3D efficiency of some road barrier crownings using a 2D½ BEM

Size: px
Start display at page:

Download "3D efficiency of some road barrier crownings using a 2D½ BEM"

Transcription

1 3D efficiency of some road barrier crownings using a 2D½ BEM paper ID: 244 /p.1 J. Defrance, L. Bouilloud, E. Premat, Ph. Jean CTB (Centre cientifique et Technique du Bâtiment) 24, rue Joseph Fourier 384 aint-martin-d Hères, France. j.defrance@cstb.fr This paper presents a methodology for the assessment of 3D acoustical efficiency of road noise barrier crownings (or s). The studied protections are the T and the cylinder of two different sizes covered with an absorbing material. The 3 rd octave band mid frequency band efficiency of these s has been calculated with reference to a reflective straight barrier of same overall height (4 m) considered as the reference. The approach used is numerical taking advantage of recent developments in the 2D½ Boundary Element Method. Original results are presented. The post-processing of these calculations allows the creation of a efficiency database as a function of geometrical and frequency parameters. From this database have been determined the analytical expressions function of the Fresnel number which can be straight used in a classical geometrical 3D approach. 1. INTRODUCTION At the time being there is no operational method to take into account complex shape anti-noise barriers in environmental noise predictions. This lack leaves the engineer no possibility to precisely integrate in a road project the effect of devices such as barrier crownings. This paper proposes an original methodology for the integration of the 3D effect of diffracting devices in a geometrical acoustical approach such as ray tracing method. From numerical results, simple analytical laws function of geometrical parameters and frequency are proposed. These approximate expressions can be used directly in the calculation of diffraction along an acoustic path. 2. PREENTATION OF MICADO-BEM CODE 2.1 The 2D Boundary Element Method MICADO (Integral Method for the Acoustical Calculation of Diffraction by Obstacles) is a calculation code based on a variational approach of the Boundary Element Method [1]. The geometry of the 2D problem ((O,x,z) plane) where all the elements remain unchanged in the 3 rd dimension (y-axis) parallel to the linear coherent source, is shown in Figure 1. O z y x M z= Figure 1. Geometry of the 2D problem defined in the (O,x,z) plane

2 paper ID: 244 /p.2 The ground (z=) as well as any obstacle surface are rigid or can be characterised by their own acoustical admittance. The theoretical formalism [1] uses an integral representation of the pressure at any point ( z ) as a function a the pressure on the boundaries, the admittances as well as the elementary Green s solution G (solution for a point source N and for a receiver M above the impedant ground defined by z=) which can be written as the sum of three different terms: i i, (1) 4 4 M N H kr H kr' P M N G, where r is the distance between M and N, r between M and the image of N in the plane z= and H the Hankel function of first kind and zero order. The second term in equation 1 represents the contribution of the reflection of the cylindrical wave on a perfectly rigid ground and the last term P is a corrective factor taking into account the ground admittance [2]. 2.2 From 2D to 2D½ After solving the linear system of the 2D problem, one can calculate the acoustic field at any point in the vertical plane (O,x,z), z. Using then a representation of the point source as an integral of Hankel functions [3, 4] it has been shown that the 2D pressure field (y=) and the 2D½ one (same configuration with the receiver at any z ) are related. Pressure P can thus be written at the receiver as: P 1 x, z px, z, k, Z k 2 where p is the 2D pressure at point (x,z) for a value k of the wavenumber, P is the 2D½ 2 2 pressure at point (x,z) for a value K of the wavenumber, with k K a, Y y y being the ordinate of the point source. y, Z k represents for the wavenumber account an infinitely extended ground. K k e iay da (2) k the varying boundaries impedances taking into One has to notice that k may become imaginary when a>k. However in practice the imaginary part of the pressure decreases very quickly with frequency and can be neglected in many configurations of road traffic noise [5]. 3. REULT OF MICADO CALCULATION 3.1 Presentation of the studied crownings Four different crownings have been studied: two T-shape and two cylindrical (Figure 2). All these complex barriers have an overall height of 4 m as well as the rigid straight barrier considered as the reference one (thickness: 1 cm). The crownings are made of a rigid material

3 paper ID: 244 /p.3 covered with a 5 cm thick layer of glasswool. Acoustic impedance of glasswool is determined through Delany and Bazley s semi-empirical model [6] considering a flow resistivity of 3 kpa s m -2.,85 1,5,6 1,1 m 4 m Figure 2. Geometry of the studied crownings. From left to right: small T, large T, small cylinder, large cylinder and straight reference barrier (absorbing material location in dashed lines). All dimensions in meter 3.2 Calculations hypotheses In this work the barrier lateral diffractions are ignored since they can be neglected in the case of long barriers along road traffic sources. In order to isolate only the top edge diffraction, reflections on the ground have to be cancelled on both sides of the barrier in the BEM calculations (since this phenomenon is of no interest in the present purpose). This is done by setting the point source and receiver at zero height on the reflecting horizontal ground. In the following the angle of diffraction is defined as the angle between a diffracted ray segment (O- R for instance) and a segment perpendicular to the straight barrier top edge, the two segments and the barrier edge being in the same plane (Figure 3). z ground Q x R Q y x R Figure 3. Geometry of a diffracted ray from source to receiver R (side and top views) The aim here is to calculate for a given 3 rd octave band mid frequency (1 to 5 Hz) the value of the attenuation A due to the crowning compare to the one obtained in the case of the straight reference barrier. imulations are carried out making vary the diffraction angle as well as the path difference defined as (Figure 3): Q QR R (3)

4 paper ID: 244 /p.4 For a point source-receiver couple and a given frequenc the attenuation A due to the crowning is given in db by: A P( x, z) 2 ref 1 log1 (4) P( x, z) where P ) ( x, z ref and P x, z) ( are the calculated pressures at receiver R(x,z) for the case of the reference straight barrier and the crowned barrier, respectively. 2D½ calculations have been carried out for a very important number of source and receiver positions. The distance (in the x-axis direction) between the source (or receiver) and the barrier can vary between 4 and 512 m. The angle of diffraction is between and Results For given frequency and diffraction angle, the results show a strong correlation between the value of A and the Fresnel number defined as N 2 where is the wavelength. The acoustical effect of the crowning appears very complex at lowest frequencies (in the range 1-5 Hz). A point of interest is that a negative value of A can be observed around 4 Hz for all studied crownings when the angle of diffraction is less than 55. It means that in this range of frequencies (2-5 Hz) and diffraction angles, the crowned barrier is less efficient than the reference one. This behaviour has been confirmed by many other calculations as well as outdoor measurements on a test-wall. An example of results at 25 Hz for the case of a large T-shape barrier (1.5 m wide) is given in Figure 4a. The range of N when the values of A are negative is clearly visible. Large T 25 Hz Large cylinder 4 Hz Cap Attenuation (db) = Fresnel Number N Cap Attenuation (db) Fresnel Number N Figure 4. A as a function of N for different values of. Cases of the large T at 25 Hz (left) and large cylinder at 4 Hz (right) = 5

5 paper ID: 244 /p.5 From 1 Hz and up, attenuation A becomes proportional to cos that is to sa in the case of the T, proportional to the distance covered by the creeping wave on the top of the crowning. An example of result at 4 Hz is given in Figure 4b for the case of the large cylinder (1 m in diameter). 4. INTEGRATION IN A GEOMETRICAL MODEL 4.1 Determination of attenuation laws In order to take into account the effect of the crownings in a 3D geometrical approach, a general approximate expression of the attenuation A has been developed as a function of N, with and frequency fixed: E N A A N B C D e (5) F where A, B, C, D, E and F are real parameters to be determined by a mean least squares method. In Figure 5 is shown the comparison of A calculated with BEM (equations 1 and 2) and evaluated from the approximate expression (eq. 5) for the cases of the small T at 2 Hz and the small cylinder at 125 Hz. Cap Attenuation - db mall T - 2 Hz = Cap Attenuation - db mall cylinder Hz = Fresnel Number Fresnel Number Figure 5. A as a function of N at for different values of. Comparison between MICADO calculations and approximate laws. Cases of the small T at 2 Hz (left) and small cylinder at 125 Hz (right) (caution: vertical axis is the opposite compared to Figure 4) 4.2 Integration in a geometrical model. Creation of a crowning diffraction database All the determined values of A, B, C, D, E and F (eq. 5) are reported in a database as a function of the following parameters: type of crowning, size of crowning, 3 rd octave band mid frequency and diffraction angle (9 different angles of diffraction as reported in Figure 5). In a geometrical approach as the one used in France [9, 1], the integration of the crowning effect is achieved by applying for any acoustical diffracted path the term A as a correction on any diffraction attenuation A dif due to a straight barrier: A dif, total Adif A (5)

6 paper ID: 244 /p.6 A dif can be related to a source-to-receiver diffracted path, but also to an image source-to-receiver or a source-to-image receiver or an image source-to-image receiver diffracted path. For each of these four paths a specific value of A has to be considered and added to each of the four A dif terms. As the database contains results for 9 diffraction angles onl the values of A have to be interpolated according to the real value of. 5. CONCLUION A methodology for the integration of the diffraction effect due to barrier crownings in a 3D acoustical geometrical approach has been presented. This work has been carried out in the case of an homogeneous atmosphere. Research on 3D models where meteorological effects and crownings diffraction are coupled is in progress. A first solution is the integration of the atmospheric refraction into the Green s function of the problem. A BEM calculation code based on this approach is being developed [11,12]. Another way is the use of a hybrid BEM-PE (Parabolic Equation) method [13, 14] where the field in the vicinity of the complex barrier calculated with BEM in an homogeneous atmosphere is used as a starter for the long range propagation with varying meteorological profiles carried out with a GFPE (Green s Function Parabolic Equation) method. Acknowledgements The authors would like to thank the French Institution ADEME (Agence de L Environnement et de la Maîtrise de l Energie) for its financial support. References 1. P. Jean, Journal of ound and Vibration 212, pp (1998) 2. D.C. Hothersall,.N. Chandler-Wilde and N.N. Hajmirzae, J. ound and Vib. 146, pp (1991) 3. D. Duhamel, Journal of ound and Vibration 197, pp (1996) 4. D. Duhamel and P. ergent, Journal of ound and Vibration 218(5), pp (1998) 5. P. Jean, J. Defrance and Y. Gabillet, Journal of ound and Vibration 212, pp (1998) 6. M.E. Delany and E.N. Bazle Applied Acoustics 3, pp (197) 7. J. Defrance, P. Jean and Y. Gabillet, Proceedings of EuroNoise 1998, München, pp (1998) 8. J. Defrance, Y. Gabillet and P. Jean, Proceedings of the 6th ICV, Copenhagen, pp (1999) 9. J. Defrance and Y. Gabillet, Applied Acoustics 57(2), pp (1999) 1. J. Defrance, M. Bérengier and J.F. Rondeau, Proceedings of InterNoise 21, La Haye (21) 11. E. Premat and Y. Gabillet, Journal Acoust. oc. Am. 18(6), pp (2) 12. E. Premat, Y. Gabillet and J. Defrance, Proceedings of the 9th LRP ymposium, Delft, pp (2) 13. N. Barrière and Y. Gabillet, Acta Acustica 85, pp (1999) 14. E. Premat, J. Defrance, F. Aballéa and M. Priour, Proceedings of the LRP ymposium, Grenoble (22)

Scale model measurements of the acoustic performance of vented and absorptive road covers

Scale model measurements of the acoustic performance of vented and absorptive road covers Scale model measurements of the acoustic performance of vented and absorptive road covers Isabelle Schmich, Jerôme Defrance, Gabriel Kirie, Pierre Bruder Centre Scientifique et Technique du Bâtiment (CSTB),

More information

2.5 D BEM modelisation of ground structure interaction

2.5 D BEM modelisation of ground structure interaction paper ID: 510/p.1 2.5 D BEM modelisation of ground structure interaction Philippe JEAN CSTB, 24 rue Joseph Fourier, 38400 Saint Martin d Hères, France, jean@cstb.fr 2.5 D Green functions of continuous

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 2.4 NORD 2000. STATE-OF-THE-ART

More information

Optimization of multiple edge barriers with genetic algorithms coupled with a Nelder Mead local search

Optimization of multiple edge barriers with genetic algorithms coupled with a Nelder Mead local search Journal of Sound and Vibration 3 (7) 71 87 JOURNAL OF SOUND AND VIBRATION www.elsevier.com/locate/jsvi Optimization of multiple edge barriers with genetic algorithms coupled with a Nelder Mead local search

More information

MODELLING AIRCRAFT NOISE INSIDE DWELLINGS

MODELLING AIRCRAFT NOISE INSIDE DWELLINGS MODELLING AIRCRAFT NOISE INSIDE DWELLINGS 43.40r Jean-François RONDEAU ; Philippe JEAN Centre Scientifique et Technique du Bâtiment 24 rue Joseph Fourier, 38400 SAINT MARTIN D HERES FRANCE Tel : +33.4.76.76.25.25

More information

Performance of profiled single noise barriers covered with quadratic residue diffusers

Performance of profiled single noise barriers covered with quadratic residue diffusers Performance of profiled single noise barriers covered with quadratic residue diffusers Monazzam, M and Lam, YW http://dx.doi.org/10.1016/j.apacoust.2004.08.008 Title Authors Type URL Performance of profiled

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 3.1 FACTORS AFFECTING

More information

COMPUTER SIMULATION TECHNIQUES FOR ACOUSTICAL DESIGN OF ROOMS - HOW TO TREAT REFLECTIONS IN SOUND FIELD SIMULATION

COMPUTER SIMULATION TECHNIQUES FOR ACOUSTICAL DESIGN OF ROOMS - HOW TO TREAT REFLECTIONS IN SOUND FIELD SIMULATION J.H. Rindel, Computer simulation techniques for the acoustical design of rooms - how to treat reflections in sound field simulation. ASVA 97, Tokyo, 2-4 April 1997. Proceedings p. 201-208. COMPUTER SIMULATION

More information

On the improved point-to-point calculations for noise mapping in shielded urban areas

On the improved point-to-point calculations for noise mapping in shielded urban areas On the improved point-to-point calculations for noise mapping in shielded urban areas Maarten Hornikx a) Jens Forssén b) Department of Civil and Environmental Engineering, Chalmers University of Technology

More information

NUMERICAL MODELS FOR NOISE PREDICTION NEAR AIRPORTS

NUMERICAL MODELS FOR NOISE PREDICTION NEAR AIRPORTS Philippe JEAN 1 NUMERICAL MODELS FOR NOISE PREDICTION NEAR AIRPORTS Abstract Ph. Jean, J.-F. Rondeau, D. Van Maercke Centre Scientifique et Technique du Bâtiment 24 rue Joseph Fourier 38400 St Martin d

More information

On the improved point-to-point calculations for noise mapping in shielded urban areas

On the improved point-to-point calculations for noise mapping in shielded urban areas On the improved point-to-point calculations for noise mapping in shielded urban areas Maarten Hornikx a) Jens Forssén b) Department of Civil and Environmental Engineering, Chalmers University of Technology

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Apr 22, 2012 Light from distant things We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can

More information

Measurement of 3D Room Impulse Responses with a Spherical Microphone Array

Measurement of 3D Room Impulse Responses with a Spherical Microphone Array Measurement of 3D Room Impulse Responses with a Spherical Microphone Array Jean-Jacques Embrechts Department of Electrical Engineering and Computer Science/Acoustic lab, University of Liège, Sart-Tilman

More information

HIGH-SPEED TRAIN NOISE SOURCE HEIGHT INFLUENCE ON EFFICIENCY OF NOISE BARRIERS

HIGH-SPEED TRAIN NOISE SOURCE HEIGHT INFLUENCE ON EFFICIENCY OF NOISE BARRIERS HIGH-SPEED TRAIN NOISE SOURCE HEIGHT INFLUENCE ON EFFICIENCY OF NOISE BARRIERS Nickolay Ivanov, Aleksander Shashurin, Iuliia Boiko Baltic State Technical University VOENMEH named after D.F. Ustinov, Ecology

More information

THE APPLICABILITY OF RAY-TRACING BASED SIMULATION TOOLS TO PREDICT SOUND PRESSURE LEVELS AND REVERBERATION TIMES IN COUPLED SPACES

THE APPLICABILITY OF RAY-TRACING BASED SIMULATION TOOLS TO PREDICT SOUND PRESSURE LEVELS AND REVERBERATION TIMES IN COUPLED SPACES THE APPLICABILITY OF RAY-TRACING BASED SIMULATION TOOLS TO PREDICT SOUND PRESSURE LEVELS AND REVERBERATION TIMES IN COUPLED SPACES Marinus van der Voorden 1, Lau Nijs 1, Gerrit Vermeir 2 and Gert Jansens

More information

Calculation of tyre noise radiation with a mixed approach

Calculation of tyre noise radiation with a mixed approach Calculation of tyre noise radiation with a mixed approach P.Jean, N. Noe, F. Gaudaire CSTB, 24 rue Joseph Fourier,38400 Saint Martin d Hères, France, Jean@cstb.fr Summary The radiation of tyre noise is

More information

Visualizing diffraction of a loudspeaker enclosure

Visualizing diffraction of a loudspeaker enclosure Visualizing diffraction of a loudspeaker enclosure V. Pulkki T. Lokki Laboratory of Acoustics and Audio Signal Processing Telecommunications Software and Multimedia Laboratory Helsinki University of Technology,

More information

SOURCE-RECEIVER MODEL OF A BUILDING EXCITED BY GROUND BORNE VIBRATION

SOURCE-RECEIVER MODEL OF A BUILDING EXCITED BY GROUND BORNE VIBRATION Full paper for the structured session Railway noise and vibration of the EAA symposium Noise in the built environment SOURCE-RECEIVER MODEL OF A BUILDING EXCITED BY GROUND BORNE VIBRATION M Villot P Ropars

More information

Bengt Johansson Vibraphon, Gärdesvägen 10, Vaxholm, Sweden,

Bengt Johansson Vibraphon, Gärdesvägen 10, Vaxholm, Sweden, Using Wave Based Geometrical Acoustics (WBGA) to investigate room resonances Bengt Johansson Vibraphon, Gärdesvägen 10, 185 94 Vaxholm, Sweden, vibraphon@telia.com Panos Economou, Antreas Eletheriou P.E.

More information

Inclination angle of noise barriers

Inclination angle of noise barriers Inclination angle of noise barriers A study on the effect an inclination angle has on the reflected noise from noise barriers. Nicklas Engström Stockholm, 2011 Thesis for the degree of Master of Science,

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11. Reflection and refraction Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

More information

Ray-tracing modelling of the diffraction by half-planes and slits based on the energy flow lines concept

Ray-tracing modelling of the diffraction by half-planes and slits based on the energy flow lines concept Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France Ray-tracing modelling of the diffraction by half-planes and slits based on the energy flow lines concept A. Billon a

More information

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

Modeling the Transmission Loss of Passthroughs in Sound Package using Foam Finite Elements

Modeling the Transmission Loss of Passthroughs in Sound Package using Foam Finite Elements Proceedings of 20 th International Congress on Acoustics, ICA 2010 23-27 August 2010, Sydney, Australia Modeling the Transmission Loss of Passthroughs in Sound Package using Foam Finite Elements Sascha

More information

Using asymptotic methods to compute diffracted pressure by curved surfaces

Using asymptotic methods to compute diffracted pressure by curved surfaces Using asymptotic methods to compute diffracted pressure by curved surfaces Mikaël Vermet, Nicolas Noe, Rodolphe Vauzelle, Yannis Pousset, Pierre Combeau To cite this version: Mikaël Vermet, Nicolas Noe,

More information

Calcul de l effet Dièdre d un Pneumatique avec des Sculptures

Calcul de l effet Dièdre d un Pneumatique avec des Sculptures Calcul de l effet Dièdre d un Pneumatique avec des Sculptures B. Wang et D. Duhamel DYNAMIQUE, LABO NAVIER, ENPC, Cité Descartes, 6-8 Avenue Blaise Pascal, 77455 Champs-Sur-Marne, France bin.wang@enpc.fr

More information

Chapter 7: Geometrical Optics

Chapter 7: Geometrical Optics Chapter 7: Geometrical Optics 7. Reflection at a Spherical Surface L.O 7.. State laws of reflection Laws of reflection state: L.O The incident ray, the reflected ray and the normal all lie in the same

More information

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from Lecture 5-3 Interference and Diffraction of EM Waves During our previous lectures we have been talking about electromagnetic (EM) waves. As we know, harmonic waves of any type represent periodic process

More information

In-Situ Measurements of Surface Reflection Properties

In-Situ Measurements of Surface Reflection Properties Toronto, Canada International Symposium on Room Acoustics 2013 June 9-11 IS R A 2013 In-Situ Measurements of Surface Reflection Properties Markus Müller-Trapet (mmt@akustik.rwth-aachen.de) Michael Vorländer

More information

Lecture Outlines Chapter 26

Lecture Outlines Chapter 26 Lecture Outlines Chapter 26 11/18/2013 2 Chapter 26 Geometrical Optics Objectives: After completing this module, you should be able to: Explain and discuss with diagrams, reflection and refraction of light

More information

Results of the ray-tracing based solver BEAM for the approximate determination of acoustic backscattering from thin-walled objects

Results of the ray-tracing based solver BEAM for the approximate determination of acoustic backscattering from thin-walled objects Results of the ray-tracing based solver BEAM for the approximate determination of acoustic backscattering from thin-walled objects Ralf BURGSCHWEIGER 1 ; Ingo SCHÄFER 2 ; Martin OCHMANN 1 ; Bodo NOLTE

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.6 EFFICIENT ACOUSTIC

More information

CONTRIBUTION OF QUADRATIC RESIDUE DIFFUSERS TO EFFICIENCY OF TILTED PROFILE PARALLEL HIGHWAY NOISE BARRIERS

CONTRIBUTION OF QUADRATIC RESIDUE DIFFUSERS TO EFFICIENCY OF TILTED PROFILE PARALLEL HIGHWAY NOISE BARRIERS Iran. J. Environ. Health. Sci. Eng., 2009, Vol. 6, No. 4, pp. 271-284 CONTRIBUTION OF QUADRATIC RESIDUE DIFFUSERS TO EFFICIENCY OF TILTED PROFILE PARALLEL HIGHWAY NOISE BARRIERS * M. R. Monazzam, P. Nassiri

More information

Insights into EMC Chamber Design:

Insights into EMC Chamber Design: Insights into EMC Chamber Design: How to achieve an optimized chamber for accurate EMC Measurements Zubiao Xiong, PhD zubiao.xiong@ets-lindgren.com November 16, 2017 EMC Compliance Testing Emission (Disturbance)

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Signal Processing in Acoustics Session 1pSPa: Nearfield Acoustical Holography

More information

Comparison of radiosity and ray-tracing methods for coupled rooms

Comparison of radiosity and ray-tracing methods for coupled rooms Comparison of radiosity and ray-tracing methods for coupled rooms Jimmy Dondaine, Alain Le Bot, Joel Rech, Sébastien Mussa Peretto To cite this version: Jimmy Dondaine, Alain Le Bot, Joel Rech, Sébastien

More information

DEVELOPMENT OF HIGH RESOLUTION 3D SOUND PROPAGATION MODEL USING LIDAR DATA AND AIR PHOTO

DEVELOPMENT OF HIGH RESOLUTION 3D SOUND PROPAGATION MODEL USING LIDAR DATA AND AIR PHOTO DEVELOPMENT OF HIGH RESOLUTION 3D SOUND PROPAGATION MODEL USING LIDAR DATA AND AIR PHOTO Susham Biswas*, Bharat Lohani Dept. of Civil Engineering, Indian Institute of Technology Kanpur, 208016 India -

More information

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

More information

1. Particle Scattering. Cogito ergo sum, i.e. Je pense, donc je suis. - René Descartes

1. Particle Scattering. Cogito ergo sum, i.e. Je pense, donc je suis. - René Descartes 1. Particle Scattering Cogito ergo sum, i.e. Je pense, donc je suis. - René Descartes Generally gas and particles do not scatter isotropically. The phase function, scattering efficiency, and single scattering

More information

INTRODUCTION TO The Uniform Geometrical Theory of Diffraction

INTRODUCTION TO The Uniform Geometrical Theory of Diffraction INTRODUCTION TO The Uniform Geometrical Theory of Diffraction D.A. McNamara, C.W.I. Pistorius J.A.G. Malherbe University of Pretoria Artech House Boston London CONTENTS Preface xiii Chapter 1 The Nature

More information

Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY Velocity models used for wavefield-based seismic

More information

Fresnel's biprism and mirrors

Fresnel's biprism and mirrors Fresnel's biprism and mirrors 1 Table of Contents Section Page Back ground... 3 Basic Experiments Experiment 1: Fresnel's mirrors... 4 Experiment 2: Fresnel's biprism... 7 2 Back ground Interference of

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

Abstract. 1 Introduction

Abstract. 1 Introduction A numerical method for the simulation and prediction of the sound pressure levels of enclosed spaces. Application to a real workshop R.Sancibrian", F.Viadero", C. De Miguel* and P.Garcia-Femandez*. "Department

More information

Lecture Wave Optics. Physics Help Q&A: tutor.leiacademy.org

Lecture Wave Optics. Physics Help Q&A: tutor.leiacademy.org Lecture 1202 Wave Optics Physics Help Q&A: tutor.leiacademy.org Total Internal Reflection A phenomenon called total internal reflectioncan occur when light is directed from a medium having a given index

More information

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation Phys. 281B Geometric Optics This Chapter 3 Physics Department Yarmouk University 21163 Irbid Jordan 1- Images Formed by Flat Mirrors 2- Images Formed by Spherical Mirrors 3- Images Formed by Refraction

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

Acoustic Source Location in Vehicle Cabins and Free-field with Nearfield Acoustical Holography via Acoustic Arrays.

Acoustic Source Location in Vehicle Cabins and Free-field with Nearfield Acoustical Holography via Acoustic Arrays. Acoustic Source Location in Vehicle Cabins and Free-field with Nearfield Acoustical Holography via Acoustic Arrays. D.L.Hallman S.M. Dumbacher B.W. Libbey J.S. Bolton D.L. Brown M.J. Lally Herrick Laboratories

More information

Towards a Lower Helicopter Noise Interference in Human Life

Towards a Lower Helicopter Noise Interference in Human Life Towards a Lower Helicopter Noise Interference in Human Life Fausto Cenedese Acoustics and Vibration Department AGUSTA, Via G. Agusta 520, 21017 Cascina Costa (VA), Italy Noise Regulation Workshop September

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

Physics I : Oscillations and Waves Prof. S Bharadwaj Department of Physics & Meteorology Indian Institute of Technology, Kharagpur

Physics I : Oscillations and Waves Prof. S Bharadwaj Department of Physics & Meteorology Indian Institute of Technology, Kharagpur Physics I : Oscillations and Waves Prof. S Bharadwaj Department of Physics & Meteorology Indian Institute of Technology, Kharagpur Lecture - 20 Diffraction - I We have been discussing interference, the

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

newfasant US User Guide

newfasant US User Guide newfasant US User Guide Software Version: 6.2.10 Date: April 15, 2018 Index 1. FILE MENU 2. EDIT MENU 3. VIEW MENU 4. GEOMETRY MENU 5. MATERIALS MENU 6. SIMULATION MENU 6.1. PARAMETERS 6.2. DOPPLER 7.

More information

ANP Data Verification and Validation

ANP Data Verification and Validation ANP Data Verification and Validation JRC Workshop 19-20 January Brussels Laurent Cavadini The European Organisation for the Safety of Air Navigation ANP Data - Contents and Formats Aircraft table Jet engine

More information

Timo Lähivaara, Tomi Huttunen, Simo-Pekka Simonaho University of Kuopio, Department of Physics P.O.Box 1627, FI-70211, Finland

Timo Lähivaara, Tomi Huttunen, Simo-Pekka Simonaho University of Kuopio, Department of Physics P.O.Box 1627, FI-70211, Finland Timo Lähivaara, Tomi Huttunen, Simo-Pekka Simonaho University of Kuopio, Department of Physics P.O.Box 627, FI-72, Finland timo.lahivaara@uku.fi INTRODUCTION The modeling of the acoustic wave fields often

More information

GG450 4/5/2010. Today s material comes from p and in the text book. Please read and understand all of this material!

GG450 4/5/2010. Today s material comes from p and in the text book. Please read and understand all of this material! GG450 April 6, 2010 Seismic Reflection I Today s material comes from p. 32-33 and 81-116 in the text book. Please read and understand all of this material! Back to seismic waves Last week we talked about

More information

RECENT MODELLING ADVANCES FOR ULTRASONIC TOFD INSPECTIONS

RECENT MODELLING ADVANCES FOR ULTRASONIC TOFD INSPECTIONS RECENT MODELLING ADVANCES FOR ULTRASONIC TOFD INSPECTIONS Michel DARMON 1, Adrien FERRAND 1, Vincent DORVAL 1, Sylvain CHATILLON 1 CEA LIST, Gif-sur-Yvette, France michel.darmon@cea.fr QNDE July 2014 OUTLINE

More information

Diffraction at a single slit and double slit Measurement of the diameter of a hair

Diffraction at a single slit and double slit Measurement of the diameter of a hair Diffraction at a single slit and double slit Measurement of the diameter of a hair AREEJ AL JARB Background... 3 Objects of the experiments 4 Principles Single slit... 4 Double slit.. 6 Setup. 7 Procedure

More information

Fast rendering of sound occlusion and diffraction effects for virtual acoustic environments

Fast rendering of sound occlusion and diffraction effects for virtual acoustic environments Fast rendering of sound occlusion and diffraction effects for virtual acoustic environments Nicolas Tsingos and Jean-Dominique Gascuel iagi y /GRAVIR-IAG/INRIA Abstract We present a new approach to efficiently

More information

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Brief History of the Nature of Light Up until 19 th century, light was modeled as a stream of particles. Newton was a proponent of

More information

Effects of Wind-Tunnel Noise on Array Measurements in Closed Test Sections

Effects of Wind-Tunnel Noise on Array Measurements in Closed Test Sections . Effects of Wind-Tunnel Noise on Array Measurements in Closed Test Sections K. Ehrenfried 1, L. Koop 1, A. Henning 2 and K. Kaepernick 2 1 Institute of Aerodynamics and Flow Technology German Aerospace

More information

Evaluation of blast loads on buildings in urban environment

Evaluation of blast loads on buildings in urban environment Evaluation of blast loads on buildings in urban environment A. M. Remennikov School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia Abstract This paper is concerned

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

EVALUATING STAGE SOUND FIELD FOR ACOUSTIC DESIGN BASED ON BOUNDARY ELEMENT METHOD

EVALUATING STAGE SOUND FIELD FOR ACOUSTIC DESIGN BASED ON BOUNDARY ELEMENT METHOD EVALUATING STAGE SOUND FIELD FOR ACOUSTIC DESIGN BASED ON BOUNDARY ELEMENT METHOD PACS REFERENCE: 43.55.Ka Ikeda, Masahiro; Kishinaga, Shinji; Kawakami, Fukushi YAMAHA Advanced System Development Center

More information

Fast traffic noise mapping of cities using the Graphics Processing Unit of a personal computer

Fast traffic noise mapping of cities using the Graphics Processing Unit of a personal computer Fast traffic noise mapping of cities using the Graphics Processing Unit of a personal computer Erik M. SALOMONS 1 ; Han ZHOU 2 ; Walter J.A. LOHMAN 3 TNO, Netherlands Organisation of Applied Scientific

More information

A study of different calculation methods for noise barrier top edge designs

A study of different calculation methods for noise barrier top edge designs A study of different calculation methods for noise barrier top edge designs Pál Zoltán Bite and Fülöp Augusztinovicz Budapest University of Technology and Economics, Department of Telecommunications H

More information

Coupling of surface roughness to the performance of computer-generated holograms

Coupling of surface roughness to the performance of computer-generated holograms Coupling of surface roughness to the performance of computer-generated holograms Ping Zhou* and Jim Burge College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA *Corresponding author:

More information

Validation of aspects of BeamTool

Validation of aspects of BeamTool Vol.19 No.05 (May 2014) - The e-journal of Nondestructive Testing - ISSN 1435-4934 www.ndt.net/?id=15673 Validation of aspects of BeamTool E. GINZEL 1, M. MATHESON 2, P. CYR 2, B. BROWN 2 1 Materials Research

More information

Phys102 Lecture 21/22 Light: Reflection and Refraction

Phys102 Lecture 21/22 Light: Reflection and Refraction Phys102 Lecture 21/22 Light: Reflection and Refraction Key Points The Ray Model of Light Reflection and Mirrors Refraction, Snell s Law Total internal Reflection References 23-1,2,3,4,5,6. The Ray Model

More information

Audio acoustic modeling using full-wave methods

Audio acoustic modeling using full-wave methods Acoustics 8 Paris Audio acoustic modeling using full-wave methods Timo Lahivaara, Tomi Huttunen and Simo-Pekka Simonaho University of Kuopio, P.O.Box 1627, 7211 Kuopio, Finland simo-pekka.simonaho@uku.fi

More information

Essential Physics I. Lecture 13:

Essential Physics I. Lecture 13: Essential Physics I E I Lecture 13: 11-07-16 Reminders No lecture: Monday 18th July (holiday) Essay due: Monday 25th July, 4:30 pm 2 weeks!! Exam: Monday 1st August, 4:30 pm Announcements 250 word essay

More information

Time domain construction of acoustic scattering by elastic targets through finite element analysis

Time domain construction of acoustic scattering by elastic targets through finite element analysis Time domain construction of acoustic scattering by elastic targets through finite element analysis Aaron Gunderson*, Blake Simon, Anthony Bonomo, Marcia Isakson Applied Research Laboratories University

More information

Attenuation Analysis and Acoustic Pressure Levels for Combined Absorptive Mufflers

Attenuation Analysis and Acoustic Pressure Levels for Combined Absorptive Mufflers Ovidiu Vasile, Darian Onchis-Moaca ANALELE UNIVERSITĂłII EFTIMIE MURGU REŞIłA ANUL XVIII, NR. 1, 211, ISSN 1453-7397 Attenuation Analysis and Acoustic Pressure Levels for Combined Absorptive Mufflers The

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Modeling the Acoustic Scattering from Axially Symmetric Fluid, Elastic, and Poroelastic Objects due to Nonsymmetric Forcing Using COMSOL Multiphysics

Modeling the Acoustic Scattering from Axially Symmetric Fluid, Elastic, and Poroelastic Objects due to Nonsymmetric Forcing Using COMSOL Multiphysics Modeling the Acoustic Scattering from Axially Symmetric Fluid, Elastic, and Poroelastic Objects due to Nonsymmetric Forcing Using COMSOL Multiphysics Anthony L. Bonomo *1 and Marcia J. Isakson 1 1 Applied

More information

Abaqus Technology Brief. Sound Radiation Analysis of Automobile Engine Covers

Abaqus Technology Brief. Sound Radiation Analysis of Automobile Engine Covers Sound Radiation Analysis of Automobile Engine Covers Abaqus Technology Brief TB-06-COVER-2 Revised: April 2007. Summary A methodology to study the sound radiation of engine valve covers is presented. The

More information

Geometric Field Tracing through an Off- Axis Parabolic Mirror

Geometric Field Tracing through an Off- Axis Parabolic Mirror UseCase.0077 (1.0) Geometric Field Tracing through an Off- Axis Parabolic Mirror Keywords: focus, geometric field tracing, diffractive field tracing Description This use case explains the usage of the

More information

RECONSTRUCTION OF A PISTON TRANSDUCER BEAM USING MULTI-GAUSSIAN

RECONSTRUCTION OF A PISTON TRANSDUCER BEAM USING MULTI-GAUSSIAN RECONSTRUCTION OF A PISTON TRANSDUCER BEAM USING MULTI-GAUSSIAN BEAMS (MGB) AND ITS APPLICATIONS INTRODUCTION A. Minachi*, F. 1. Margetan** and R. B. Thompson** * Southwest Research Institute San Antonio,

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

What is it? How does it work? How do we use it?

What is it? How does it work? How do we use it? What is it? How does it work? How do we use it? Dual Nature http://www.youtube.com/watch?v=dfpeprq7ogc o Electromagnetic Waves display wave behavior o Created by oscillating electric and magnetic fields

More information

Influence of geometric imperfections on tapered roller bearings life and performance

Influence of geometric imperfections on tapered roller bearings life and performance Influence of geometric imperfections on tapered roller bearings life and performance Rodríguez R a, Calvo S a, Nadal I b and Santo Domingo S c a Computational Simulation Centre, Instituto Tecnológico de

More information

Final Exam. Today s Review of Optics Polarization Reflection and transmission Linear and circular polarization Stokes parameters/jones calculus

Final Exam. Today s Review of Optics Polarization Reflection and transmission Linear and circular polarization Stokes parameters/jones calculus Physics 42200 Waves & Oscillations Lecture 40 Review Spring 206 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 2 You can bring one double-sided pages of notes/formulas.

More information

Comparing Measurement and Simulation Results using Model Calibration for Room Acoustical Evaluation of Industry Halls

Comparing Measurement and Simulation Results using Model Calibration for Room Acoustical Evaluation of Industry Halls Comparing Measurement and Simulation Results using Model Calibration for Room Acoustical Evaluation of Industry Halls Thomas Ziegler Ziegler Schallschutz GmbH, Salzburg, Austria Summary Acoustic simulation

More information

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER Warsaw University of Technology Faculty of Physics Physics Laboratory I P Irma Śledzińska 4 MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER 1. Fundamentals Electromagnetic

More information

Simple Spatial Domain Filtering

Simple Spatial Domain Filtering Simple Spatial Domain Filtering Binary Filters Non-phase-preserving Fourier transform planes Simple phase-step filters (for phase-contrast imaging) Amplitude inverse filters, related to apodization Contrast

More information

Chapter 18 Ray Optics

Chapter 18 Ray Optics Chapter 18 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 18-1 Chapter 18 Preview Looking Ahead Text p. 565 Slide 18-2 Wavefronts and Rays When visible light or other electromagnetic

More information

Chalmers Publication Library

Chalmers Publication Library Chalmers Publication Library Urban background noise mapping: The multiple-reflection correction term This document has been downloaded from Chalmers Publication Library (CPL). It is the author s version

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Diffraction Huygen s principle requires that the waves spread out after they pass through slits This spreading out of light from its initial line of travel is called diffraction

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 40 Review Spring 2016 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 112 You can bring one double-sided pages of notes/formulas.

More information

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4)

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4) MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology Lecture 9: Reflection and Refraction (Petty Ch4) When to use the laws of reflection and refraction? EM waves

More information

SEG/New Orleans 2006 Annual Meeting

SEG/New Orleans 2006 Annual Meeting Accuracy improvement for super-wide angle one-way waves by wavefront reconstruction Ru-Shan Wu* and Xiaofeng Jia, Modeling and Imaging Laboratory, IGPP, University of California, Santa Cruz Summary To

More information

MODELLING OF PROPAGATION OVER NON-HOMOGENEOUS EARTH WITH PARABOLIC EQUATION METHOD

MODELLING OF PROPAGATION OVER NON-HOMOGENEOUS EARTH WITH PARABOLIC EQUATION METHOD ODELLING OF PROPAGATION OVER NON-HOOGENEOUS EARTH WITH PARABOLIC EQUATION ETHOD Esin ÖZÇAKICILAR 1 Funda AKLEAN 1 Uludag UniversityEngineering-Architecture Faculty Electronic Engineering Department 1659-Görükle/BURSA

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

A VIRTUAL SOURCE METHOD FOR THE PREDICTION OF THE SOUND FIELD AROUND COMPLEX GEOMETRIES

A VIRTUAL SOURCE METHOD FOR THE PREDICTION OF THE SOUND FIELD AROUND COMPLEX GEOMETRIES 23 rd International Congress on Sound & Vibration Athens, Greece 10-14 July 2016 ICSV23 A VIRTUAL SOURCE METHOD FOR THE PREDICTION OF THE SOUND FIELD AROUND COMPLEX GEOMETRIES Penelope Menounou and Christos

More information

Optimising uncertainty and calculation time ACUSTICUM 2005

Optimising uncertainty and calculation time ACUSTICUM 2005 Optimising uncertainty and calculation time ACUSTICUM 2005 Hardy Stapelfeldt Stapelfeldt Ingenieurgesellschaft mbh, D-44141 Dortmund, Wilhelm-Brand-Str. 7, Germany, hs@stapelfeldt.de Douglas Manvell Brüel

More information

Two-Dimensional Waves

Two-Dimensional Waves Two-Dimensional Waves In our previous lessons, we discussed one-dimensional waves waves that can only travel in straight lines, such as along the length of a spring. In this next part of the unit, we will

More information

Acoustic computation of a grommet in a small cabin using finite element analysis

Acoustic computation of a grommet in a small cabin using finite element analysis Acoustic computation of a grommet in a small cabin using finite element analysis M.GAROT a, F.CABRERA b, L.CHRETIEN b, N. MERLETTE a a. CEVAA, mail: m.garot@cevaa.com b. LEONI WIRING SYSTEMS Abstract:

More information