Isotopic Approximation within a Tolerance Volume

Size: px
Start display at page:

Download "Isotopic Approximation within a Tolerance Volume"

Transcription

1 Isotopic Approximation within a Tolerance Volume Manish Mandad David Cohen-Steiner Pierre Alliez Inria Sophia Antipolis - 1

2 Goals and Motivation - 2

3 Goals and Motivation Input: Tolerance volume of a surface geometry - 3

4 Goals and Motivation Input: Tolerance volume of a surface geometry Output: Surface triangle mesh Properties: Within tolerance volume Motivation: control global approximation error - 4

5 Goals and Motivation Input: Tolerance volume of a surface geometry Output: Surface triangle mesh Properties: Within tolerance volume Intersection free Motivation: simulation, machining, printing etc. - 5

6 Goals and Motivation Input: Tolerance volume of a surface geometry Output: Surface triangle mesh Properties: Within tolerance volume Intersection free Low vertex count Motivation: get an approximated mesh, low polygon count - 6

7 Goals and Motivation A Condition for Isotopic Approximation [Chazal, Cohen-Steiner 04] Constructive algorithm for this theoretical result - 7

8 Goals and Motivation A Condition for Isotopic Approximation [Chazal, Cohen-Steiner 04] Ω : Topological thickening of S Ω Ω 1 Ω 2-8

9 Goals and Motivation A Condition for Isotopic Approximation [Chazal, Cohen-Steiner 04] Ω : Topological thickening of S If S is included and separates sides of Ω, S is connected and Genus of S does not exceed genus of S Then, S and S are isotopic. Ω S - 9

10 Related Work - 10

11 Related Work Simplification Envelopes Cohen et al Multiresolution decimation based on global error Ciampalini et al Adaptively Sampled Distance Fields Frisken et al Permission Grids: Practical, Error-Bounded Simplification Zelinka Garland 2002 Intersection Free Simplification Gumhold et al GPU-based Tolerance Volumes for Mesh Processing Simplification of surface mesh using Hausdorff envelope Botsch et al Borouchaki Frey

12 Related Work Simplification Envelopes [Cohen et al. 96] - 12

13 Related Work Simplification Envelopes [Cohen et al. 96] Very good for simple geometry Input dependent Tolerance hinders simplification - 13

14 Overview Sampling Refinement Tolerance Volume Ω Simplification Output - 14

15 Algorithm - 15

16 Algorithm (Initialization) S: Point sample of Ω with labels f = -1 f = +1 σ radii balls at S cover Ω Initialization - 16

17 Algorithm (Initialization) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box f = f = +1 f = Initialization - 17

18 Algorithm (Initialization) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box f = f T f = +1 f = Initialization - 18

19 Algorithm (Initialization) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box f = -1 s Error µ(s)= f(s) f T (s) f T f = +1 f = Initialization - 19

20 Algorithm (coarse-to-fine) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T Sample point (s S) with maximum error Refinement - 20

21 Algorithm (coarse-to-fine) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T f = -1 f T = 0 Zero-set f = +1 f = +1 Refinement - 21

22 Algorithm (coarse-to-fine) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T Refinement - 22

23 Algorithm (coarse-to-fine) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T Refinement - 23

24 Algorithm (coarse-to-fine) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T Refinement - 24

25 Algorithm (coarse-to-fine) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T Boundary of simplicial tolerance ( Ɣ) Refinement - 25

26 Algorithm (coarse-to-fine) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T Extension to 3D? Guarantees? Refinement - 26

27 Refinement (conditions) Zero set may cross Ω due to flat tetrahedra - 27

28 Refinement (conditions) Zero set may cross Ω due to flat tetrahedra Ensure interpolated function is Lipschitz - 28

29 Refinement (conditions) Zero set may cross Ω due to flat tetrahedra Ensure interpolated function is Lipschitz μ(s) < 1 α, given some α [0, 1] μ(s) < 1 Classify samples with a margin - 28

30 Refinement (conditions) Zero set may cross Ω due to flat tetrahedra Ensure interpolated function is Lipschitz μ(s) < 1 α, given some α [0, 1] h > 2σ/α - 29

31 Refinement (conditions) What else do we need to fix? - 30

32 Refinement (conditions) Misoriented elements - 31

33 Refinement (conditions) Misoriented elements Interpolated function should classify well local geometry f T defined on ΔABC should classify well samples of S nearest (orange) to a shrunk triangle (green) - 32

34 Refinement (conditions) S not classified : μ(s)>1 { } μ(s) 1 α given some α [0;1] h 2σ/α f does not classifies local geometry - 33

35 Algorithm (fine-to-coarse) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T Collapse edges of Ɣ Simplification - 34

36 Simplification (conditions) - 36

37 Simplification (conditions) Validity of Triangulation Combinatorial Topology [Dey et al. 98] Link condition Valid embedding Visibility kernel of 1-ring [Lee-Preparata 79] Edge PQ to be collapsed Valid embedding kernel - 37

38 Simplification (conditions) Validity of Triangulation Combinatorial Topology [Dey et al. 98] Valid embedding Visibility kernel of 1-ring [Lee-Preparata 79] Edge PQ to be collapsed Valid embedding kernel - 38

39 Simplification (conditions) Validity of Triangulation Combinatorial Topology [Dey et al. 98] Valid embedding Visibility kernel of 1-ring [Lee-Preparata 79] Preserve classification of S Non convex problem Edge PQ to be collapsed Valid embedding kernel Region that preserve classification of S - 39

40 Simplification (conditions) Validity of Triangulation Combinatorial Topology [Dey et al. 98] Valid embedding Visibility kernel of 1-ring [Lee-Preparata 79] Preserve classification of S Non convex problem Optimal location : Minimizes sum of squared distances between target vertex and 2-ring planes - 40

41 Simplification (conditions) Validity of Triangulation Combinatorial Topology [Dey et al. 98] Valid embedding Visibility kernel of 1-ring [Lee-Preparata 79] Preserve classification of S Non convex problem Optimal location : Minimizes sum of squared distances between target vertex and 2-ring planes Faithful normals (same as in refinement) - 42

42 Algorithm (fine-to-coarse) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T Collapse edges of Ɣ Simplification - 40

43 Algorithm (fine-to-coarse) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T Collapse edges of Ɣ Simplification - 41

44 Algorithm (fine-to-coarse) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T Collapse edges of Ɣ Simplification - 42

45 Algorithm (fine-to-coarse) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T Collapse edges of Ɣ Insert Z in T Simplification - 43

46 Algorithm (fine-to-coarse) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T Collapse edges of Ɣ Insert Z in T Collapse edges of Z Simplification - 44

47 Algorithm (fine-to-coarse) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T Collapse edges of Ɣ Insert Z in T Collapse edges of Z Simplification - 45

48 Algorithm (fine-to-coarse) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T Collapse edges of Ɣ Insert Z in T Collapse edges of Z Simplification - 46

49 Algorithm (fine-to-coarse) S: Point sample of Ω with labels Delaunay Triangulation T of loose bounding-box While (S not classified) Insert Steiner point to T Collapse edges of Ɣ Insert Z in T Collapse edges of Z Final output Output - 47

50 Recap - 48

51 Recap - 48

52 Recap - 48

53 Recap - 48

54 Proof - 55

55 Proof Termination Topology Only assumes separability condition on Ω - 56

56 Results - 62

57 Blade Input Ω Refinement Simplification on Ɣ Simplification on Z Simplification on all edges - 63

58 Varying Tolerance (fertility) - 64

59 Varying Tolerance (vase lion) - 65

60 Progress of Algorithm tolerance - 66

61 Robustness to input dataset and noise - 67

62 Robustness to input dataset and noise - 68

63 Robustness to input dataset and noise - 69

64 Robustness to input dataset and noise [Chazal et al. 11] - 70

65 Comparisons - 71

66 Comparison (Simplification Envelopes) Input Simplification Envelopes H = 60% Our Algorithm H = 10% - 72

67 Comparisons Hausdorff distance (output to input) - 73

68 Comparisons Hausdorff distance (output to input) - 74

69 Comparisons Hausdorff distance (input to output) - 75

70 Comparisons Hausdorff distance (input to output) - 76

71 Comparisons Hausdorff distance (input to output) - 77

72 Comparisons Hausdorff distance (input to output) - 78

73 Comparisons Hausdorff distance (output to input) dots: self intersection - 79

74 Comparisons Hausdorff distance (input to output) - 80

75 Anisotropy - 81

76 Anisotropy - 82

77 Extensions - 83

78 Non-closed Surfaces 2δ rδ During Simplification : Hausdorff distance between Z and boundary is enforced to be δ. - 84

79 Non-closed Surfaces Input preserving holes repairing holes - 85

80 Non-manifold - 86

81 Limitations Tolerance volume dependence Compute and memory intensive Slow for small tolerance - 87

82 Conclusions Algorithm for isotopic approximation Always intersection free and within tolerance Low mesh complexity - 88

83 Further Work Out-of-core Progressive algorithm - 89

84 Questions Thank you. - 90

Mesh Decimation. Mark Pauly

Mesh Decimation. Mark Pauly Mesh Decimation Mark Pauly Applications Oversampled 3D scan data ~150k triangles ~80k triangles Mark Pauly - ETH Zurich 280 Applications Overtessellation: E.g. iso-surface extraction Mark Pauly - ETH Zurich

More information

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles Mesh Simplification Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies for efficient

More information

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 A Developer s Survey of Polygonal Simplification algorithms CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 Some questions to ask Why simplification? What are my models like? What matters

More information

CGAL. Mesh Simplification. (Slides from Tom Funkhouser, Adam Finkelstein)

CGAL. Mesh Simplification. (Slides from Tom Funkhouser, Adam Finkelstein) CGAL Mesh Simplification (Slides from Tom Funkhouser, Adam Finkelstein) Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 In a nutshell Problem: Meshes have too many polygons for storage, rendering,

More information

Mesh Repairing and Simplification. Gianpaolo Palma

Mesh Repairing and Simplification. Gianpaolo Palma Mesh Repairing and Simplification Gianpaolo Palma Mesh Repairing Removal of artifacts from geometric model such that it becomes suitable for further processing Input: a generic 3D model Output: (hopefully)a

More information

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview Mesh Simplification Mesh Simplification Adam Finkelstein Princeton University COS 56, Fall 008 Slides from: Funkhouser Division, Viewpoint, Cohen Mesh Simplification Motivation Interactive visualization

More information

Handles. The justification: For a 0 genus triangle mesh we can write the formula as follows:

Handles. The justification: For a 0 genus triangle mesh we can write the formula as follows: Handles A handle in a 3d mesh is a through hole. The number of handles can be extracted of the genus of the 3d mesh. Genus is the number of times we can cut 2k edges without disconnecting the 3d mesh.

More information

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Copyright 2010 Gotsman, Pauly Page 1 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies

More information

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9.

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9. II.4 Surface Simplification 37 II.4 Surface Simplification In applications it is often necessary to simplify the data or its representation. One reason is measurement noise, which we would like to eliminate,

More information

A Short Survey of Mesh Simplification Algorithms

A Short Survey of Mesh Simplification Algorithms A Short Survey of Mesh Simplification Algorithms Jerry O. Talton III University of Illinois at Urbana-Champaign 1. INTRODUCTION The problem of approximating a given input mesh with a less complex but geometrically

More information

Surface Simplification Using Quadric Error Metrics

Surface Simplification Using Quadric Error Metrics Surface Simplification Using Quadric Error Metrics Authors: Michael Garland & Paul Heckbert Presented by: Niu Xiaozhen Disclaimer: Some slides are modified from original slides, which were designed by

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Scientific Computing WS 2018/2019. Lecture 12. Jürgen Fuhrmann Lecture 12 Slide 1

Scientific Computing WS 2018/2019. Lecture 12. Jürgen Fuhrmann Lecture 12 Slide 1 Scientific Computing WS 2018/2019 Lecture 12 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 12 Slide 1 Recap For more discussion of mesh generation, see J.R. Shewchuk: Lecture Notes on Delaunay

More information

Mesh Decimation Using VTK

Mesh Decimation Using VTK Mesh Decimation Using VTK Michael Knapp knapp@cg.tuwien.ac.at Institute of Computer Graphics and Algorithms Vienna University of Technology Abstract This paper describes general mesh decimation methods

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Lecture 1 Discrete Geometric Structures

Lecture 1 Discrete Geometric Structures Lecture 1 Discrete Geometric Structures Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology

More information

: Mesh Processing. Chapter 8

: Mesh Processing. Chapter 8 600.657: Mesh Processing Chapter 8 Handling Mesh Degeneracies [Botsch et al., Polygon Mesh Processing] Class of Approaches Geometric: Preserve the mesh where it s good. Volumetric: Can guarantee no self-intersection.

More information

Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary

Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary Master s Project Tanja Munz Master of Science Computer Animation and Visual Effects 24th August, 2015 Abstract

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

Saab. Kyle McDonald. Polygon Meshes

Saab. Kyle McDonald. Polygon Meshes Saab Kyle McDonald Polygon Meshes Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 What is a polygon mesh? Like a point cloud, it is a discrete sampling of a surface... but, it adds linear (flat)

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Computational Geometry

Computational Geometry Computational Geometry 600.658 Convexity A set S is convex if for any two points p, q S the line segment pq S. S p S q Not convex Convex? Convexity A set S is convex if it is the intersection of (possibly

More information

Spectral Surface Reconstruction from Noisy Point Clouds

Spectral Surface Reconstruction from Noisy Point Clouds Spectral Surface Reconstruction from Noisy Point Clouds 1. Briefly summarize the paper s contributions. Does it address a new problem? Does it present a new approach? Does it show new types of results?

More information

Meshing Skin Surfaces with Certified Topology

Meshing Skin Surfaces with Certified Topology Meshing Skin Surfaces with Certified Topology Nico Kruithof and Gert Vegter Department of Mathematics and Computing Science University of Groningen, The Netherlands {nico,gert}@cs.rug.nl Abstract We present

More information

A Comparison of Mesh Simplification Algorithms

A Comparison of Mesh Simplification Algorithms A Comparison of Mesh Simplification Algorithms Nicole Ortega Project Summary, Group 16 Browser Based Constructive Solid Geometry for Anatomical Models - Orthotics for cerebral palsy patients - Fusiform

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Computational Topology in Reconstruction, Mesh Generation, and Data Analysis

Computational Topology in Reconstruction, Mesh Generation, and Data Analysis Computational Topology in Reconstruction, Mesh Generation, and Data Analysis Tamal K. Dey Department of Computer Science and Engineering The Ohio State University Dey (2014) Computational Topology CCCG

More information

Hang Si. Weierstrass Institute for Applied Analysis and Stochastics Berlin, Germany. Tetrahedron II

Hang Si. Weierstrass Institute for Applied Analysis and Stochastics Berlin, Germany. Tetrahedron II W eierstraß-institut für Angew andte Analysis und Stochastik 3D Boundary Recovery and Constrained Delaunay Tetrahedralizations Hang Si Weierstrass Institute for Applied Analysis and Stochastics Berlin,

More information

A THINNING ALGORITHM FOR TOPOLOGICALLY CORRECT 3D SURFACE RECONSTRUCTION

A THINNING ALGORITHM FOR TOPOLOGICALLY CORRECT 3D SURFACE RECONSTRUCTION A THINNING ALGORITHM FOR TOPOLOGICALLY CORRECT 3D SURFACE RECONSTRUCTION Leonid Tcherniavski Department of Informatics University of Hamburg tcherniavski@informatik.uni-hamburg.de ABSTRACT The existing

More information

Estimating Geometry and Topology from Voronoi Diagrams

Estimating Geometry and Topology from Voronoi Diagrams Estimating Geometry and Topology from Voronoi Diagrams Tamal K. Dey The Ohio State University Tamal Dey OSU Chicago 07 p.1/44 Voronoi diagrams Tamal Dey OSU Chicago 07 p.2/44 Voronoi diagrams Tamal Dey

More information

Freeform Shape Representations for Efficient Geometry Processing

Freeform Shape Representations for Efficient Geometry Processing Freeform Shape Representations for Efficient Geometry Processing Leif Kobbelt Mario Botsch Computer Graphics Group RWTH Aachen Abstract The most important concepts for the handling and storage of freeform

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

All the Polygons You Can Eat. Doug Rogers Developer Relations

All the Polygons You Can Eat. Doug Rogers Developer Relations All the Polygons You Can Eat Doug Rogers Developer Relations doug@nvidia.com Future of Games Very high resolution models 20,000 triangles per model Lots of them Complex Lighting Equations Floating point

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Surface Reconstruction. Gianpaolo Palma

Surface Reconstruction. Gianpaolo Palma Surface Reconstruction Gianpaolo Palma Surface reconstruction Input Point cloud With or without normals Examples: multi-view stereo, union of range scan vertices Range scans Each scan is a triangular mesh

More information

Fathi El-Yafi Project and Software Development Manager Engineering Simulation

Fathi El-Yafi Project and Software Development Manager Engineering Simulation An Introduction to Mesh Generation Algorithms Part 2 Fathi El-Yafi Project and Software Development Manager Engineering Simulation 21-25 April 2008 1 Overview Adaptive Meshing: Remeshing Decimation Optimization

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

Mesh Generation. Jean-Daniel Boissonnat DataShape, INRIA

Mesh Generation. Jean-Daniel Boissonnat DataShape, INRIA Mesh Generation Jean-Daniel Boissonnat DataShape, INRIA http://www-sop.inria.fr/datashape Algorithmic Geometry Mesh generation J-D. Boissonnat 1 / 27 Meshing surfaces and 3D domains visualization and graphics

More information

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662 Geometry Processing & Geometric Queries Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans,

More information

From CAD surface models to quality meshes. Patrick LAUG. Projet GAMMA. INRIA Rocquencourt. Outline

From CAD surface models to quality meshes. Patrick LAUG. Projet GAMMA. INRIA Rocquencourt. Outline From CAD surface models to quality meshes Patrick LAUG Projet GAMMA INRIA Rocquencourt Tetrahedron II Oct. 2007 1 Outline 1. Introduction B-Rep, patches 2. CAD repair ant topology recovery 3. Discretization

More information

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0)

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0) Acceleration Techniques V1.2 Anthony Steed Based on slides from Celine Loscos (v1.0) Goals Although processor can now deal with many polygons (millions), the size of the models for application keeps on

More information

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo Geometric Modeling Bing-Yu Chen National Taiwan University The University of Tokyo Surface Simplification Motivation Basic Idea of LOD Discrete LOD Continuous LOD Simplification Problem Characteristics

More information

Level Set Extraction from Gridded 2D and 3D Data

Level Set Extraction from Gridded 2D and 3D Data Level Set Extraction from Gridded 2D and 3D Data David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

Topology Preserving Surface Extraction Using Star-shaped Subdivision

Topology Preserving Surface Extraction Using Star-shaped Subdivision Topology Preserving Surface Extraction Using Star-shaped Subdivision Gokul Varadhan Shankar Krishnan T.V.N. Sriram Dinesh Manocha Turbine(exterior) Turbine(interior) Simplified Turbine Boolean Operations

More information

A Constrained Delaunay Triangle Mesh Method for Three-Dimensional Unstructured Boundary Point Cloud

A Constrained Delaunay Triangle Mesh Method for Three-Dimensional Unstructured Boundary Point Cloud International Journal of Computer Systems (ISSN: 2394-1065), Volume 03 Issue 02, February, 2016 Available at http://www.ijcsonline.com/ A Constrained Delaunay Triangle Mesh Method for Three-Dimensional

More information

Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions

Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions Simple Closed Surfaces A simple closed surface has exactly one interior, no holes, and is hollow. A sphere is the set of all points at a

More information

Provably Good Moving Least Squares

Provably Good Moving Least Squares Provably Good Moving Least Squares Ravikrishna Kolluri Computer Science Division University of California at Berkeley 1 Problem Definition Given a set of samples on a closed surface build a representation

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

: Mesh Processing. Chapter 2

: Mesh Processing. Chapter 2 600.657: Mesh Processing Chapter 2 Data Structures Polygon/Triangle Soup Indexed Polygon/Triangle Set Winged-Edge Half-Edge Directed-Edge List of faces Polygon Soup Each face represented independently

More information

Outline. Reconstruction of 3D Meshes from Point Clouds. Motivation. Problem Statement. Applications. Challenges

Outline. Reconstruction of 3D Meshes from Point Clouds. Motivation. Problem Statement. Applications. Challenges Reconstruction of 3D Meshes from Point Clouds Ming Zhang Patrick Min cs598b, Geometric Modeling for Computer Graphics Feb. 17, 2000 Outline - problem statement - motivation - applications - challenges

More information

Outline. CGAL par l exemplel. Current Partners. The CGAL Project.

Outline. CGAL par l exemplel. Current Partners. The CGAL Project. CGAL par l exemplel Computational Geometry Algorithms Library Raphaëlle Chaine Journées Informatique et GéomG ométrie 1 er Juin 2006 - LIRIS Lyon Outline Overview Strengths Design Structure Kernel Convex

More information

Surface Topology ReebGraph

Surface Topology ReebGraph Sub-Topics Compute bounding box Compute Euler Characteristic Estimate surface curvature Line description for conveying surface shape Extract skeletal representation of shapes Morse function and surface

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 15 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Variational Shape Approximation

Variational Shape Approximation Movie, anyone? Variational Shape Approximation Scanned vs. Concise Geometry Abundant repositories of surface meshes with subtle details exquisitely sampled but so as all the less interesting parts From

More information

Tight Cocone DIEGO SALUME SEPTEMBER 18, 2013

Tight Cocone DIEGO SALUME SEPTEMBER 18, 2013 Tight Cocone DIEGO SALUME SEPTEMBER 18, 2013 Summary Problem: The Cocone algorithm produces surfaces with holes and artifacts in undersampled areas in the data. Solution: Extend the Cocone algorithm to

More information

Simplification. Stolen from various places

Simplification. Stolen from various places Simplification Stolen from various places The Problem of Detail Graphics systems are awash in model data: highly detailed CAD models high-precision surface scans surface reconstruction algorithms Available

More information

COMPUTATIONAL GEOMETRY

COMPUTATIONAL GEOMETRY Thursday, September 20, 2007 (Ming C. Lin) Review on Computational Geometry & Collision Detection for Convex Polytopes COMPUTATIONAL GEOMETRY (Refer to O'Rourke's and Dutch textbook ) 1. Extreme Points

More information

Linear Complexity Hexahedral Mesh Generation

Linear Complexity Hexahedral Mesh Generation Linear Complexity Hexahedral Mesh Generation David Eppstein Department of Information and Computer Science University of California, Irvine, CA 92717 http://www.ics.uci.edu/ eppstein/ Tech. Report 95-51

More information

Mesh and Mesh Simplification

Mesh and Mesh Simplification Slide Credit: Mirela Ben-Chen Mesh and Mesh Simplification Qixing Huang Mar. 21 st 2018 Mesh DataStructures Data Structures What should bestored? Geometry: 3D coordinates Attributes e.g. normal, color,

More information

GEOMETRY MODELING & GRID GENERATION

GEOMETRY MODELING & GRID GENERATION GEOMETRY MODELING & GRID GENERATION Dr.D.Prakash Senior Assistant Professor School of Mechanical Engineering SASTRA University, Thanjavur OBJECTIVE The objectives of this discussion are to relate experiences

More information

Advanced geometry tools for CEM

Advanced geometry tools for CEM Advanced geometry tools for CEM Introduction Modern aircraft designs are extremely complex CAD models. For example, a BAE Systems aircraft assembly consists of over 30,000 individual components. Since

More information

Surface Mesh Generation

Surface Mesh Generation Surface Mesh Generation J.-F. Remacle Université catholique de Louvain September 22, 2011 0 3D Model For the description of the mesh generation process, let us consider the CAD model of a propeller presented

More information

Geodesics in heat: A new approach to computing distance

Geodesics in heat: A new approach to computing distance Geodesics in heat: A new approach to computing distance based on heat flow Diana Papyan Faculty of Informatics - Technische Universität München Abstract In this report we are going to introduce new method

More information

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2009 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2009 3/4/2009 Recap Differential Geometry of Curves Andrew Nealen, Rutgers, 2009 3/4/2009

More information

An algorithm for triangulating multiple 3D polygons

An algorithm for triangulating multiple 3D polygons An algorithm for triangulating multiple 3D polygons Ming Zou 1, Tao Ju 1, Nathan Carr 2 1 Washington University In St. Louis, USA 2 Adobe, USA Eurographics SGP 2013 1 Motivation Curves Surface 2 Motivation

More information

A Multicover Nerve for Geometric Inference. Don Sheehy INRIA Saclay, France

A Multicover Nerve for Geometric Inference. Don Sheehy INRIA Saclay, France A Multicover Nerve for Geometric Inference Don Sheehy INRIA Saclay, France Computational geometers use topology to certify geometric constructions. Computational geometers use topology to certify geometric

More information

Adaptive Semi-Regular Remeshing: A Voronoi-Based Approach

Adaptive Semi-Regular Remeshing: A Voronoi-Based Approach Adaptive Semi-Regular Remeshing: A Voronoi-Based Approach Aymen Kammoun 1, Frédéric Payan 2, Marc Antonini 3 Laboratory I3S, University of Nice-Sophia Antipolis/ CNRS (UMR 6070) - France 1 kammoun@i3s.unice.fr

More information

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo 3 - Reconstruction Acknowledgements: Olga Sorkine-Hornung Geometry Acquisition Pipeline Scanning: results in range images Registration: bring all range images to one coordinate system Stitching/ reconstruction:

More information

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger Topology/Geometry of Geodesics Joseph D. Clinton SNEC-04 28-29 June 2003 Magnus J. Wenninger Introduction Definitions Topology Goldberg s polyhedra Classes of Geodesic polyhedra Triangular tessellations

More information

Approximating Polygonal Objects by Deformable Smooth Surfaces

Approximating Polygonal Objects by Deformable Smooth Surfaces Approximating Polygonal Objects by Deformable Smooth Surfaces Ho-lun Cheng and Tony Tan School of Computing, National University of Singapore hcheng,tantony@comp.nus.edu.sg Abstract. We propose a method

More information

Mesh Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC

Mesh Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC Mesh Morphing Ligang Liu Graphics&Geometric Computing Lab USTC http://staff.ustc.edu.cn/~lgliu Morphing Given two objects produce sequence of intermediate objects that gradually evolve from one object

More information

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology.

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 1 Computing the Betti Numbers of Arrangements Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 2 Arrangements in Computational Geometry An arrangement in R k is

More information

Manifolds. Chapter X. 44. Locally Euclidean Spaces

Manifolds. Chapter X. 44. Locally Euclidean Spaces Chapter X Manifolds 44. Locally Euclidean Spaces 44 1. Definition of Locally Euclidean Space Let n be a non-negative integer. A topological space X is called a locally Euclidean space of dimension n if

More information

Geometric Representations. Stelian Coros

Geometric Representations. Stelian Coros Geometric Representations Stelian Coros Geometric Representations Languages for describing shape Boundary representations Polygonal meshes Subdivision surfaces Implicit surfaces Volumetric models Parametric

More information

Moving Least Squares Multiresolution Surface Approximation

Moving Least Squares Multiresolution Surface Approximation Moving Least Squares Multiresolution Surface Approximation BORIS MEDEROS LUIZ VELHO LUIZ HENRIQUE DE FIGUEIREDO IMPA Instituto de Matemática Pura e Aplicada Estrada Dona Castorina 110, 22461-320 Rio de

More information

Isotopic Approximation of Implicit Curves and Surfaces (Extended Abstract)

Isotopic Approximation of Implicit Curves and Surfaces (Extended Abstract) Isotopic Approximation of Implicit Curves and Surfaces (Extended Abstract) Simon Plantinga and Gert Vegter Institute for Mathematics and Computing Science University of Groningen simon@cs.rug.nl gert@cs.rug.nl

More information

Occluder Simplification using Planar Sections

Occluder Simplification using Planar Sections Occluder Simplification using Planar Sections Ari Silvennoinen Hannu Saransaari Samuli Laine Jaakko Lehtinen Remedy Entertainment Aalto University Umbra Software NVIDIA NVIDIA Aalto University Coping with

More information

Chapter 1 Introduction Motivation Approach Significance of Research Overview of Material... 5

Chapter 1 Introduction Motivation Approach Significance of Research Overview of Material... 5 ACKNOWLEDGEMENT First and foremost, I would like to thank my thesis advisor, Dr. A. Lynn Abbott, for his invaluable guidance and patience throughout my entire study at Virginia Tech. Beyond gaining academic

More information

Outline of the presentation

Outline of the presentation Surface Reconstruction Petra Surynková Charles University in Prague Faculty of Mathematics and Physics petra.surynkova@mff.cuni.cz Outline of the presentation My work up to now Surfaces of Building Practice

More information

Topological estimation using witness complexes. Vin de Silva, Stanford University

Topological estimation using witness complexes. Vin de Silva, Stanford University Topological estimation using witness complexes, Acknowledgements Gunnar Carlsson (Mathematics, Stanford) principal collaborator Afra Zomorodian (CS/Robotics, Stanford) persistent homology software Josh

More information

Adjacency Data Structures

Adjacency Data Structures Last Time? Simple Transformations Adjacency Data Structures material from Justin Legakis Classes of Transformations Representation homogeneous coordinates Composition not commutative Orthographic & Perspective

More information

Unknot recognition, linear programming and the elusive polynomial time algorithm

Unknot recognition, linear programming and the elusive polynomial time algorithm Unknot recognition, linear programming and the elusive polynomial time algorithm Benjamin Burton The University of Queensland June 16, 2011 1 / 28 2 / 28 Outline 1 Decision problems in geometric topology

More information

Extracting consistent and manifold interfaces from multi-valued volume data sets

Extracting consistent and manifold interfaces from multi-valued volume data sets Extracting consistent and manifold interfaces from multi-valued volume data sets Stephan Bischoff, Leif Kobbelt Lehrstuhl für Informatik 8, RWTH Aachen, 52056 Aachen Email: {bischoff,kobbelt}@informatik.rwth-aachen.de

More information

Mesh Generation through Delaunay Refinement

Mesh Generation through Delaunay Refinement Mesh Generation through Delaunay Refinement 3D Meshes Mariette Yvinec MPRI 2009-2010, C2-14-1, Lecture 4b ENSL Winter School, january 2010 Input : C : a 2D PLC in R 3 (piecewise linear complex) Ω : a bounded

More information

6.2 Classification of Closed Surfaces

6.2 Classification of Closed Surfaces Table 6.1: A polygon diagram 6.1.2 Second Proof: Compactifying Teichmuller Space 6.2 Classification of Closed Surfaces We saw that each surface has a triangulation. Compact surfaces have finite triangulations.

More information

Computational Geometry Lecture Duality of Points and Lines

Computational Geometry Lecture Duality of Points and Lines Computational Geometry Lecture Duality of Points and Lines INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 11.1.2016 Duality Transforms We have seen duality for planar graphs and duality of

More information

Shape Reconstruction from Unorganized Cross-sections

Shape Reconstruction from Unorganized Cross-sections Eurographics Symposium on Geometry Processing (2007) Alexander Belyaev, Michael Garland (Editors) Shape Reconstruction from Unorganized Cross-sections Jean-Daniel BOISSONNAT Pooran MEMARI INRIA Sophia-Antipolis,

More information

MARCHING CUBES AND VARIANTS

MARCHING CUBES AND VARIANTS CHAPTER MARCHING CUBES AND VARIANTS In the introduction, we mentioned four different approaches to isosurface construction. In this chapter, we describe one of those approaches to isosurface construction,

More information

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson]

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Differential Geometry: Circle Packings [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Conformal Maps Recall: Given a domain Ω R 2, the map F:Ω R 2 is conformal if it

More information

Surface reconstruction based on a dynamical system

Surface reconstruction based on a dynamical system EUROGRAPHICS 2002 / G. Drettakis and H.-P. Seidel (Guest Editors) Volume 21 (2002), Number 3 Surface reconstruction based on a dynamical system N.N. Abstract We present an efficient algorithm that computes

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Lecture 11 Combinatorial Planning: In the Plane

Lecture 11 Combinatorial Planning: In the Plane CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University Lecture 11 Combinatorial Planning: In the Plane Instructor: Jingjin Yu Outline Convex shapes, revisited Combinatorial planning

More information

A Robust Procedure to Eliminate Degenerate Faces from Triangle Meshes

A Robust Procedure to Eliminate Degenerate Faces from Triangle Meshes A Robust Procedure to Eliminate Degenerate Faces from Triangle Meshes Mario Botsch, Leif P. Kobbelt Computer Graphics Group, RWTH Aachen, kobbelt,botsch @cs.rwth-aachen.de Abstract When using triangle

More information

Theoretical Computer Science. Anisotropic diagrams: Labelle Shewchuk approach revisited

Theoretical Computer Science. Anisotropic diagrams: Labelle Shewchuk approach revisited Theoretical Computer Science 408 (2008 163 173 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Anisotropic diagrams: Labelle Shewchuk

More information

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College Topological Data Analysis - I Afra Zomorodian Department of Computer Science Dartmouth College September 3, 2007 1 Acquisition Vision: Images (2D) GIS: Terrains (3D) Graphics: Surfaces (3D) Medicine: MRI

More information

Voronoi diagrams Delaunay Triangulations. Pierre Alliez Inria

Voronoi diagrams Delaunay Triangulations. Pierre Alliez Inria Voronoi diagrams Delaunay Triangulations Pierre Alliez Inria Voronoi Diagram Voronoi Diagram Voronoi Diagram The collection of the non-empty Voronoi regions and their faces, together with their incidence

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

ALIASING-FREE SIMPLIFICATION OF SURFACE MESHES

ALIASING-FREE SIMPLIFICATION OF SURFACE MESHES ALIASING-FREE SIMPLIFICATION OF SURFACE MESHES Jean-Luc Peyrot, Frédéric Payan and Marc Antonini, IEEE member Laboratory I3S - University Nice - Sophia Antipolis and CNRS (France) - UMR 7271 peyrot@i3s.unice.fr,

More information

Contours & Implicit Modelling 4

Contours & Implicit Modelling 4 Brief Recap Contouring & Implicit Modelling Contouring Implicit Functions Visualisation Lecture 8 lecture 6 Marching Cubes lecture 3 visualisation of a Quadric toby.breckon@ed.ac.uk Computer Vision Lab.

More information