and Recent Extensions Progressive Meshes Progressive Meshes Multiresolution Surface Modeling Multiresolution Surface Modeling Hugues Hoppe

Size: px
Start display at page:

Download "and Recent Extensions Progressive Meshes Progressive Meshes Multiresolution Surface Modeling Multiresolution Surface Modeling Hugues Hoppe"

Transcription

1 Progressive Meshes Progressive Meshes and Recent Extensions Hugues Hoppe Microsoft Research SIGGRAPH 97 Course SIGGRAPH 97 Course Multiresolution Surface Modeling Multiresolution Surface Modeling

2 Meshes in computer graphics Meshes in computer graphics mesh M V F Vertex 1 x 1 y 1 z 1 Vertex 2 x 2 y 2 z 2 Face Face Face (appearance attributes: normals, colors, textures,...)

3 Complex meshes Complex meshes 43,000 faces 43,000 faces 43,000 faces lots of faces! lots of faces! lots of faces! Challenges: - rendering - storage - transmission

4 Talk outline Talk outline SIGGRAPH 96 Progressive mesh (PM) representation continuous-resolution efficient progressive transmission 97 View-dependent refinement of PM s 97 Progressive simplicial complex (PSC) repr.

5 Mesh simplification techniques Mesh simplification techniques 13,000 [Schroeder-etal92] etal92] [Hoppe-etal93] etal93] [Rossignac-Borrel93] [Cohen-etal96] etal96] [Garland-Heckbert97]... 1, ?

6 Traditional level-of of-detail (LOD) [Clark76] [Funkhouser93] 10,000 distance from viewer? close 1,000 far Concern: transitions may pop would like smooth LOD 250

7 Progressive mesh representation Progressive mesh representation Basic idea: Simplify mesh through sequence of transformations. Record: simplified mesh simplified mesh + sequence of inverse transformations sequence of inverse transformations

8 Edge collapse Simplification v t v l v r v s ecol(v s,v t, v s ) (optimization) v l v r v s 13, M=M ^ n ecol n-1 M 175 M ecol ecol i 0 M 0

9 Invertible! Vertex split transformation Invertible! Vertex split transformation v l v s v r attributes vspl(v s,v l,v r, v s,v t, ) v t v l v r v s

10 150 Reconstruction process ,546 M 0 M 1 M 175 M n =M^ vspl 0 vspl i i vspl n-1 n-1 progressive mesh (PM) representation

11 Application: Continuous-resolution LOD From PM, extract M i of any desired complexity. M 0 vspl 0 vspl 1 vspl i-1 vspln-1 3,478 faces? 3,478 M i M 0 M M n =M^ i 260K faces/sec! 180K faces/sec! (200 MHz Pentium Pro)

12 VIDEO: PM construction and LOD VIDEO: PM construction and LOD gameguy ecol s gameguy vspl s gameguy LOD sandal LOD

13 Property: Vertex correspondence Property: Vertex correspondence M f M f-1 M f-2 M c M n v 1 v 1 v 1 v 1 M 0 v 2 v 2 v v ecol 2 ecol 2 v v v v v 4 v 4 v ecol 4 v v v v 6 v 6 v 6 v 7 v 7 v 8

14 Application: Smooth transitions Application: Smooth transitions M f M c M n v 1 v 1 M 0 v 2 v 2 v 3 v 3 v 4 v 5 v 6 v 7 v 8 M f c V V F can form a smooth visual transition: geomorph

15 VIDEO: PM geomorphs VIDEO: PM geomorphs gameguy 1 geomorph gameguy 12 geomorphs gameguy 6 rotating

16 Application: Mesh compression vspl i (v s,v l,v r,v s,v t, ) v t v l v v s r v l v r v s Analysis: Record: (log 2 i bits) v s (log (~5 bits) v l & v r (~5 bits) v t - v s (delta) v s - v s (delta) predict materials connectivity: n(4+log 2 n) bits vs. n(6log 2 n) bits geometry: ~30n bits vs. 96n bits [Deering95]

17 Application: Progressive transmission Application: Progressive transmission Transmit records progressively: time M 0 vspl 0 vspl 1 vspl i-1 vspln-1 Receiver displays: M 0 M i (~ progressive GIF & JPEG) M^

18 Conversion traditional mesh representation progressive mesh representation V F M 0 vspl Optimization process Various metrics (speed vs. quality) Typically performed off-line

19 How to select edge collapses? How to select edge collapses? Preserve appearance: geometric shape scalar fields (e.g. color, normals) discontinuity curves E e e da e dl = ( shape + scalars ) + ( disc ) face areas disc. edges Σ Σ points points

20 Error metric: point sampling shape discontinuities 1600 faces 1600 faces 300 faces

21 Selecting edge collapses Selecting edge collapses Greedy algorithm: always collapse edge resulting in smallest E. Optimize position and attributes of resulting vertex. Simplification rates: ~ 30 faces/sec off-line process could use faster, simpler metrics e.g. [Garland-Heckbert97]

22 VIDEO/DEMO: PM results VIDEO/DEMO: PM results radiosity 6 geomorphs mandrill image

23 PM Summary PM Summary M^ PM V F lossless M 0 vspl single resolution continuous-resolution smooth LOD space-efficient efficient progressive [Microsoft DirectX 5.0]

24 View-Dependent Refinement of Progressive Meshes [SIGGRAPH 97]

25 Adaptive refinement: motivation Adaptive refinement: motivation

26 [Cignoni etal 95] [De Floriani etal 96] [Lindstrom etal 96] height fields arbitrary meshes [Rockwood etal 89] [Xia-Varshney 96] [Abi Ezzi etal 93] [Kumar etal 95] parametric surfaces Applications & Related work

27 Using progressive meshes Using progressive meshes M 0 vspl 0 vspl 1 vspl i-1 vspln-1 (e.g. view frustum)

28 Contributions PM vertex hierarchy selective refinement Dependencies consistent framework View-dependent refinement criteria

29 Parent-child vertex relations v s vsplit v t v u

30 Vertex hierarchy PM: M 0 vspl 0 vspl 1 vspl 2 vspl 3 vspl 4 vspl 5 M 0 v 1 v 2 v 3 v 10 v 11 v 4 v 5 v 8 v 9 M n v 12 v 13 v 6 v 7 [Xia & Varshney 96] v 14 v 15

31 Selective refinement M 0 vspl 0 vspl 1 vspl 2 vspl 3 vspl 4 vspl 5 M 0 v 1 v 2 v 3 v 10 v 11 v 4 v 5 v 8 v 9 v 12 v 13 v 6 v 7 selectively refined mesh Restrictions? v 14 v 15

32 New vspl/ecol parametrizations New vspl/ecol parametrizations f n0 v s f n1 f n2 f n3 vsplit ecol f n0 f n1 v u v t f n3 f n2 v s vsplit f n0 f n1 f n2 f n3 v t v u f l f r ecol f n0 f n1 f n2 f n3 v t v u f l f r v s

33 Runtime algorithm M 0 v 1 v 2 v 3 v 10 v 11 v 4 v 5 v 8 v 9 v 12 v 13 initial mesh initial mesh Algorithm: v 6 v 14 v 15 incremental (frame coherence) efficient (~15% of frame time) amortizable v 7 dependency new mesh

34 View-dependent refinement criteria 3 criteria: view frustum surface orientation screen-space space geometric error

35 View frustum View frustum view is unchanged too high too far right

36 Surface orientation Surface orientation view is unchanged oriented away

37 Screen-space geometric error tolerance=0.5 pixels refinement near silhouette coarser in distance

38 All three criteria together All three criteria together 69,473 faces 10,528 faces 1.9 frame/sec 6.7 frame/sec

39 VIDEO: Selective Refinement VIDEO: Selective Refinement view frustum (2-window terrain) screen-space space error (2-window terrain) silhouette refinement (sphere) all 3 criteria including orientation (teapot) arbitrary mesh (gameguy) geomorph flythrough of gcanyon

40 Selective Refinement Summary Selective Refinement Summary M^ V F M 0 PM vspl continuous-resolution smooth LOD space-efficient efficient progressive M 0 v 1 v 2 M^ v 3 v 4 v 5 v 6 v 7 v 8 view-dependent refinement real-time algorithm

41 Progressive Simplicial Progressive Simplicial Complexes [SIGGRAPH 97] (Joint work with Jovan Popovic)

42 PM restrictions: PM restrictions: Supports only meshes (orientable, 2-dimensional 2 manifolds) 2,522 Preserves topological type M 0 M i M n 8, ,744

43 Progressive Simplicial Complexes Progressive Simplicial Complexes Represent arbitrary triangulations : any dimension, non-orientable, orientable, non-manifold, non-regular, Progressively encode both geometry and topology.

44 Generalization PM PSC edge collapse (ecol) vertex unification (vunify vunify) vertex split (vspl) generalized vertex split (gvspl)

45 LOD sequence M 1 M 22 gvspl 1 M 116 gvspl i gvspl n-1 PSC representation M n =M^

46 VIDEO: PSC VIDEO: PSC drumset schooner comparison of PM and PSC (davidson) geomorphs (cessna) 1-d d non-manifold curve (castle)

47 Space analysis Space analysis connectivity geometry! materials cessna destroyer drumset chandelier schooner castle2d Dataset A D V K(C) K(a) bits per vertex

48 PSC Summary PSC Summary M^ PSC V K lossless M 1 gvspl arbitrary simplicial complex any triangulation single vertex progressive geometry and topology

49 Future Work Future Work LOD on volumes Memory management for large models Refinement criteria for surface shading Animated models Editing using PM/PSC

Multiresolution Meshes. COS 526 Tom Funkhouser, Fall 2016 Slides by Guskov, Praun, Sweldens, etc.

Multiresolution Meshes. COS 526 Tom Funkhouser, Fall 2016 Slides by Guskov, Praun, Sweldens, etc. Multiresolution Meshes COS 526 Tom Funkhouser, Fall 2016 Slides by Guskov, Praun, Sweldens, etc. Motivation Huge meshes are difficult to render store transmit edit Multiresolution Meshes! [Guskov et al.]

More information

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 A Developer s Survey of Polygonal Simplification algorithms CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 Some questions to ask Why simplification? What are my models like? What matters

More information

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0)

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0) Acceleration Techniques V1.2 Anthony Steed Based on slides from Celine Loscos (v1.0) Goals Although processor can now deal with many polygons (millions), the size of the models for application keeps on

More information

Simplification. Stolen from various places

Simplification. Stolen from various places Simplification Stolen from various places The Problem of Detail Graphics systems are awash in model data: highly detailed CAD models high-precision surface scans surface reconstruction algorithms Available

More information

Advanced Computer Graphics

Advanced Computer Graphics Advanced Computer Graphics Lecture 2: Modeling (1): Polygon Meshes Bernhard Jung TU-BAF, Summer 2007 Overview Computer Graphics Icon: Utah teapot Polygon Meshes Subdivision Polygon Mesh Optimization high-level:

More information

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview Mesh Simplification Mesh Simplification Adam Finkelstein Princeton University COS 56, Fall 008 Slides from: Funkhouser Division, Viewpoint, Cohen Mesh Simplification Motivation Interactive visualization

More information

Multiresolution model generation of. texture-geometry for the real-time rendering 1

Multiresolution model generation of. texture-geometry for the real-time rendering 1 Multiresolution model generation of texture-geometry for the real-time rendering 1 Contents Contents...i Figures...iv 1. Introduction...1 1.1. Real-time rendering for complex object...1 1.2. Background...3

More information

A Study on View-Dependent Representation of 3-D Mesh Models Using Hierarchical Partitioning

A Study on View-Dependent Representation of 3-D Mesh Models Using Hierarchical Partitioning Thesis for Master s Degree A Study on View-Dependent Representation of 3-D Mesh Models Using Hierarchical Partitioning Sung-Yeol Kim Department of Information and Communications Kwangju Institute of Science

More information

Progressive Meshes. Hugues Hoppe ABSTRACT 1 INTRODUCTION. Microsoft Research

Progressive Meshes. Hugues Hoppe ABSTRACT 1 INTRODUCTION. Microsoft Research Progressive Meshes Hugues Hoppe Microsoft Research ABSTRACT Highly detailed geometric models are rapidly becoming commonplace in computer graphics. These models, often represented as complex triangle meshes,

More information

Mesh Decimation Using VTK

Mesh Decimation Using VTK Mesh Decimation Using VTK Michael Knapp knapp@cg.tuwien.ac.at Institute of Computer Graphics and Algorithms Vienna University of Technology Abstract This paper describes general mesh decimation methods

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

3-Dimensional Object Modeling with Mesh Simplification Based Resolution Adjustment

3-Dimensional Object Modeling with Mesh Simplification Based Resolution Adjustment 3-Dimensional Object Modeling with Mesh Simplification Based Resolution Adjustment Özgür ULUCAY Sarp ERTÜRK University of Kocaeli Electronics & Communication Engineering Department 41040 Izmit, Kocaeli

More information

CGAL. Mesh Simplification. (Slides from Tom Funkhouser, Adam Finkelstein)

CGAL. Mesh Simplification. (Slides from Tom Funkhouser, Adam Finkelstein) CGAL Mesh Simplification (Slides from Tom Funkhouser, Adam Finkelstein) Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 In a nutshell Problem: Meshes have too many polygons for storage, rendering,

More information

Mesh Repairing and Simplification. Gianpaolo Palma

Mesh Repairing and Simplification. Gianpaolo Palma Mesh Repairing and Simplification Gianpaolo Palma Mesh Repairing Removal of artifacts from geometric model such that it becomes suitable for further processing Input: a generic 3D model Output: (hopefully)a

More information

Mesh Decimation. Mark Pauly

Mesh Decimation. Mark Pauly Mesh Decimation Mark Pauly Applications Oversampled 3D scan data ~150k triangles ~80k triangles Mark Pauly - ETH Zurich 280 Applications Overtessellation: E.g. iso-surface extraction Mark Pauly - ETH Zurich

More information

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles Mesh Simplification Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies for efficient

More information

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification Last Time? Adjacency Data Structures Curves & Surfaces Geometric & topologic information Dynamic allocation Efficiency of access Mesh Simplification edge collapse/vertex split geomorphs progressive transmission

More information

A Comparison of Mesh Simplification Algorithms

A Comparison of Mesh Simplification Algorithms A Comparison of Mesh Simplification Algorithms Nicole Ortega Project Summary, Group 16 Browser Based Constructive Solid Geometry for Anatomical Models - Orthotics for cerebral palsy patients - Fusiform

More information

View-Dependent Refinement of Progressive Meshes

View-Dependent Refinement of Progressive Meshes View-Dependent Refinement of Progressive Meshes Hugues Hoppe Microsoft Research ABSTRACT Level-of-detail (LOD) representations are an important tool for realtime rendering of complex geometric environments.

More information

Smooth View-Dependent Level-of-Detail Control and its Application to Terrain Rendering

Smooth View-Dependent Level-of-Detail Control and its Application to Terrain Rendering Smooth View-Dependent Level-of-Detail Control and its Application to Terrain Rendering Hugues Hoppe Microsoft Research ABSTRACT The key to real-time rendering of large-scale surfaces is to locally adapt

More information

View-dependent Polygonal Simplification

View-dependent Polygonal Simplification View-dependent Polygonal Simplification Pekka Kuismanen HUT pkuisman@cc.hut.fi Abstract This paper describes methods for view-dependent simplification of polygonal environments. A description of a refinement

More information

Appearance Preservation

Appearance Preservation CS 283 Advanced Computer Graphics Mesh Simplification James F. O Brien Professor U.C. Berkeley Based on slides by Ravi Ramamoorthi 1 Appearance Preservation Caltech & Stanford Graphics Labs and Jonathan

More information

A Short Survey of Mesh Simplification Algorithms

A Short Survey of Mesh Simplification Algorithms A Short Survey of Mesh Simplification Algorithms Jerry O. Talton III University of Illinois at Urbana-Champaign 1. INTRODUCTION The problem of approximating a given input mesh with a less complex but geometrically

More information

CS 563 Advanced Topics in Computer Graphics QSplat. by Matt Maziarz

CS 563 Advanced Topics in Computer Graphics QSplat. by Matt Maziarz CS 563 Advanced Topics in Computer Graphics QSplat by Matt Maziarz Outline Previous work in area Background Overview In-depth look File structure Performance Future Point Rendering To save on setup and

More information

CS 283: Assignment 1 Geometric Modeling and Mesh Simplification

CS 283: Assignment 1 Geometric Modeling and Mesh Simplification CS 283: Assignment 1 Geometric Modeling and Mesh Simplification Ravi Ramamoorthi 1 Introduction This assignment is about triangle meshes as a tool for geometric modeling. As the complexity of models becomes

More information

Generalized View-Dependent Simplification

Generalized View-Dependent Simplification EUROGRAPHICS 99 / P. Brunet and R. Scopigno (Guest Editors) Volume 18 (1999), Number 3 Generalized View-Dependent Simplification Jihad El-Sana Amitabh Varshney Department of Computer Science State University

More information

Adjacency Data Structures

Adjacency Data Structures Last Time? Simple Transformations Adjacency Data Structures material from Justin Legakis Classes of Transformations Representation homogeneous coordinates Composition not commutative Orthographic & Perspective

More information

ABSTRACT. Abstract III

ABSTRACT. Abstract III Abstract III ABSTRACT Terrain in flight simulators has traditionally been hand-modelled by artists. Ericsson Saab Avionics AB uses a hand-modelled terrain over Gotland for their flight simulator T 3 SIM.

More information

Semiautomatic Simplification

Semiautomatic Simplification Semiautomatic Simplification ABSTRACT Gong Li gongli@cs.ualberta.ca Dept. Computing Science Univ. Alberta Edmonton, Alberta CANADA T6G 2H1 We present semisimp, a tool for semiautomatic simplification of

More information

EECS 487: Interactive Computer Graphics

EECS 487: Interactive Computer Graphics EECS 487: Interactive Computer Graphics Lecture 36: Polygonal mesh simplification The Modeling-Rendering Paradigm Modeler: Modeling complex shapes no equation for a chair, face, etc. instead, achieve complexity

More information

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Copyright 2010 Gotsman, Pauly Page 1 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies

More information

Out of Core continuous LoD-Hierarchies for Large Triangle Meshes

Out of Core continuous LoD-Hierarchies for Large Triangle Meshes Out of Core continuous LoD-Hierarchies for Large Triangle Meshes Hermann Birkholz Research Assistant Albert-Einstein-Str. 21 Germany, 18059, Rostock hb01@informatik.uni-rostock.de ABSTRACT In this paper,

More information

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo Geometric Modeling Bing-Yu Chen National Taiwan University The University of Tokyo Surface Simplification Motivation Basic Idea of LOD Discrete LOD Continuous LOD Simplification Problem Characteristics

More information

Real-time Extendible-resolution Display of On-line Dynamic Terrain

Real-time Extendible-resolution Display of On-line Dynamic Terrain Real-time Extendible-resolution Display of On-line Dynamic Terrain Yefei He National Advanced Driving Simulator & Simulation Center The University of Iowa Yiannis Papelis National Advanced Driving Simulator

More information

Simple Silhouettes for Complex Surfaces

Simple Silhouettes for Complex Surfaces Eurographics Symposium on Geometry Processing(2003) L. Kobbelt, P. Schröder, H. Hoppe (Editors) Simple Silhouettes for Complex Surfaces D. Kirsanov, P. V. Sander, and S. J. Gortler Harvard University Abstract

More information

LOD and Occlusion Christian Miller CS Fall 2011

LOD and Occlusion Christian Miller CS Fall 2011 LOD and Occlusion Christian Miller CS 354 - Fall 2011 Problem You want to render an enormous island covered in dense vegetation in realtime [Crysis] Scene complexity Many billions of triangles Many gigabytes

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Meshes Part II. June 13, 2005

Meshes Part II. June 13, 2005 Game Programming Meshes Part II June 13, 2005 Objectives To learn how to load the data of an XFile into an ID3DXMesh object To gain an understanding of the benefits of using progressive meshes and how

More information

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Chap. 5 Scene Management Overview Scene Management vs Rendering This chapter is about rendering

More information

A General Algorithm for Triangular Meshes Simplification

A General Algorithm for Triangular Meshes Simplification Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 613 A General Algorithm for Triangular Meshes Simplification BOŠTJAN PIVEC University

More information

Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts

Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts MSc Computer Games and Entertainment Maths & Graphics II 2013 Lecturer(s): FFL (with Gareth Edwards) Fractal Terrain Based on

More information

View-Dependent Selective Refinement for Fast Rendering

View-Dependent Selective Refinement for Fast Rendering 1 View-Dependent Selective Refinement for Fast Rendering Kyle Brocklehurst Department of Computer Science and Engineering The Pennsylvania State University kpb136@psu.edu Abstract Triangle meshes are used

More information

A Survey of Polygonal Simplification Algorithms UNC Technical Report TR97-045

A Survey of Polygonal Simplification Algorithms UNC Technical Report TR97-045 A Survey of Polygonal Simplification Algorithms UNC Technical Report TR97-045 David Luebke Department of Computer Science University of North Carolina at Chapel Hill 1. ABSTRACT Polygonal simplification

More information

Progressive Mesh. Reddy Sambavaram Insomniac Games

Progressive Mesh. Reddy Sambavaram Insomniac Games Progressive Mesh Reddy Sambavaram Insomniac Games LOD Schemes Artist made LODs (time consuming, old but effective way) ViewDependentMesh (usually used for very large complicated meshes. CAD apps. Probably

More information

CSE 163: Assignment 2 Geometric Modeling and Mesh Simplification

CSE 163: Assignment 2 Geometric Modeling and Mesh Simplification CSE 163: Assignment 2 Geometric Modeling and Mesh Simplification Ravi Ramamoorthi 1 Introduction This assignment is about triangle meshes as a tool for geometric modeling. As the complexity of models becomes

More information

QLOD: A Data Structure for Interative Terrain Visualization

QLOD: A Data Structure for Interative Terrain Visualization QLOD: A Data Structure for Interative Terrain Visualization RODRIGO TOLEDO 1,MARCELO GATTASS 1,LUIZ VELHO 2 1 Tecgraf - Computer Graphics Technology Group, Computer Science Department, PUC-Rio {rtoledo,gattass}@tecgraf.puc-rio.br

More information

A General Simplification Algorithm

A General Simplification Algorithm A General Simplification Algorithm Boštjan Pivec, Vid Domiter Abstract In this article a new general algorithm for triangular mesh simplification is proposed. The algorithm extends Krivograd's work from

More information

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662 Geometry Processing & Geometric Queries Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans,

More information

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations Subdivision Surface based One-Piece Representation Shuhua Lai Department of Computer Science, University of Kentucky Outline. Introduction. Parametrization of General CCSSs 3. One-Piece through Interpolation

More information

Use of 3D on the Web: Fundamental Issues and Emerging Technologies

Use of 3D on the Web: Fundamental Issues and Emerging Technologies Use of 3D on the Web: Fundamental Issues and Emerging Technologies Dinesh Shikhare National Centre for Software Technology, Juhu, Mumbai. November 1999. Abstract The 3D rendering capabilities of the desktop

More information

Surface Rendering. Surface Rendering

Surface Rendering. Surface Rendering Surface Rendering Surface Rendering Introduce Mapping Methods - Texture Mapping - Environmental Mapping - Bump Mapping Go over strategies for - Forward vs backward mapping 2 1 The Limits of Geometric Modeling

More information

A Sub-Atomic Subdivision Approach

A Sub-Atomic Subdivision Approach A Sub-Atomic Subdivision Approach S. Seeger 1 K. Hormann 2 G. Häusler 1 G. Greiner 2 1 University of Erlangen, Chair for Optics Staudtstr. 7/B2, 91058 Erlangen, Germany Email: {sseeger,ghaeusler}@optik.uni-erlangen.de

More information

View-dependent fast real-time generating algorithm for large-scale terrain

View-dependent fast real-time generating algorithm for large-scale terrain Procedia Earth and Planetary Science 1 (2009) 1147 Procedia Earth and Planetary Science www.elsevier.com/locate/procedia The 6 th International Conference on Mining Science & Technology View-dependent

More information

APPROACH FOR MESH OPTIMIZATION AND 3D WEB VISUALIZATION

APPROACH FOR MESH OPTIMIZATION AND 3D WEB VISUALIZATION APPROACH FOR MESH OPTIMIZATION AND 3D WEB VISUALIZATION Pavel I. Hristov 1, Emiliyan G. Petkov 2 1 Pavel I. Hristov Faculty of Mathematics and Informatics, St. Cyril and St. Methodius University, Veliko

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

Multiresolution structures for interactive visualization of very large 3D datasets

Multiresolution structures for interactive visualization of very large 3D datasets Multiresolution structures for interactive visualization of very large 3D datasets Doctoral Thesis (Dissertation) to be awarded the degree of Doctor rerum naturalium (Dr.rer.nat.) submitted by Federico

More information

Integrated Multiresolution Geometry and Texture Models for Terrain Visualization

Integrated Multiresolution Geometry and Texture Models for Terrain Visualization Integrated Multiresolution Geometry and Texture Models for Terrain Visualization Konstantin Baumann, Jürgen Döllner, Klaus Hinrichs Department of Computer Science, University of Münster {kostab, dollner,

More information

Interactive View-Dependent Rendering with Conservative Occlusion Culling in Complex Environments

Interactive View-Dependent Rendering with Conservative Occlusion Culling in Complex Environments Interactive View-Dependent Rendering with Conservative Occlusion Culling in Complex Environments Sung-Eui Yoon Brian Salomon Dinesh Manocha University of North Carolina at Chapel Hill http://gamma.cs.unc.edu/vdr

More information

Truly Selective Refinement of Progressive Meshes

Truly Selective Refinement of Progressive Meshes Truly Selective Refinement of Progressive Meshes Junho Kim victor@postech.ac.kr Seungyong Lee leesy@postech.ac.kr Department of Computer Science and Engineering Pohang University of Science and Technology

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1334 TITLE: Progressive Representation, Transmission, and Visualization of 3D Objects DISTRIBUTION: Approved for public release,

More information

Meshes: Catmull-Clark Subdivision and Simplification

Meshes: Catmull-Clark Subdivision and Simplification Meshes: Catmull-Clark Subdivision and Simplification Part 1: What I did CS 838, Project 1 Eric Aderhold My main goal with this project was to learn about and better understand three-dimensional mesh surfaces.

More information

Progressive Compression for Lossless Transmission of Triangle Meshes in Network Applications

Progressive Compression for Lossless Transmission of Triangle Meshes in Network Applications Progressive Compression for Lossless Transmission of Triangle Meshes in Network Applications Timotej Globačnik * Institute of Computer Graphics Laboratory for Geometric Modelling and Multimedia Algorithms

More information

All the Polygons You Can Eat. Doug Rogers Developer Relations

All the Polygons You Can Eat. Doug Rogers Developer Relations All the Polygons You Can Eat Doug Rogers Developer Relations doug@nvidia.com Future of Games Very high resolution models 20,000 triangles per model Lots of them Complex Lighting Equations Floating point

More information

A Real-time System of Crowd Rendering: Parallel LOD and Texture-Preserving Approach on GPU

A Real-time System of Crowd Rendering: Parallel LOD and Texture-Preserving Approach on GPU A Real-time System of Crowd Rendering: Parallel LOD and Texture-Preserving Approach on GPU Chao Peng, Seung In Park, Yong Cao Computer Science Department, Virginia Tech, USA {chaopeng,spark80,yongcao}@vt.edu

More information

Realtime view-dependent isosurface visualization for regular volume data

Realtime view-dependent isosurface visualization for regular volume data Realtime view-dependent isosurface visualization for regular volume data Maxim V. Kazakov Moscow Institute of Physics and Technology Dolgoprudny, Russia Abstract The problem of the interactive visualization

More information

Genetic Selection of Parametric Scenes Rendering

Genetic Selection of Parametric Scenes Rendering Genetic Selection of Parametric Scenes Rendering Bruce Merry October 1, 23 Supervised by Dr. James Gain 1 Department of Computer Science University of Cape Town Abstract We describe the rendering component

More information

Simplification of Meshes into Curved PN Triangles

Simplification of Meshes into Curved PN Triangles Simplification of Meshes into Curved PN Triangles Xiaoqun Wu, Jianmin Zheng, Xunnian Yang, Yiyu Cai Nanyang Technological University, Singapore Email: {wuxi0006,asjmzheng,xnyang,myycai}@ntu.edu.sg Abstract

More information

Implant Sprays: Compression of Progressive Tetrahedral Mesh Connectivity

Implant Sprays: Compression of Progressive Tetrahedral Mesh Connectivity Graphics, Visualization & Usability Center College of Computing Georgia Institute of Technology Implant Sprays: Compression of Progressive Tetrahedral Mesh Connectivity Renato Pajarola, Jarek Rossignac

More information

Terrain Rendering Research for Games. Jonathan Blow Bolt Action Software

Terrain Rendering Research for Games. Jonathan Blow Bolt Action Software Terrain Rendering Research for Games Jonathan Blow Bolt Action Software jon@bolt-action.com Lecture Agenda Introduction to the problem Survey of established algorithms Problems with established algorithms

More information

Selective Refinement Of Progressive Meshes Using Vertex Hierarchies

Selective Refinement Of Progressive Meshes Using Vertex Hierarchies Selectie Refinement Of Progressie Meshes Using Vertex Hierarchies Yigang Wanga, Bernd Fröhlichb and Martin Göbelc a,c Fraunhofer-Institut für Medienkommunication, Germany b Bauhaus-Uniersität Weimar, Germany

More information

Fast and memory efficient view-dependent trimmed NURBS rendering

Fast and memory efficient view-dependent trimmed NURBS rendering Fast and memory efficient view-dependent trimmed NURBS rendering Michael Guthe Jan Meseth University of Bonn Institute of Computer Science II, Computer Graphics Römerstraße 164, 53117 Bonn, Germany {guthe,meseth,rk}@cs.uni-bonn.de

More information

CS-184: Computer Graphics. Today. Forward kinematics Inverse kinematics. Wednesday, November 12, Pin joints Ball joints Prismatic joints

CS-184: Computer Graphics. Today. Forward kinematics Inverse kinematics. Wednesday, November 12, Pin joints Ball joints Prismatic joints CS-184: Computer Graphics Lecture #18: Forward and Prof. James O Brien University of California, Berkeley V2008-F-18-1.0 1 Today Forward kinematics Inverse kinematics Pin joints Ball joints Prismatic joints

More information

Texture Mapping for View-Dependent Rendering

Texture Mapping for View-Dependent Rendering Mapping for View-Dependent Rendering Mario Sormann Christopher Zach Konrad Karner VRVis Research Center Abstract View-dependent multiresolution meshes allow smooth interactive animation and optionally

More information

Progressive Compression and Transmission of Arbitrary Triangular Meshes

Progressive Compression and Transmission of Arbitrary Triangular Meshes Progressive Compression and Transmission of Arbitrary Triangular Meshes Chandrajit L Bajaj Valerio Pascucci Guozhong Zhuang Department of Computer Sciences University of Texas at Austin, Austin, TX 78712

More information

Multiresolution Decimation based on Global Error

Multiresolution Decimation based on Global Error Multiresolution Decimation based on Global Error A. Ciampalini, P. Cignoni, C. Montani, R. Scopigno Istituto per l Elaborazione dell Informazione - Consiglio Nazionale delle Ricerche, via S. Maria 46,

More information

Out-of-Core Simplification with Guaranteed Error Tolerance

Out-of-Core Simplification with Guaranteed Error Tolerance Out-of-Core Simplification with Guaranteed Error Tolerance Pavel Borodin, Michael Guthe, Reinhard Klein University of Bonn, Institute of Computer Science II Römerstraße 164, 53117 Bonn, Germany Email:

More information

Interactive View-Dependent Rendering with Conservative Occlusion Culling in Complex Environments

Interactive View-Dependent Rendering with Conservative Occlusion Culling in Complex Environments Interactive View-Dependent Rendering with Conservative Occlusion Culling in Complex Environments Sung-Eui Yoon Brian Salomon Dinesh Manocha University of North Carolina at Chapel Hill {sungeui,salomon,dm}@cs.unc.edu

More information

Overview of Quadtree-based Terrain Triangulation and Visualization

Overview of Quadtree-based Terrain Triangulation and Visualization Overview of Quadtree-based Terrain Triangulation and Visualization Renato Pajarola UCI-ICS Technical Report No. 02-01 Department of Information & Computer Science University of California, Irvine January

More information

Multi-resolution Technique Examples

Multi-resolution Technique Examples Multi-resolution Technique Examples 1 Multi-Resolution Visualization Motivation Limited computational resources Example: Internet-Based Server 3D applications using progressive meshes [Hop96] 2 1 Multi-Resolution

More information

Polygonal Meshes. Thomas Funkhouser Princeton University COS 526, Fall 2016

Polygonal Meshes. Thomas Funkhouser Princeton University COS 526, Fall 2016 Polygonal Meshes Thomas Funkhouser Princeton University COS 526, Fall 2016 Digital Geometry Processing Processing of 3D surfaces Creation, acquisition Storage, transmission Editing, animation, simulation

More information

Quick-VDR: Interactive View-Dependent Rendering of Massive Models

Quick-VDR: Interactive View-Dependent Rendering of Massive Models Quick-VDR: Interactive View-Dependent Rendering of Massive Models Sung-Eui Yoon Brian Salomon Russell Gayle Dinesh Manocha University of North Carolina at Chapel Hill {sungeui,salomon,rgayle,dm}@cs.unc.edu

More information

CS 563 Advanced Topics in Computer Graphics Polygonal Techniques. by Linna Ma

CS 563 Advanced Topics in Computer Graphics Polygonal Techniques. by Linna Ma CS 563 Advanced Topics in Computer Graphics Polygonal Techniques by Linna Ma What I ll Talk About Introduction Tessellation and Triangulation Consolidation Triangle Strips, Fans and Meshes Simplification

More information

Efficient rendering of multiresolution meshes with guaranteed image quality

Efficient rendering of multiresolution meshes with guaranteed image quality Efficient rendering of multiresolution meshes with guaranteed image quality Reinhard Klein and Andreas Schilling Wilhelm-Schickard-Institut, GRIS, Universität Tübingen, Germany Abstract 4, 5, 13, 14, 16].

More information

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011 Computer Graphics 1 Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in

More information

Complexity Reduction of Catmull-Clark/Loop Subdivision Surfaces

Complexity Reduction of Catmull-Clark/Loop Subdivision Surfaces EUROGRAPHICS 2001 / Jonathan C. Roberts Short Presentations Complexity Reduction of Catmull-Clark/Loop Subdivision Surfaces Eskil Steenberg The Interactive Institute, P.O. Box 24081, SE 104 50 Stockholm,

More information

View-Dependent Multiresolution Model for Foliage

View-Dependent Multiresolution Model for Foliage View-Dependent Multiresolution Model for Foliage I. Remolar M. Chover J. Ribelles O. Belmonte Dep. Lenguajes y Sistemas Informáticos Universitat Jaume I Campus Riu Sec Spain 12071, Castellón {remolar,

More information

Curves and Surfaces 2

Curves and Surfaces 2 Curves and Surfaces 2 Computer Graphics Lecture 17 Taku Komura Today More about Bezier and Bsplines de Casteljau s algorithm BSpline : General form de Boor s algorithm Knot insertion NURBS Subdivision

More information

Simplifying Surfaces with Color and Texture using Quadric Error Metrics

Simplifying Surfaces with Color and Texture using Quadric Error Metrics Simplifying Surfaces with Color and Texture using Quadric Error Metrics Michael Garland Paul S. Heckbert Carnegie Mellon University Abstract There are a variety of application areas in which there is a

More information

Geometric Features for Non-photorealistiic Rendering

Geometric Features for Non-photorealistiic Rendering CS348a: Computer Graphics Handout # 6 Geometric Modeling and Processing Stanford University Monday, 27 February 2017 Homework #4: Due Date: Mesh simplification and expressive rendering [95 points] Wednesday,

More information

An Algorithm of 3D Mesh Reconstructing Based on the Rendering Pipeline

An Algorithm of 3D Mesh Reconstructing Based on the Rendering Pipeline 3rd International Conference on Mechatronics and Information Technology (ICMIT 2016) An Algorithm of 3D Mesh Reconstructing Based on the Rendering Pipeline Zhengjie Deng1, a, Shuqian He1,b, Chun Shi1,c,

More information

Triangle Strip Multiresolution Modelling Using Sorted Edges

Triangle Strip Multiresolution Modelling Using Sorted Edges Triangle Strip Multiresolution Modelling Using Sorted Edges Ó. Belmonte Fernández, S. Aguado González, and S. Sancho Chust Department of Computer Languages and Systems Universitat Jaume I 12071 Castellon,

More information

MULTI - RESOLUTION 3D MODEL BY LASER DATA

MULTI - RESOLUTION 3D MODEL BY LASER DATA MULTI - RESOLUTION 3D MODEL BY LASER DATA E.S. Malinverni, G. Fangi, G. Gagliardini, DARDUS Università Politecnica delle Marche, Via Brecce Bianche, Ancona Italy malinverni@unian.it Commission V, WG V/4

More information

Illumination and Geometry Techniques. Karljohan Lundin Palmerius

Illumination and Geometry Techniques. Karljohan Lundin Palmerius Illumination and Geometry Techniques Karljohan Lundin Palmerius Objectives Complex geometries Translucency Huge areas Really nice graphics! Shadows Graceful degradation Acceleration Optimization Straightforward

More information

Progressive Geometry Compression. Andrei Khodakovsky Peter Schröder Wim Sweldens

Progressive Geometry Compression. Andrei Khodakovsky Peter Schröder Wim Sweldens Progressive Geometry Compression Andrei Khodakovsky Peter Schröder Wim Sweldens Motivation Large (up to billions of vertices), finely detailed, arbitrary topology surfaces Difficult manageability of such

More information

Polygonal Simplification: An Overview

Polygonal Simplification: An Overview L Polygonal Simplification: An Overview TR96-016 1996 UN LL U M I I V E RS IG S I T AT LUX LIBERTAS S EP TEN T CA RO Carl Erikson Department of Computer Science CB #3175, Sitterson Hall UNC-Chapel Hill

More information

A Real-time Rendering Method Based on Precomputed Hierarchical Levels of Detail in Huge Dataset

A Real-time Rendering Method Based on Precomputed Hierarchical Levels of Detail in Huge Dataset 32 A Real-time Rendering Method Based on Precomputed Hierarchical Levels of Detail in Huge Dataset Zhou Kai, and Tian Feng School of Computer and Information Technology, Northeast Petroleum University,

More information

Rafael Jose Falcon Lins. Submitted in partial fulfillment of the requirements for the degree of Master of Computer Science

Rafael Jose Falcon Lins. Submitted in partial fulfillment of the requirements for the degree of Master of Computer Science Feature-Based Mesh Simplification With Quadric Error Metric Using A Line Simplification Algorithm by Rafael Jose Falcon Lins Submitted in partial fulfillment of the requirements for the degree of Master

More information

Deformation Sensitive Decimation

Deformation Sensitive Decimation Deformation Sensitive Decimation Alex Mohr Michael Gleicher University of Wisconsin, Madison Abstract In computer graphics, many automatic methods for simplifying polygonal meshes have been developed.

More information

Goal. Interactive Walkthroughs using Multiple GPUs. Boeing 777. DoubleEagle Tanker Model

Goal. Interactive Walkthroughs using Multiple GPUs. Boeing 777. DoubleEagle Tanker Model Goal Interactive Walkthroughs using Multiple GPUs Dinesh Manocha University of North Carolina- Chapel Hill http://www.cs.unc.edu/~walk SIGGRAPH COURSE #11, 2003 Interactive Walkthrough of complex 3D environments

More information

Isotopic Approximation within a Tolerance Volume

Isotopic Approximation within a Tolerance Volume Isotopic Approximation within a Tolerance Volume Manish Mandad David Cohen-Steiner Pierre Alliez Inria Sophia Antipolis - 1 Goals and Motivation - 2 Goals and Motivation Input: Tolerance volume of a surface

More information