {(x, w) f(x) w, x R n } Thus, s T ˆx + f(ˆx) s T x + w for all (x, w) epi f, equivalent to [ ] T [ ] [ ] T [ ] s ˆx s x for all (x, w) epi f 1 f(ˆx) 1 w Therefore, the hyperplane H = { (x, γ) R n+1 ( s, 1) T (x, γ) = ( s, 1) T (ˆx, f(ˆx)) } supports epi f at the vector (ˆx, f(ˆx)) Convex Optimization 8

10 Subdifferential Set Properties When nonempty, a subdifferential f(ˆx) is convex and closed Existence Theorem Let f be convex with f(x) > for all x and a nonempty int(dom f). Then, the subdifferential f(ˆx) is nonempty compact convex set for every ˆx in the interior of dom f. Proof: f(ˆx) Nonempty. Let ˆx be in the interior of dom f. The vector (ˆx, f(ˆx)) does not belong to the interior of epi f. The epigraph epi f is convex and by the Supporting Hyperlane Theorem, there is a vector (d, β) R n+1, (d, β) 0 such that d T ˆx + βf(ˆx) d T x + βw for all (x, w) epi f By f(x) > for all x, we have epi f = {(x, w) f(x) w, x R n }. Hence, d T ˆx + βf(ˆx) d T x + βw for all x R n with f(x) w We must have β 0. We cannot have β = 0 (it would imply d = 0). Dividing by β, we see that d/β is a subgradient of f at ˆx Convex Optimization 9

11 f(ˆx) Bounded. By the subgradient inequality, we have Lecture 19 f(x) f(ˆx) + s T (x ˆx) for all x dom f Suppose that the subdifferential f(ˆx) is unbounded. Let s k be a sequence of subgradients in f(ˆx) with s k. Since ˆx lies in the interior of domain, there exists a δ > 0 such that ˆx + δy dom f for any y R n. Letting x = ˆx + δ s k for any k, we have ( s k f ˆx + δ s ) k f(ˆx) + δ s k for all k s k As k, we have f (ˆx + δ s ) k s k f(ˆx). However, this relation contradicts the continuity of f at ˆx. [Recall, a convex function is continuous over the interior of its domain.] Example Consider f(x) = x with dom f = {x x 0}. We have f(0) =. Note that 0 is not in the interior of the domain of f NOTE When f is closed convex and dom f, then f(x) > for all x R n Convex Optimization 10

12 Operations with Subdifferential Let f, f 1, and f 2 be convex functions with nonempty domains Scaling For λ > 0, the function λf is convex and (λf)(x) = λ f(x) for all x int(dom f) Sum The function f 1 + f 2 is convex, and (f 1 + f 2 )(x) = f 1 (x) + f 2 (x) for all x int(dom f) = int(dom f 1 ) int(dom f 2 ) Composition with Affine Mapping Let φ(x) = f(ax + b). Then, the function φ is convex and φ(x) = A T f(ax + b) for all x int(dom φ) where dom φ = {x Ax + b dom f} Convex Optimization 11

13 Max-Type Functions Let f i (x), i = 1,..., m be convex functions with nonempty domains Max-Function The function f(x) = max 1 i m f i (x) is convex and f(x) = conv ({ f i (x) i I(x)}) for all x int(dom f) where I(x) = {i f i (x) = f(x)} and dom f = m i=1dom f i Example f(x) = max{1 x, 1 + x}, we have f(x) = f 1 (x) for x < 0 f 2 (x) for x > 0 I(x) = {1} for x < 0 {2} for x > 0 f 1 (x) or f 2 (x) for x = 0 {1, 2} for x = 0 f(x) = 1 for x < 0, f(x) = 1 for x > 0, and f(0) = [ 1, 1] Convex Optimization 12

14 Examples f(x) = m i=1 a T i x b i. Let I (x) = {i a T i x b i < 0} I + (x) = {i a T i x b i > 0} I 0 (x) = {i a T i x b i = 0} Then f(x) = i I + (x) a i i I (x) Euclidian Norm f(x) = x = f(x) = x x a i + i I 0 (x) conv ({ a i, a i }) x x2 n. Then for x 0 f(0) = {x x 1} = B 2 (0, 1) Convex Optimization 13

15 Sup-Type Functions Let φ(x, z) be function convex in x for every z Z, with Z Sup-Function The function f(x) = sup z Z φ(x, z) is convex and Lecture 19 conv ({ x φ(x, z) z Z (x)}) f(x) for all x dom f { } Z (x) = {z φ(x, z) = f(x)} dom f = x sup φ(x, z) < z Z Proof Let z Z (ˆx) and s x φ(ˆx, z). Then, for any x dom f: f(x) φ(x, z) φ(ˆx, z) + s T (x ˆx) = f(ˆx) + s T (x ˆx) When φ(x, z) is differentiable with respect to x for every z Z: conv ({ x φ(x, z) z Z (x)}) f(x) for all x dom f Convex Optimization 14

16 Optimality Conditions: Unconstrained Case Unconstrained optimization Assumption minimize f(x) The function f is convex (non-differentiable) and proper [f proper means f(x) > for all x and dom f ] Theorem Under this assumption, a vector x minimizes f over R n if and only if 0 f(x ) The result is a generalization of f(x ) = 0 Proof x is optimal if and only if f(x) f(x ) for all x, or equivalently f(x) f(x ) + 0 T (x x ) for all x R n Thus, x is optimal if and only if 0 f(x ) Convex Optimization 15

17 Examples The function f(x) = x f(0) = sign(x) for x 0 [ 1, 1] for x = 0 The minimum is at x = 0, and evidently 0 f(0) The function f(x) = x f(x) = x x for x 0 {s s 1} for x = 0 Again, the minimum is at x = 0 and 0 f(0) Convex Optimization 16

18 The function f(x) = max{x 2 + 2x 3, x 2 2x 3, 4} f(x) = x 2 2x 3 for x < 1 4 for x [ 1, 1] x 2 + 2x 3 for x > 1 f(x) = 2x 2 for x > 1 [ 4, 0] for x = 1 0 for x ( 1, 1) [0, 4] for x = 1 2x + 2 for x > 1 The optimal set is X = [ 1, 1] For every x X, we have 0 f(x ) Convex Optimization 17

19 Optimality Conditions: Constrained Case Constrained optimization Assumption minimize f(x) subject to x C The function f is convex (non-differentiable) and proper The set C is nonempty and convex Theorem Under this assumption, a vector x C minimizes f over the set C if and only if there exists a subgradient d f(x ) such that d T (x x ) 0 for all x C The result is a generalization of f(x ) T (x x ) 0 for x C Convex Optimization 18

Lecture 19 Subgradient Methods. November 5, 2008

Lecture 19 Subgradient Methods. November 5, 2008 Subgradient Methods November 5, 2008 Outline Lecture 19 Subgradients and Level Sets Subgradient Method Convergence and Convergence Rate Convex Optimization 1 Subgradients and Level Sets A vector s is a

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Hausdorff Institute for Mathematics (HIM) Trimester: Mathematics of Signal Processing

More information

Convex Optimization Lecture 2

Convex Optimization Lecture 2 Convex Optimization Lecture 2 Today: Convex Analysis Center-of-mass Algorithm 1 Convex Analysis Convex Sets Definition: A set C R n is convex if for all x, y C and all 0 λ 1, λx + (1 λ)y C Operations that

More information

Convex Optimization MLSS 2015

Convex Optimization MLSS 2015 Convex Optimization MLSS 2015 Constantine Caramanis The University of Texas at Austin The Optimization Problem minimize : f (x) subject to : x X. The Optimization Problem minimize : f (x) subject to :

More information

Lagrangian Relaxation: An overview

Lagrangian Relaxation: An overview Discrete Math for Bioinformatics WS 11/12:, by A. Bockmayr/K. Reinert, 22. Januar 2013, 13:27 4001 Lagrangian Relaxation: An overview Sources for this lecture: D. Bertsimas and J. Tsitsiklis: Introduction

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Numerical Optimization

Numerical Optimization Convex Sets Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Let x 1, x 2 R n, x 1 x 2. Line and line segment Line passing through x 1 and x 2 : {y

More information

Convexity: an introduction

Convexity: an introduction Convexity: an introduction Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo 1 / 74 1. Introduction 1. Introduction what is convexity where does it arise main concepts and

More information

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization Teacher: Gianni A. Di Caro GLOBAL FUNCTION OPTIMIZATION Find the global maximum of the function f x (and

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know learn the proximal

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

Lecture 4: Convexity

Lecture 4: Convexity 10-725: Convex Optimization Fall 2013 Lecture 4: Convexity Lecturer: Barnabás Póczos Scribes: Jessica Chemali, David Fouhey, Yuxiong Wang Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Generalized Nash Equilibrium Problem: existence, uniqueness and

Generalized Nash Equilibrium Problem: existence, uniqueness and Generalized Nash Equilibrium Problem: existence, uniqueness and reformulations Univ. de Perpignan, France CIMPA-UNESCO school, Delhi November 25 - December 6, 2013 Outline of the 7 lectures Generalized

More information

Affine function. suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex

Affine function. suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex Affine function suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex S R n convex = f(s) ={f(x) x S} convex the inverse image f 1 (C) of a convex

More information

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS Linear Programming Larry Blume Cornell University & The Santa Fe Institute & IHS Linear Programs The general linear program is a constrained optimization problem where objectives and constraints are all

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015 Convex Optimization - Chapter 1-2 Xiangru Lian August 28, 2015 1 Mathematical optimization minimize f 0 (x) s.t. f j (x) 0, j=1,,m, (1) x S x. (x 1,,x n ). optimization variable. f 0. R n R. objective

More information

Convex sets and convex functions

Convex sets and convex functions Convex sets and convex functions Convex optimization problems Convex sets and their examples Separating and supporting hyperplanes Projections on convex sets Convex functions, conjugate functions ECE 602,

More information

Convex sets and convex functions

Convex sets and convex functions Convex sets and convex functions Convex optimization problems Convex sets and their examples Separating and supporting hyperplanes Projections on convex sets Convex functions, conjugate functions ECE 602,

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - C) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics 1. Introduction EE 546, Univ of Washington, Spring 2016 performance of numerical methods complexity bounds structural convex optimization course goals and topics 1 1 Some course info Welcome to EE 546!

More information

CONVEX OPTIMIZATION: A SELECTIVE OVERVIEW

CONVEX OPTIMIZATION: A SELECTIVE OVERVIEW 1! CONVEX OPTIMIZATION: A SELECTIVE OVERVIEW Dimitri Bertsekas! M.I.T.! Taiwan! May 2010! 2! OUTLINE! Convexity issues in optimization! Common geometrical framework for duality and minimax! Unifying framework

More information

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1 Section 5 Convex Optimisation 1 W. Dai (IC) EE4.66 Data Proc. Convex Optimisation 1 2018 page 5-1 Convex Combination Denition 5.1 A convex combination is a linear combination of points where all coecients

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming SECOND EDITION Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book Information and Orders http://world.std.com/~athenasc/index.html Athena Scientific, Belmont,

More information

Optimization under uncertainty: modeling and solution methods

Optimization under uncertainty: modeling and solution methods Optimization under uncertainty: modeling and solution methods Paolo Brandimarte Dipartimento di Scienze Matematiche Politecnico di Torino e-mail: paolo.brandimarte@polito.it URL: http://staff.polito.it/paolo.brandimarte

More information

MTAEA Convexity and Quasiconvexity

MTAEA Convexity and Quasiconvexity School of Economics, Australian National University February 19, 2010 Convex Combinations and Convex Sets. Definition. Given any finite collection of points x 1,..., x m R n, a point z R n is said to be

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

CS675: Convex and Combinatorial Optimization Fall 2014 Convex Functions. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2014 Convex Functions. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2014 Convex Functions Instructor: Shaddin Dughmi Outline 1 Convex Functions 2 Examples of Convex and Concave Functions 3 Convexity-Preserving Operations

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Introduction to Constrained Optimization

Introduction to Constrained Optimization Introduction to Constrained Optimization Duality and KKT Conditions Pratik Shah {pratik.shah [at] lnmiit.ac.in} The LNM Institute of Information Technology www.lnmiit.ac.in February 13, 2013 LNMIIT MLPR

More information

Compact Sets. James K. Peterson. September 15, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Compact Sets. James K. Peterson. September 15, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Compact Sets James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 15, 2017 Outline 1 Closed Sets 2 Compactness 3 Homework Closed Sets

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

Convex Sets (cont.) Convex Functions

Convex Sets (cont.) Convex Functions Convex Sets (cont.) Convex Functions Optimization - 10725 Carlos Guestrin Carnegie Mellon University February 27 th, 2008 1 Definitions of convex sets Convex v. Non-convex sets Line segment definition:

More information

of Convex Analysis Fundamentals Jean-Baptiste Hiriart-Urruty Claude Lemarechal Springer With 66 Figures

of Convex Analysis Fundamentals Jean-Baptiste Hiriart-Urruty Claude Lemarechal Springer With 66 Figures 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Jean-Baptiste Hiriart-Urruty Claude Lemarechal Fundamentals of Convex

More information

A Derivative-Free Approximate Gradient Sampling Algorithm for Finite Minimax Problems

A Derivative-Free Approximate Gradient Sampling Algorithm for Finite Minimax Problems 1 / 33 A Derivative-Free Approximate Gradient Sampling Algorithm for Finite Minimax Problems Speaker: Julie Nutini Joint work with Warren Hare University of British Columbia (Okanagan) III Latin American

More information

Convexity I: Sets and Functions

Convexity I: Sets and Functions Convexity I: Sets and Functions Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 See supplements for reviews of basic real analysis basic multivariate calculus basic

More information

COMS 4771 Support Vector Machines. Nakul Verma

COMS 4771 Support Vector Machines. Nakul Verma COMS 4771 Support Vector Machines Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake bound for the perceptron

More information

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING KELLER VANDEBOGERT AND CHARLES LANNING 1. Introduction Interior point methods are, put simply, a technique of optimization where, given a problem

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 29 CS 473: Algorithms, Spring 2018 Simplex and LP Duality Lecture 19 March 29, 2018

More information

LECTURE 10 LECTURE OUTLINE

LECTURE 10 LECTURE OUTLINE We now introduce a new concept with important theoretical and algorithmic implications: polyhedral convexity, extreme points, and related issues. LECTURE 1 LECTURE OUTLINE Polar cones and polar cone theorem

More information

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 CS G399: Algorithmic Power Tools I Scribe: Eric Robinson Lecture Outline: Linear Programming: Vertex Definitions

More information

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets EC 51 MATHEMATICAL METHODS FOR ECONOMICS Lecture : Convex Sets Murat YILMAZ Boğaziçi University In this section, we focus on convex sets, separating hyperplane theorems and Farkas Lemma. And as an application

More information

A primal-dual framework for mixtures of regularizers

A primal-dual framework for mixtures of regularizers A primal-dual framework for mixtures of regularizers Baran Gözcü baran.goezcue@epfl.ch Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

More information

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24 Convex Optimization Convex Sets ENSAE: Optimisation 1/24 Today affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes

More information

ORIE 6300 Mathematical Programming I November 13, Lecture 23. max b T y. x 0 s 0. s.t. A T y + s = c

ORIE 6300 Mathematical Programming I November 13, Lecture 23. max b T y. x 0 s 0. s.t. A T y + s = c ORIE 63 Mathematical Programming I November 13, 214 Lecturer: David P. Williamson Lecture 23 Scribe: Mukadder Sevi Baltaoglu 1 Interior Point Methods Consider the standard primal and dual linear programs:

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

Convex Analysis and Minimization Algorithms I

Convex Analysis and Minimization Algorithms I Jean-Baptiste Hiriart-Urruty Claude Lemarechal Convex Analysis and Minimization Algorithms I Fundamentals With 113 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona

More information

60 2 Convex sets. {x a T x b} {x ã T x b}

60 2 Convex sets. {x a T x b} {x ã T x b} 60 2 Convex sets Exercises Definition of convexity 21 Let C R n be a convex set, with x 1,, x k C, and let θ 1,, θ k R satisfy θ i 0, θ 1 + + θ k = 1 Show that θ 1x 1 + + θ k x k C (The definition of convexity

More information

Bounded subsets of topological vector spaces

Bounded subsets of topological vector spaces Chapter 2 Bounded subsets of topological vector spaces In this chapter we will study the notion of bounded set in any t.v.s. and analyzing some properties which will be useful in the following and especially

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization Author: Martin Jaggi Presenter: Zhongxing Peng Outline 1. Theoretical Results 2. Applications Outline 1. Theoretical Results 2. Applications

More information

AMS : Combinatorial Optimization Homework Problems - Week V

AMS : Combinatorial Optimization Homework Problems - Week V AMS 553.766: Combinatorial Optimization Homework Problems - Week V For the following problems, A R m n will be m n matrices, and b R m. An affine subspace is the set of solutions to a a system of linear

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

Solving the Master Linear Program in Column Generation Algorithms for Airline Crew Scheduling using a Subgradient Method.

Solving the Master Linear Program in Column Generation Algorithms for Airline Crew Scheduling using a Subgradient Method. Solving the Master Linear Program in Column Generation Algorithms for Airline Crew Scheduling using a Subgradient Method Per Sjögren November 28, 2009 Abstract A subgradient method for solving large linear

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

Tutorial on Convex Optimization for Engineers

Tutorial on Convex Optimization for Engineers Tutorial on Convex Optimization for Engineers M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

Simplex Algorithm in 1 Slide

Simplex Algorithm in 1 Slide Administrivia 1 Canonical form: Simplex Algorithm in 1 Slide If we do pivot in A r,s >0, where c s

More information

Lecture 1: Introduction

Lecture 1: Introduction Lecture 1 1 Linear and Combinatorial Optimization Anders Heyden Centre for Mathematical Sciences Lecture 1: Introduction The course and its goals Basic concepts Optimization Combinatorial optimization

More information

Convex Optimization / Homework 2, due Oct 3

Convex Optimization / Homework 2, due Oct 3 Convex Optimization 0-725/36-725 Homework 2, due Oct 3 Instructions: You must complete Problems 3 and either Problem 4 or Problem 5 (your choice between the two) When you submit the homework, upload a

More information

Programs. Introduction

Programs. Introduction 16 Interior Point I: Linear Programs Lab Objective: For decades after its invention, the Simplex algorithm was the only competitive method for linear programming. The past 30 years, however, have seen

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

Convex optimization algorithms for sparse and low-rank representations

Convex optimization algorithms for sparse and low-rank representations Convex optimization algorithms for sparse and low-rank representations Lieven Vandenberghe, Hsiao-Han Chao (UCLA) ECC 2013 Tutorial Session Sparse and low-rank representation methods in control, estimation,

More information

COM Optimization for Communications Summary: Convex Sets and Convex Functions

COM Optimization for Communications Summary: Convex Sets and Convex Functions 1 Convex Sets Affine Sets COM524500 Optimization for Communications Summary: Convex Sets and Convex Functions A set C R n is said to be affine if A point x 1, x 2 C = θx 1 + (1 θ)x 2 C, θ R (1) y = k θ

More information

ORIE 6300 Mathematical Programming I September 2, Lecture 3

ORIE 6300 Mathematical Programming I September 2, Lecture 3 ORIE 6300 Mathematical Programming I September 2, 2014 Lecturer: David P. Williamson Lecture 3 Scribe: Divya Singhvi Last time we discussed how to take dual of an LP in two different ways. Today we will

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

LECTURE 7 LECTURE OUTLINE. Review of hyperplane separation Nonvertical hyperplanes Convex conjugate functions Conjugacy theorem Examples

LECTURE 7 LECTURE OUTLINE. Review of hyperplane separation Nonvertical hyperplanes Convex conjugate functions Conjugacy theorem Examples LECTURE 7 LECTURE OUTLINE Review of hyperplane separation Nonvertical hyperplanes Convex conjugate functions Conjugacy theorem Examples Reading: Section 1.5, 1.6 All figures are courtesy of Athena Scientific,

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Marc Uetz University of Twente m.uetz@utwente.nl Lecture 5: sheet 1 / 26 Marc Uetz Discrete Optimization Outline 1 Min-Cost Flows

More information

Convexization in Markov Chain Monte Carlo

Convexization in Markov Chain Monte Carlo in Markov Chain Monte Carlo 1 IBM T. J. Watson Yorktown Heights, NY 2 Department of Aerospace Engineering Technion, Israel August 23, 2011 Problem Statement MCMC processes in general are governed by non

More information

ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints

ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints Instructor: Kevin Ross Scribe: Pritam Roy May 0, 2005 Outline of topics for the lecture We will discuss

More information

IE 521 Convex Optimization

IE 521 Convex Optimization Lecture 4: 5th February 2019 Outline 1 / 23 Which function is different from others? Figure: Functions 2 / 23 Definition of Convex Function Definition. A function f (x) : R n R is convex if (i) dom(f )

More information

Lecture 2: August 31

Lecture 2: August 31 10-725/36-725: Convex Optimization Fall 2016 Lecture 2: August 31 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Lidan Mu, Simon Du, Binxuan Huang 2.1 Review A convex optimization problem is of

More information

FACES OF CONVEX SETS

FACES OF CONVEX SETS FACES OF CONVEX SETS VERA ROSHCHINA Abstract. We remind the basic definitions of faces of convex sets and their basic properties. For more details see the classic references [1, 2] and [4] for polytopes.

More information

IDENTIFYING ACTIVE MANIFOLDS

IDENTIFYING ACTIVE MANIFOLDS Algorithmic Operations Research Vol.2 (2007) 75 82 IDENTIFYING ACTIVE MANIFOLDS W.L. Hare a a Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada. A.S. Lewis b b School of ORIE,

More information

Math 414 Lecture 2 Everyone have a laptop?

Math 414 Lecture 2 Everyone have a laptop? Math 44 Lecture 2 Everyone have a laptop? THEOREM. Let v,...,v k be k vectors in an n-dimensional space and A = [v ;...; v k ] v,..., v k independent v,..., v k span the space v,..., v k a basis v,...,

More information

Machine Learning for Signal Processing Lecture 4: Optimization

Machine Learning for Signal Processing Lecture 4: Optimization Machine Learning for Signal Processing Lecture 4: Optimization 13 Sep 2015 Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU) 11-755/18-797 1 Index 1. The problem of optimization 2. Direct optimization

More information

Convex Sets. Pontus Giselsson

Convex Sets. Pontus Giselsson Convex Sets Pontus Giselsson 1 Today s lecture convex sets convex, affine, conical hulls closure, interior, relative interior, boundary, relative boundary separating and supporting hyperplane theorems

More information

Convex Optimization and Machine Learning

Convex Optimization and Machine Learning Convex Optimization and Machine Learning Mengliu Zhao Machine Learning Reading Group School of Computing Science Simon Fraser University March 12, 2014 Mengliu Zhao SFU-MLRG March 12, 2014 1 / 25 Introduction

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 17: The Simplex Method Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology November 10, 2010 Frazzoli (MIT)

More information

11 Linear Programming

11 Linear Programming 11 Linear Programming 11.1 Definition and Importance The final topic in this course is Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed

More information

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity CSCI5254: Convex Optimization & Its Applications Convex Sets subspaces, affine sets, and convex sets operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Approximation Algorithms: The Primal-Dual Method. My T. Thai

Approximation Algorithms: The Primal-Dual Method. My T. Thai Approximation Algorithms: The Primal-Dual Method My T. Thai 1 Overview of the Primal-Dual Method Consider the following primal program, called P: min st n c j x j j=1 n a ij x j b i j=1 x j 0 Then the

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Lecture 10: SVM Lecture Overview Support Vector Machines The binary classification problem

Lecture 10: SVM Lecture Overview Support Vector Machines The binary classification problem Computational Learning Theory Fall Semester, 2012/13 Lecture 10: SVM Lecturer: Yishay Mansour Scribe: Gitit Kehat, Yogev Vaknin and Ezra Levin 1 10.1 Lecture Overview In this lecture we present in detail

More information

TMA946/MAN280 APPLIED OPTIMIZATION. Exam instructions

TMA946/MAN280 APPLIED OPTIMIZATION. Exam instructions Chalmers/GU Mathematics EXAM TMA946/MAN280 APPLIED OPTIMIZATION Date: 03 05 28 Time: House V, morning Aids: Text memory-less calculator Number of questions: 7; passed on one question requires 2 points

More information

LECTURE 18 LECTURE OUTLINE

LECTURE 18 LECTURE OUTLINE LECTURE 18 LECTURE OUTLINE Generalized polyhedral approximation methods Combined cutting plane and simplicial decomposition methods Lecture based on the paper D. P. Bertsekas and H. Yu, A Unifying Polyhedral

More information

CS522: Advanced Algorithms

CS522: Advanced Algorithms Lecture 1 CS5: Advanced Algorithms October 4, 004 Lecturer: Kamal Jain Notes: Chris Re 1.1 Plan for the week Figure 1.1: Plan for the week The underlined tools, weak duality theorem and complimentary slackness,

More information

Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form

Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form Philip E. Gill Vyacheslav Kungurtsev Daniel P. Robinson UCSD Center for Computational Mathematics Technical Report

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information